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Noah Zaitlen1,2,3,4,∗, Bogdan Paşaniuc1,2,3,4, Nick Patterson3, Samuela Pollack1,
Benjamin Voight3,5,6, Leif Groop7, David Altshuler3,5,6, Brian E. Henderson8,
Laurence N. Kolonel9, Loic Le Marchand9, Kevin Waters8, Christopher A. Haiman8,
Barbara E. Stranger3,6,10, Emmanouil T. Dermitzakis11, Peter Kraft1,2,3,4 and
Alkes L. Price1,2,3,4,∗
1Department of Epidemiology, 2Department of Biostatistics, Harvard School of Public Health, Boston, MA 02115,
3Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, 4Program in Molecular and

Genetic Epidemiology, Harvard School of Public Health, Boston, Massachusetts, USA, 5Center for Human Genetic

Research, Department of Molecular Biology and Diabetes Unit, Massachusetts General Hospital, 6Departments of

Genetics and of Medicine, Harvard Medical School, Boston, MA 02115, 7Department of Clinical Sciences, Diabetes

and Endocrinology Research Unit, Scania University Hospital Lund University, Malm, Sweden SE-205, 8Department

of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer

Center, Los Angeles, CA 90089, 9Epidemiology Program, Cancer Research Center, University of Hawaii, Honolulu, HI

96813, 10Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115 and 11Department of

Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland CH-1211

Associate Editor: Jeffrey Barrett

ABSTRACT

Motivation: The question of how to best use information from known

associated variants when conducting disease association studies

has yet to be answered. Some studies compute a marginal P-

value for each Several Nucleotide Polymorphisms independently,

ignoring previously discovered variants. Other studies include known

variants as covariates in logistic regression, but a weakness of

this standard conditioning strategy is that it does not account

for disease prevalence and non-random ascertainment, which can

induce a correlation structure between candidate variants and known

associated variants even if the variants lie on different chromosomes.

Here, we propose a new conditioning approach, which is based

in part on the classical technique of liability threshold modeling.

Roughly, this method estimates model parameters for each known

variant while accounting for the published disease prevalence from

the epidemiological literature.

Results: We show via simulation and application to empirical

datasets that our approach outperforms both the no conditioning

strategy and the standard conditioning strategy, with a properly

controlled false-positive rate. Furthermore, in multiple data sets

involving diseases of low prevalence, standard conditioning

produces a severe drop in test statistics whereas our approach

generally performs as well or better than no conditioning. Our

approach may substantially improve disease gene discovery for

diseases with many known risk variants.

Availability: LTSOFT software is available online
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1 INTRODUCTION

The NHGRI catalog of Published Genome Wide Association

Studies (GWAS) (Hindorff et al., 2009) lists thousands of single

nucleotide polymorphisms (SNPs) associated with several hundred

complex phenotypes. However, it is currently unknown how to

optimally use these discovered SNPs when conducting additional

GWAS. Typically, known variants are ignored and SNPs are tested

independently for association via logistic regression for case–

control phenotypes and linear regression for quantitative phenotypes

(McCarthy et al., 2008). Occasionally, known variants are used as

covariates in the regression models to determine additional signals

exist in the data beyond those already discovered, as in recent

studies of Type 2 diabetes (Voight et al., 2010). We show that

for standard case–control studies neither one of these strategies,

testing SNPs marginally or standard conditioning on associated

variants, is optimally powered to discover new loci. Surprisingly,

standard conditioning will often dramatically decrease power (Kuo

and Feingold, 2010). For example, in the Welcome Trust Case

Control Consortium (WTCCC), Type 1 diabetes (T1D) dataset

(WTCCC, 2007b), conditioning on a known variant on Chromosome

6 decreases the one degree of freedom (df) χ2 statistic from

a logistic regression likelihood ratio test by an average of 27%

at independent known associated variants on entirely different

chromosomes relative to the same test without conditioning on the
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Chromosome 6 variant. However, we find that if used properly,

known variants can substantially improve study power and therefore

represent an important resource in conducting future GWAS.

In this work, we thoroughly examine the use of known associated

variants in the analysis of GWAS and their effects on SNPs that

are completely unlinked to the known variants (i.e. on different

chromosomes or distant loci). Previously, (Neuhaus, 1998) showed

that in the case of logistic regression, including a covariate increased

power when it was uncorrelated to the random variable being

tested, but decreased power when it was correlated. Our extensive

simulations and analysis of real gene expression and case–control

data indicate that for randomly ascertained individuals such as those

in a cross-sectional study, the practice of standard conditioning on

known variants does indeed improve the power to discover new

variants (Ma et al., 2010; Neuhaus, 1998), with larger gains in

power as the fraction of variance explained by the conditioned

SNPs increases. However, in a balanced case–control study in which

an equal number of cases and controls are ascertained based on

disease status, standard conditioning on known variants significantly

decreases power when the disease prevalence is low. This power

loss is due to an induced non-independence between associated

variants in case–control datasets. That is, SNPs that were completely

uncorrelated in the population become correlated when individuals

are collected in a case–control study design, and as predicted by

Neuhaus (1998), there is a corresponding loss in power due to

this correlation. This is true regardless of whether the data are

generated under a liability threshold model of disease or the logit

model of disease assumed by logistic regression. We show that the

effect of standard conditioning on known variants is a function of

prevalence, sample ascertainment, and the total phenotypic variance

explained by the known variants. We give full analytic derivations of

the non-centrality parameter of the conditioned and unconditioned

tests detailing the scenarios when each improves or diminishes

power.

