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Analysis of Cell Load Coupling for LTE Network
Planning and Optimization

Tana Siomina and Di Yuan, Member, IEEE

Abstract—System-centric modeling and analysis are of key
significance in planning and optimizing cellular networks. In
this paper, we provide a mathematical analysis of performance
modeling for LTE networks. The system model characterizes
the coupling relation between the cell load factors, taking
into account non-uniform traffic demand and interference
between the cells with arbitrary network topology. Solving
the model enables a network-wide performance evaluation in
resource consumption. We develop and prove both sufficient
and necessary conditions for the feasibility of the load-coupling
system, and provide results related to computational aspects for
numerically approaching the solution. The theoretical findings
are accompanied with experimental results to instructively illus-
trate the application in optimizing LTE network configuration.

Index Terms—3.5G and 4G technologies, cell load coupling,
network planning, optimization, system modeling

I. INTRODUCTION

Planning and optimization of LTE network deployment,
such as base station (BS) location and antenna parame-
ter configuration, necessitate modeling and algorithmic ap-
proaches for network-level performance evaluation. Finding
the optimal network design and configuration amounts to
solving an optimization problem of combinatorial nature.
Toward this end, system modeling admitting rapid perfor-
mance assessment in order to facilitate the selection among
candidate configuration solutions, of which the number is
typically huge, is essential. In this paper, we provide a
rigorous analysis of an LTE system performance model that
works for general network topology and explicitly accounts
for non-uniform traffic demand. The performance model
that we study is referred to as the load-coupling system, to
emphasize the fact that the model characterizes the coupling
relation between the cells in their load factors. For each
cell, the load factor is defined as the amount of resource
consumption in relation to that is available in the cell. The
load value grows with the cell’s traffic demand and the
amount of inter-cell interference. Intuitively, low load means
that the network has more than enough capacity to meet
the demand, whilst high load indicates poor performance
in terms of congestion and potential service outage. In the
latter case, the network design and configuration solution
in question should be revised, by reconfiguration or adding
BS infrastructure. Thus, simple means for evaluating the
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cell load for a given candidate design solution is of high
importance, particularly because the evaluation may have to
be conducted for a large number of user demand and network
configuration scenarios.

The load-coupling model for LTE networks takes the form
of a non-trivial system of non-linear equations. Calculating
the solution to the model, or determining solution existence,
is not straightforward. In this paper, we present contribu-
tions to characterizing and solving the load-coupling system
model. First, we present a rigorous mathematical analysis
of fundamental properties of the system and its solution.
Second, we develop and prove a sufficient and necessary
condition for solution existence. Third, we provide theoret-
ical results that are important for numerically approaching
the solution or delivering a bounding interval. Fourth, we
instructively illustrate the application of the system model
for optimizing LTE network configuration.

The remainder