To address this power loss in the case–control setting, we develop

a new statistic, called LTSCORE, based on the liability threshold

model (Dempster and Lerner, 1950; Falconer, 1967). LTSCORE

properly accounts for study design and disease prevalence while

still leveraging the known associated SNPs. The basis for the

improvement of our statistic is the incorporation of external

prevalence information, which is readily available. The liability

threshold model models individuals as having an unobserved

continuous phenotype called the liability (Dempster and Lerner,

1950; Falconer, 1967). Cases are individuals whose liability

exceeds some threshold while all other individuals are controls.

We compute the posterior mean of the residual of the liability

given an individual’s disease status, the disease prevalence and

the known associated variants. This posterior mean is then treated

as a continuous phenotype and tested for association via linear

regression while easily incorporating covariates such as principal

components (Price et al., 2006) (see Supplementary Material). The

crucial distinction between our approach and previous applications

of liability threshold modeling (Duggirala et al., 1997; Falconer,

1967; Jewell, 2004; Yang et al., 2010) is that we incorporate

ascertainment strategy and disease prevalence, which is the source

of the power loss for logistic regression with covariates when

estimating the parameters of the model. We show that accounting

for ascertainment can also be done in a relative risk framework, but

the liability threshold approach is more versatile.

In practice, our disease model changes dichotomous phenotypes

to continuous ones. Cases are assigned positive-valued phenotypes

and controls negative-valued phenotypes. Individuals carrying a

smaller number of risk alleles are given a larger phenotype.

The size of these shifts are a function of SNP effect size and

disease prevalence, which is not accounted for in standard logistic

regression. Our approach, unlike standard logistic regression, does

not suffer any loss of power when the disease prevalence is low.

This is not an issue with the logit model, which may also be

adapted to account for ascertainment, but with the commonly used

approach of adding genetic covariates to standard logistic regression

in ascertained data, without accounting for disease prevalence (see

Section 4).

Results on empirical data, including a large Type 2 diabetes (T2D)

case–control study and the (WTCCC, 2007b) T1D, Rheumatoid

Arthritis (RA), and T2D GWAS, demonstrate the pitfalls of using

logistic regression with covariates as well as the power gains of

LTSCORE when compared with both logistic regression with and

without covariates. The gain in power is a function of prevalence and

total variance explained by the known SNPs. Our method matches

or outperforms conditioned or unconditioned linear or logistic

regression for nearly all values of prevalence or ascertainment

examined. Its performance relative to these methods will continue to

increase as more variance in disease risk is explained by risk variants

that are identified. We release a software package implementing

LTSCORE for use in future association studies.

2 METHODS

Given a normally distributed continuous phenotype Y or a case–control

phenotype Z , we want to test candidate SNP s0 for association with

the phenotype. There are K independent SNPs s1,...,sK with genotypes

g1,...,gK and minor allele frequencies p1,...,pK known to be associated

with the phenotype and in complete linkage equilibrium (e.g. on different

chromosomes) with SNP s0. SNP s0 has genotypes g0 and minor allele

frequency p0. In this work, we explore three classes of statistical tests

of association: NOCOND, STDCOND and LTSCORE. NOCOND-log is

logistic regression of the genotypes g0 against the phenotypes without

conditioning on any known genetic covariates. STDCOND-log is logistic

regression where the genotypes g1,...,gK are included as covariates.

LTSCORE is linear regression applied to the posterior mean of the

residual of the liability threshold model described below. NOCOND-lin

and STDCOND-lin refer to linear instead of logistic regression. Each test

generates a χ2 one df test statistic by performing a likelihood ratio test.

Under the alternate hypothesis the effect size of s0 is a free parameter and

under the null hypothesis the effect size of s0 is fixed at 0. The details of

logistic and linear regression models are described in (Wasserman, 2005).

For reasons of simplicity, the derivations below all use linear instead of

logistic regression. Linear regression is commonly used in place of logistic

regression in association studies (Armitage, 1955; Price et al., 2006; Wallace

et al., 2006). Furthermore, we perform simulations and experiments under

both linear and logistic regression frameworks to demonstrate that the theory

described below holds under both models in practice (see Section 3). The

extension of these tests to recessive and dominant models is straightforward.

LTSCORE is publicly available in the LTSOFT software package.

2.1 Randomly ascertained case–control phenotypes

We begin with the case of cross-sectional dichotomous phenotypes

(see Supplementary Material for Continuous phenotypes). We create a

dichotomous phenotype Z under a liability threshold model (Falconer, 1967)

by labeling all N individual cases when Y ≥ t, for a threshold t, and controls
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otherwise. We consider the simple case of conditioning on one SNP i.e.

K =1. In this case, the non-centrality parameter of NOCOND-lin is

N ∗corr(g0,Z)2. (1)

The non-centrality parameter of STDCOND-lin is

N ∗ corr(g0,Z)2

(1−corr(g1,Z)2)
, (2)

where corr(g0,Z) is the correlation between the genotypes g0 and the

phenotypes Z . The full details of the derivation are given in Supplementary

Material S1. The non-centrality parameter increases in proportion to the

inverse of (1−fraction of variance explained by s1). That is, as the known

variants explain more of the phenotype, the greater our power to discover new

variants by conditioning in randomly ascertained study designs (Robinson

and Jewell, 1991). The non-centrality parameter for STDCOND-lin is also

larger than that of NOCOND-lin in the case of randomly ascertained

continuous phenotypes (see Supplementary Material).

2.2 Non-randomly ascertained case–control phenotypes

A key assumption in the derivations above is that candidates SNP s0 and SNP

s1 are independent. However, in an ascertained case–control study, especially

one for a disease of low-prevalence this assumption no longer holds. That

is, candidate, SNP s0 and SNP s1 that are independent in the population

will become correlated in the study cohort. Consider the extreme example

of drawing cases from one tail of Y and controls from the other. Under both

a logit and liability threshold model of disease, controls will have relatively

fewer copies of g0 and g1, while the cases will have relatively more, and so

in the study, g0 and g1 will be correlated. This exaggerated example provides

the intuition for why we see correlation in the ascertained study as we are

drawing all of our cases from an extreme tail of an underlying distribution.

As shown in Section 3 below, this correlation and the corresponding effects

of conditioning exist under both the liability threshold model of disease and

the logit model assumed by logistic regression.

The covariance between g0,g1 in the case of haploid individuals (this is

easily extended to the diploid case) is

cov(g0,g1)=E[g0 ∗g1]−p0 ∗p1. (3)

The expectation of the product of g0 ∗g1 is

P(g0 =1,g1 =1|Z =1)+P(g0 =1,g1 =1|Z =0)

=P(Z =1|g0 =1,g1 =1)p0p1FS/F

+P(Z =0|g0 =1,g1 =1)p0p1(1−FS )/(1−F), (4)

where FS is the frequency of cases in the study and F is the frequency of

cases in the population. In the case of random ascertainment, FS and F are

the same and so the covariance will be 0. However, in a disease of low

prevalence, FS and F will be different and so s0,s1 will be correlated in the

study due to ascertainment-induced correlation.

When we test SNP s0 marginally (NOCOND-lin), the non centrality

parameter is

N ∗ α2
0 +2α0α1cov(g0,g1)

var(Z)
(5)

When we test s0 conditioned on s1 (STDCOND-lin), the non-centrality

parameter is

N ∗ α2
0

var(Z)−α2
1

, (6)

where α0,α1 are the expected SNP effect sizes in the study (as opposed to

β0,β1 the effect sizes in the population). The full details of the derivation are

given in Supplementary Material S1. In the marginal case (NOCOND-lin),

the shared signal of s0 and s1 is added to the non-centrality parameter. This

implies that the power to detect s0 in the marginal case is greater if there

exists another SNP s1 that explains a significant fraction of the variance.

In the conditioned case (STDCOND-lin), the numerator is decreased because

the shared signal of s0 and s1 is conditioned out. However, the denominator

is also smaller since the variance of Z conditioned on s1 is smaller than

the unconditioned variance of Z . The power of STDCOND-lin relative

to NOCOND-lin is therefore a function of effect size, prevalence and

ascertainment. Yang and colleagues (Yang et al., 2010) provide alternative

derivations of the non-centrality parameter in the unconditioned case for both

quantitative and case–control phenotypes based on the liability threshold

model. In the case of non-randomly ascertained quantitative phenotypes,

two associated variants s0 and s1 that are independent in the population will

be correlated in the study for the reasons given above. We do not consider

this case in detail in this work but note that in many cases, STDCOND-lin

will reduce power significantly and we therefore caution against this statistic

for non-randomly ascertained quantitative phenotypes.

2.3 LTSCORE statistic

We model a case–control phenotype as arising from an underlying normally

distributed phenotype

φ=−m+ǫ;ǫ∼N (0,1) (7)

called the liability (Falconer, 1967). Cases are those individuals with φ≥0

and controls are those individuals with φ<0. There is a relationship between

this liability scale and the relative risk model of disease described in detail

previously in Wray et al. (2010) and Yang et al. (2010). If F is the prevalence

of the disease in the population then m=�−1(1−F), where �−1(x) is the

inverse of the cumulative normal distribution function with mean 0 and

variance 1 evaluated at x, so that the expected proportion of individuals

with φ≥0 is F . A SNP s1 associated with the disease and having mean

adjusted genotypes g1 ∈{0−2p,1−2p,2−2p} is incorporated into the model

as φ=−m+β1g1 +ǫ, where ǫ∼N (0,
√

1−var(β1 ∗g1)) so that the total

variance of φ is 1. Given a case–control study where SNP s1 has frequency

p+
1 in the cases and frequency p−

1 in the controls, we estimate β1 via a

method (described below) that relies on published prevalence data for the

disease. This prevalence represents a source of external data not available to

STDCOND-lin.

The estimation procedure is repeated for independent known associated

SNPs s2,...,sK giving a final model

φ=−m+X β+ǫ, (8)

ǫ∼N (0,σe =
√

1−var(X β)), (9)

where X are the genotypes of the K known SNP, and β is a vector of the

effects size β1,...βK .

To use both the prevalence information and the effects of the known

associated variants s1,...,sK when testing a new candidate SNP s0, we

compute the posterior mean of the residual of the liability given the genotypes

of the known variants X , their effect sizes β, the disease prevalence F and

the case–control status Z E(ǫ|X ,β,F,Z):

E(ǫ|X ,β,F,Z =Case)=

∫ ∞
m−X β

ǫ 1√
2πσ 2

e

e
( −ǫ2

2σ2
e

)
dǫ

∫ ∞
m−X β

1√
2πσ 2

e

e
( −ǫ2

2σ2
e

)
dǫ

, (10)

E(ǫ|X ,β,F,Z =Control)=

∫ m−X β

−∞ ǫ 1√
2πσ 2

e

e
( −ǫ2

2σ2
e

)
dǫ

∫ m−X β

−∞
1√

2πσ 2
e

e
( −ǫ2

2σ2
e

)
dǫ

, (11)

where σ 2
e is 1−var(X β) the residual variance of φ after subtracting the

variance from the known SNPs. The prevalence-aware liability threshold

based statistic is then computed by running standard linear regression

between the genotypes of the new SNP s0 and the posterior mean of the

residual of the liability of each individual as calculated above. Although
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the posterior mean is not normally distributed, the use of linear regression

in place of logistic regression is common practice in association studies

(Armitage, 1955; Price et al., 2006; Wallace et al., 2006).

Intuitively, the above integrals have the following effect. Cases without

risk alleles at other loci are assigned more extreme phenotypes than cases

with risk alleles at other loci (and analogously for controls). Consider a case

with no risk alleles at any of the known associated variants. To exceed the

liability threshold, such an individual will require a large value ǫ relative

to a case with many risk alleles at the known associated variants. Another

implication of this model (as well as the relative risk model) is that the odds

ratio at s0 will be higher when computed with cases having no known risk

alleles (Guey et al., 2011).

For fixed effect sizes β, as the prevalence of the disease approaches

0, the computation of E[ǫ|X ,β,F,Z] is dominated by the threshold m.

All of the case individuals will have approximately the same value of

E[ǫ|X ,β,F,Z =1] (Ecase), and all of the controls will have approximately

the same value of E[ǫ|X ,β,F,Z =0] (Econtrol). Since the LTSCORE statistic

is linear regression applied to E[ǫ|X ,β,F,Z], it is equivalent to the marginal

test NOCOND-lin in this case of near 0 prevalence.

The liability threshold model is not the only model of disease and

we also derive a prevalence aware statistic from the relative risk model

of disease (RRCOND)(Jewell, 2004). The RRCOND model is presented

in Supplementary Material S1, but we primarily focus on the LTSCORE

because the relative risk model does not easily handle non-SNP covariates

such as principal components.

2.4 Estimating β using published prevalence

We require an estimate of the disease prevalence F taken from the literature.

In the liability threshold model, any estimates β̂1 of β1 and p̂1of p1 give

an expected frequency of s1 in the cases and controls. Our estimate of the

population minor allele frequency is

p̂1 =p+
1 F +p−

1 (1−F), (12)

where p+
1 and p−

1 are the observed frequencies of s1 in the cases and controls.

Given an estimated effect size β̂1 of s1

P(Z =1|g1 =0)= (1−�(m,β̂1(−2p̂1),σ 2
e )) (13)

P(Z =1|g1 =1)= (1−�(m,β̂1(1−2p̂1),σ 2
e )) (14)

P(Z =1|g1 =2)= (1−�(m,β̂1(2−2p̂1),σ 2
e )), (15)

where �(x,y,z) is the cumulative normal distribution evaluated at x, with

mean y and variance z. Then

P(g1 =0|Z =1)= P(Z =1|g1 =0)(1− p̂1)2

F
(16)

and similarly for g1 =1,2. Finally, we compute the frequency of s1 in the

cases given β̂1 and p̂1 as

p̂1
+ =P(g1 =1|Z =1)+2P(g1 =2|Z =1) (17)

and similarly for controls. Using these frequencies, we can compute the

squared error between the observed and expected frequencies in the cases

and controls Se = (p+
1 − p̂1

+
)2 +(p−

1 − p̂1
−

)2. We perform a binary search for

10 iterations to identify the β̂1 that minimizes Se. For multiple known SNPs,

the β̂i are estimated independently and combined, and only one associated

SNP from any locus can be used.

3 RESULTS

The theory presented in Section 2 above modeled case–control

phenotypes under a liability threshold model and estimated the

power of linear regression with no covariates (NOCOND-lin),

linear regression conditioned on known variants (STDCOND-lin)

and our liability threshold model-based LTSCORE, under various

ascertainment scenarios. Here, we examine the relative benefits

of the three classes of statistical tests NOCOND, STDCOND

and LTSCORE over simulated and real data. For NOCOND and

STDCOND, we conduct most of our analyses using the logistic

regression versions NOCOND-log and STDCOND-log, but we have

verified that NOCOND-lin and STDCOND-lin produce very similar

results (see below). There are many equivalencies between the logit

model, the liability threshold model and the multiplicative relative

risk model (So et al., 2011; Wray et al., 2010). To be maximally

conservative and to demonstrate that the results derived in Methods

section hold for different disease models, we simulate our case–

control phenotypes under a logit model. This prevents our method

from having an unfair advantage due to testing the same model that

generated the data. As shown below similar results were obtained

when using linear instead of logistic regression and the liability

threshold model instead of the logit model.

LTSCORE computes posterior mean of the residual of the

liability, using liability threshold model parameters that account

for disease prevalence and study design, and then uses posterior

mean as input to linear regression (see Section 2). The LTSCORE

parameters are estimated from published disease prevalence data.

This external information, unavailable to either NOCOND-log or

STDCOND-log, is the basis of the improvement of LTSCORE.

We are interested in the effects of known associated SNPs on

association tests for undiscovered SNPs that are in complete linkage

equilibrium (e.g. those on completely different chromosomes) with

the known associated SNPs in the population. In both the simulated

and real datasets below, we never condition on SNPs that are in

LD with the candidate SNP. The derivations above assumed a

liability threshold model of disease. However, both the STDCOND-

log and NOCOND-log tests assume a logit model of disease as

they are applications of logistic regression. We compare the the

performance of the methods by measuring the ratio of the average

χ2 test-statistics produced by each method. This has a natural

interpretation of the increase in sample size needed to obtain the

equivalent power (Pritchard and Przeworski, 2001). For example,

if LTSCORE gives 10% increase in test-statistic over STDCOND-

log, this corresponds to adding 10% more individuals to a study

analyzed with STDCOND-log to achieve the power of the original

study analyzed by LTSCORE.

3.1 Simulated datasets

3.1.1 Randomly ascertained case–control phenotypes To

examine the effect of conditioning in randomly ascertained (cross-

sectional) case–control phenotypes, we generated case–control data

from a logit model P(Disease)= eg0α+X β+z

1+eg0α+X β+z .

The affine term z determines the prevalence F of the disease in the

population. To test the effects of conditioning we tested candidate

SNP s0 under NOCOND-log, STDCOND-log and LTSCORE. We

ran 5000 simulations of 1000 cases and 1000 controls. In each

simulation, there was one candidate SNP with effect size α and

one known variant with effect size β. The fraction of variance

explained with K SNPs of effect size β/
√

(K) is the same as the

fraction of variance explained by one SNP with effect size β.

LTSCORE with K SNPs of effect size β/
√

(K) produced equivalent

results to using LTSCORE with one SNP of effect size β (see

Supplementary Material) and so we chose to use one SNP for

simplicity. The genotypes were generated as random draws from
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Case-control with known risk variants

a binomial distribution for each simulation. We examined a range

of known variant effect sizes β, a fixed candidate SNP effect

size α=0.35, minor allele frequencies p0 =p1 =0.2 and z (the

affine term in the logit model) corresponding to a prevalence of

F =50%. The results are presented in Figure 1a. STDCOND-

log always improves on NOCOND-log and the improvement is

a function of the total variance explained by the known variants.

LTSCORE assumes the data were generated with a liability threshold

model. Despite generating data under a logit model, LTSCORE

and STDCOND-log perform similarly. Reducing the prevalence

F (the fraction of case individuals in the population) decreases

the number of cases and increases the number of controls, but

both LTSCORE and STDCOND-log still outperform NOCOND-

log. Results for the liability threshold-based simulation are presented

in Supplementary Figure S2 (a) and are similar to those presented

in Figure 1(a) Standard conditioning also improves power for

randomly ascertained continuous phenotypes in simulations (see

Supplementary Material and Fig. S1).

3.1.2 Non-randomly ascertained case–control phenotypes We

have seen that STDCOND-log improves the power to detect new

variants at independent loci relative to NOCOND-log. Surprisingly,

in a balanced case–control study, this is not always the case and

STDCOND-log often significantly decreases the power to detect

new loci. The reason for this reduction in power is the non-

random ascertainment of the samples which induces a correlation

between all the causal variants. The strength of the correlation

between associated variants is a function of disease prevalence.

The STDCOND-log test on any set of associated variants will not

only remove their signal but also some of the signal from the SNP

being tested. We simulated a low-prevalence case–control phenotype

under a logit model as in the randomly ascertained experiments

described above with F =0.1%, α=2.0 and β =2.0. We then

sampled 1000 cases and 1000 controls and measured the correlation

between candidate SNP s0 and SNP s1. The average correlation in

5000 simulations was r2 =0.11 (χ2 =220 via Armitage trend test).

We used an extreme β to demonstrate the effect with a small number

of simulations.

To examine the relative behaviors of the three classes of tests in

case–control data, we simulated a case–control phenotype under a

logit model as in the randomly ascertained experiments described

above with F =4.0%, α=0.35 and minor allele frequency MAF=
0.20 for both SNPs. We then sampled 1000 cases and 1000 controls.

The results are presented in Figure 1(b). When β is small, LTSCORE

is nearly identical to NOCOND-log losing 0.5% in the worst case.

The improvement of LTSCORE relative to NOCOND-log increases

as the known variant β explains more the population phenotypic

variance. STDCOND-log decreases in performance relative to

NOCOND-log until the known variant explains at least 35% of

the population phenotypic variance, at which point STDCOND-log

starts to improve. However, even after the known variant explains

50% of the in study phenotypic variation, STDCOND-log achieves

only 96.8% of the NOCOND-log statistic. Note that the results

presented in Figure 1(b) refer to the fraction of study variance

not population variance explained. Because of the ascertainment

strategy, there is a significant difference between the effect sizes

of the SNPs in the study and their effect size in the population.

In the population, only 4.0% of individuals are cases, while in

the study, 50% of individuals are cases. This skew causes the

Fig. 1. NOCOND-log, STDCOND-log, and LTSCORE simulations on

case–control phenotypes. Results of NOCOND-log (logistic regression),

STDCOND-log (logistic regression with covariates) and LTSCORE tests

for simulated case–control datasets from a logit model. Study variance

explained is the proportion of phenotypic variance explained in the study by

the known association variant. For randomly ascertained data (a) both the

LTSCORE and STDCOND-log tests improve over the NOCOND-log tests

and have similar performance. However, for non-randomly ascertained case–

control data (b) with prevalence of 4.0% the STDCOND-log test performs

significantly worse than the NOCOND-log test

variance explained by a SNP in the population to be much smaller

than the variance explained in the study (Guey et al., 2011; Yang

et al., 2011). Results for the liability threshold based simulation are

similar and presented in Supplementary Figure S2b. We repeated the

experiments for Figure1a and b replacing logistic regression with

linear regression and found nearly identical results, Supplementary

Figure S3a and b. We conclude that replacing linear with logistic

regression makes little difference in this context and use only logistic

regression for the remaining experiments (McCarthy et al., 2008).

To examine the effects of prevalence on the three tests, we fixed

β =1.5, α=0.35 MAF = 0.2 and varied the disease prevalence F

under the same model as above. The results presented in Figure

2 show that the LTSCORE always outperforms STDCOND-log.

STDCOND-log reduces power compared with the NOCOND-log

test when the prevalence is low. However, as the prevalence

increases, the study becomes more like a randomly ascertained

study and the STDCOND-log test performance increases above

the NOCOND-log test. LTSCORE is slightly (<2%) worse than

NOCOND-log for very low-prevalence (0.1%) disease and improves

as the prevalence increases. This modest loss in power is removed

when the data are generated under a liability threshold model (see

Supplementary Fig. S4). In this case LTSCORE always outperforms

or matches NOCOND-log and STDCOND-log. It is unknown which

model better represents the truth about disease.

We tested the sensitivity of our model to the misspecification

of the prevalence F by generating data under the same model as

above for a disease with true prevalence of 3%. We tested under

our LTSCORE model for a range of ‘estimated’ prevalences. We

repeated the simulation 5000 times, with 1000 cases and 1000

controls. The results are presented in Supplementary Figure S6.

Changing the estimated prevalence between 1% and 5% had a

minimal effect and the performance in this case was greater than

either the NOCOND-log or STDCOND-log tests. The power was

greater than NOCOND-log until the specified prevalence was greater

than twice the true prevalence. The maximum power was not attained

at the true prevalence and we believe this is because the disease

model tested (liability threshold) is different than the disease model
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Fig. 2. Effects of prevalence on NOCOND-log, STDCOND-log and

LTSCORE Results of STDCOND-log versus NOCOND-log and LTSCORE

vs. NOCOND-log for simulated ascertained case–control phenotypes from

a logit model, as a function of disease prevalence. Under low-disease

prevalence, there is an induced correlation between associated variants

causing a sever loss of power for the STDCOND-log test relative to the

NOCOND-log test. As the prevalence increases, the design is more like

a randomly ascertained study and the STDCOND-log test outperforms the

NOCOND-log test. The LTSCORE always outperforms STDCOND-log. For

low-prevalence disease, LTSCORE is slightly worse than NOCOND-log and

improves as the prevalence increases

used to generate the data (logit). Results for the liability threshold-

based simulation are presented in Supplementary Figure S5 and in

this case, the maximum is attained at the true prevalence.

To examine the behavior of the tests under the null, we repeated

the experiments for a range of prevalences F =0.01,0.03,0.05,0.1

and setting the effect size α=0 and keeping β =1.5. For each

prevalence, we generated 1000 cases and 1000 controls 1000000

times. All three tests were well behaved maintaining a false positive

rate of 0.050 as desired.

To inform researchers about the potential gains available in their

case–control datasets, we include the average χ2 test statistics

for all three tests for a range of realistic disease parameters in

Supplementary Table S8.

3.2 Real data sets

3.2.1 Non-randomly ascertained datasets for low-prevalence

disease (T1D, RA) We begin with an analysis of low-prevalence

case–control phenotypes (see Supplementary Material for real

continuous phenotypes). We examined the performance of the

NOCOND-log, STDCOND-log and LTSCORE statistics on the

WTCCC T1D and RA datasets (WTCCC, 2007b). There were 1924

and 1860 cases for RA and T1D respectively, and the same set of

2938 controls for the two datasets. For T1D, we used a prevalence

of 0.125% (Cooper and Stroehla, 2003) and HLA SNP rs9273363

from Chromosome 6 as the known variant which explained 12.4%

phenotypic variation (Nejentsev et al., 2007) in the study. For RA,

we used a prevalence of 1% (Cooper and Stroehla, 2003) and

HLA SNP rs6457620 from Chromosome 6 as the known variants

which explained 7.1% phenotypic variation in the study. We filtered

out all SNPs with MAF <5% and applied the NOCOND-log,

STDCOND-log and LTSCORE, tests to all SNPs not found on

Chromosome 6.

Although the WTCCC studies identified a relatively small number

of risk loci due to limited sample size, for T1D and RA this includes

HLA, a locus of large effect. The prevalences of T1D and RA are low

so the expected improvement of LTSCORE relative to STDCOND-

log is not expected to be large (see Section 3.1). However, these

datasets demonstrate the potential for a severe loss in power of

using STDCOND-log and that LTSCORE is well behaved for low-

prevalence diseases. Indeed, for T1D, there was a greater than 27%

drop in test statistic using STDCOND-log relative to NOCOND-

log and a 4% increase using LTSCORE relative to NOCOND-log

as measured by the average change in test statistic at all published

GWAS variants according to the NHGRI (Hindorff et al., 2009) (see

Supplementary Tables S1–S8).

The Q–Q plots of NOCOND-log, STDCOND-log and LTSCORE

are shown in Figure 3a and b and serve as one means of assessing

the relative performance of the methods. The significant SNPs lie

at the tail of the distribution and methods with larger values at the

tail are better powered. All of the test statistics had a similar λGC

and all were genomic control (GC) corrected before analysis (Devlin

and Roeder, 1999). On the RA dataset for example the λGC values

were 1.046, 1.047 and 1.041, for the NOCOND-log, STDCOND-

log and LTSCORE tests, respectively. It is clear that STDCOND-log

reduces the χ2 test statistic relative to NOCOND-log and LTSCORE

in T1D (Fig. 3a) and RA (Fig. 3b). The reduction in T1D is the most

dramatic because it has a very low-prevalence and the SNPs explain

a larger fraction of the variance.

As another means of assessing the relative performance of the

methods, we look at the test statistics of known associated variants

published in the NHGRI catalog (Hindorff et al., 2009). When the

known associated variant was missing from the dataset, we used

the best tag as measured by r2, removing any SNP where the best

tag had r2 <0.5. The results are presented in Supplementary Tables

S1,S2 and are analogous to the Q–Q plot results. STDCOND-log

performs poorly for T1D and RA with a reduction in the sum

of test statistics of roughly 27% in T1D equivalent to removing

27% of the individuals from the study (Pritchard and Przeworski,

2001). On the other hand, LTSCORE has slightly larger sum χ2 test

statistics relative to NOCOND-log. We simulated 1000 case–control

studies with effect sizes, prevalences and sample sizes matching the

WTCCC studies. We generated the data under a liability threshold

model and found expected gains for both studies close to 2% relative

to NOCOND-log.

3.2.2 Non-randomly ascertained datasets for high-prevalence

disease (T2D) We examined the performance of the NOCOND-

log, STDCOND-log and LTSCORE statistics over of 6142 cases

and 7403 controls genotyped at 19 known associated SNPs from the

Multiethnic Cohort (MEC) (African Americans, Latinos, Japanese

Americans, Native Hawaiians, and European Americans) (Waters

et al., 2010) and used a prevalence of 9% (Scott et al., 2007).

Unfortunately, the known associated variants together explain only

1734

 at In
stitu

t u
n
iv

ersitaire d
e h

au
tes etu

d
esin

tern
atio

n
ales - B

ib
lio

th
eq

u
e o

n
 D

ecem
b
er 1

6
, 2

0
1
3

h
ttp

://b
io

in
fo

rm
atics.o

x
fo

rd
jo

u
rn

als.o
rg

/
D

o
w

n
lo

ad
ed

 fro
m

 

http://bioinformatics.oxfordjournals.org/cgi/content/full/bts259/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts259/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts259/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts259/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts259/DC1
http://bioinformatics.oxfordjournals.org/cgi/content/full/bts259/DC1
http://bioinformatics.oxfordjournals.org/
http://bioinformatics.oxfordjournals.org/


Case-control with known risk variants

Fig. 3. Q–Q plots of NOCOND-log, STDCOND-log and LTSCORE on

WTCCC datasets Q–Q plots for the NOCOND-log, STDCOND-log and

LTSCORE tests applied to the WTCCC T1D, RA, T2D, and T2D+ datasets.

The tail of the plots serves as an empirical measure of improvement.

In T1D (a), the LTSCORE outperforms the NOCOND-log test and

the STDCOND-log test suffers significant power loss. In RA (b) the

LTSCORE matches the performance of the NOCOND-log test and again

the STDCOND-log test suffers significant power loss. In T2D (c) and

T2D+CONTROLS (d) LTSCORE and NOCOND-log perform similarly.

STDCOND-log improves significantly with the addition of controls, which

mimics a randomly ascertained design

4% phenotypic variation in the study. We simulated 1000 datasets

with the same sample size, a disease prevalence of 9%, and a known

associated variant that accounted for 4% of the phenotypic variation.

For an SNP with a minor allele frequency of 20% and an effect size

on the liability scale of 0.05 (corresponding to 1.6% of the variance

on the liability scale), the average improvement of LTSCORE was

3% with a standard error of 10% in the simulations. Using many

SNPs of small effect produced, the same result as one SNP of large

effect. The results on the MEC data are shown in Supplementary

Table S3 with LTSCORE slightly outperforming NOCOND-log,

but not significantly different from STDCOND-log. The variance

of the expected improvement is large and this improvement is

within the expected range. As expected, the relative performance

of STDCOND-log in this high-prevalence disease is much better

than it was in T1D and RA.

We examined the relative performance of NOCOND-log,

LTSCORE and STDCOND-log in the WTCCC T2D study with

1924 cases. We used the 2938 controls in the original study and

we created a large control set (+CONTROLS) for T2D containing

individuals in all other diseases with a sample size of 14255. We

note that the use of cases from other diseases as shared controls is

commonplace in WTCCC and other studies (WTCCC, 2007a, b).

The known variants explained 1.42% and 0.64% in the original

study and T2D+CONTROLS respectively. The results are shown

in Supplementary Tables S5 and S6. The expected improvement is

even smaller than in the MEC study above as a smaller fraction of the

variance is explained and LTSCORE performed slightly worse than

STDCOND-log but within the range predicted by simulations (1 ±
6%). The performance of STDCOND-log is affected by the addition

of controls as this simulates the properties of random ascertainment

where STDCOND-log is expected to perform better. In the original

study NOCOND-log had an 8% higher sum of test statistics than

STDCOND-log, while in the T2D+CONTROLS study, this was

reduced to 2%.

The Q–Q plots of NOCOND-log, STDCOND-log and LTSCORE

are shown in Figure 3c and d. STDCOND-log reduces the χ2 test

statistic relative to NOCOND-log and LTSCORE in T2D 3(c). In

the case of T2D+CONTROLS, the large number of controls create

a study that is more similar to random ascertainment. As expected,

STDCOND-log improves over NOCOND-log in this case as shown

in Figure 3d. The LTSCORE method performs well in all instances,

matching or outperforming each of the other tests.

4 DISCUSSION

We have shown that the practice of standard conditioning on

known associated variants does not account for study design and

disease prevalence potentially leading to significant power loss. This

power loss is due to the induced correlation between associated

variants in case–control studies. The phenomenon of higher odds

ratios in cases with fewer risk alleles at other loci than in cases

with more risk alleles at other loci can be viewed as a gene–

gene interaction (Cordell, 2009). This is a statistical, rather than

biological, interaction. By properly modeling the ascertainment and

prevalence while still leveraging known associated variants, our

LTSCORE statistic improves study power relative to NOCOND-

log and STDCOND-log tests in case–control studies of mid-to-low

prevalence diseases. This increase in power is a function of the

total phenotypic variance explained by known variants and disease

prevalence. The datasets examined here had either a low-prevalence

or a small fraction of the variance explained and therefore we

did not expect a large improvement. However, as more associated

variants are discovered, the performance of LTSCORE will increase

giving rise to power gains as a function of covariate effect size and

disease prevalence. This approach can also be applied to clinical

covariates, and in this case, an average power gain of >17%

was achieved (Zaitlen et al., unpublished data). We have verified

that results similar to Supplementary Table S3 are obtained when

comparing genetic + clinical covariates to clinical covariates only

(see Supplementary Table S4). However, conditioning on clinical

covariates is a fundamentally different problem, both because a

different parameter estimation method is needed and because with

clinical covariates, it is often the case that samples are non-randomly

ascertained for covariate value as well as case–control status.

A recent T2D meta-analysis (Voight et al., 2010) uses the standard

conditioning statistic and shows a significant gain in power. Their

ratio of cases to controls is closer to a randomly ascertained study and

in this case we expect STDCOND-log to outperform NOCOND-log

and increase power. In addition to their beneficial study design, some

of the conditioned variants are proximal to the new discoveries. Both

of the elements serve to improve the power of standard conditioning.

(Yang et al., 2012) also examine the potential benefits of genome-

wide conditioning in T2D. However, we believe the use of our

LTSCORE statistic on these data could improve the power further
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by accounting for prevalence and ascertainment. In a recent meta-

analysis of GWAS height data (Lango Allen et al., 2010), a randomly

ascertained continuous phenotype, standard conditioning revealed

no new associated variants. This is due to the nature of their study

design and not a contradiction of our results (see Supplementary

Material S1). In their landmark T1D paper, Barrett et al. (2009)

find a correlation between disease risk computed from HLA SNPs

and disease risk computed from SNPs in the rest of the genome.

They suggest that this is due to a departure from a multiplicative

model of disease. However, this effect may also be explained from

the non-independence of the genotypes that we described in case–

control studies. That is, some or all of the effect that was described

(correlation between MHC major histocompatibility complex risk

score and non-MHC risk score) may be due to ascertainment-

induced correlation. We caution that in tests for epistatic interaction

(Moore and Williams, 2009), this induced correlation could give

rise to a spurious signal of epistatic interaction at true (marginally)

associated variants.

Adjustment for informative covariates is not unique to genetics

and the problem of estimation from case–control data has received

considerable attention in the epidemiological literature. It is well

known that regressing or stratifying on a covariate which is related

to disease but not exposure of interest causes a reduction in

power unless one matches on the covariate when sampling controls

(Hosmer and Lemeshow, 2000; Jewell, 2004; Moolgavkar et al.,

1985; Nam, 1992; Neuhaus, 1998). We derive this power loss in

terms of the liability threshold model. (Neuhaus, 1998) shows the

reduction in power under a logit model for any correlated covariate

(i.e. not just due to ascertainment). Although we focus on adapting

the liability threshold model to incorporate prevalence information,

it may be possible to achieve the same result in a logistic framework.

For example, if there is only one known variant, one could construct

a 2×2×2 table of case–control status, candidate SNP s0 and known

covariate s1. Much larger tables would be required as the number

of known variants increased.

We recently proposed (Monsees et al., 2009) a weighted

logistic regression method (IPW) in the case of conditioning on

environmental variables in case–control studies. Rose and van der

Laan (2008) also offer an efficient estimator for case–control studies

to account for ascertainment-induced biases. However, the focus

of these works is obtaining an unbiased estimate of effect size

while our concern is power (and a valid test under the null). In the

case of genetic association studies, the effect sizes are generally

small and the emphasis of the community is on discovery as

opposed to effect size estimation. In the case of IPW, unbiased

effect sizes are indeed obtained, but it under-performed relative to

STDCOND-log, NOCOND-log and LTSCORE in simulations so is

not considered. If the objective is to obtain unbiased effect sizes,

IPW is recommended over LTSCORE. Note that the basis for the

improvement of LTSCORE is the published prevalence data and not

published SNP effect sizes. It is not equivalent to using STDCOND-

log with an offset, which will perform similarly to STDCOND-log

in the presence of ascertainment. Including an explicit interaction

term in the logistic model introduces an extra df reducing the overall

power.

Although this paper focuses exclusively on the use of conditioning

to discover new loci that are completely unlinked to the known

variants, conditioning is also a widely used tool for SNPs in the

same locus. In this case, the purpose is to perform fine-mapping

and better understand the genetic architecture of the known

associated locus (Chang et al., 2009). Therefore, any drop in power

due to induced correlation should not prevent researchers from

using conditioning in this same-locus context. LTSCORE may

improve fine-mapping efforts in some situations (see Supplementary

Material). A discussion of usage and meta-analysis is given in the

Supplementary Material.
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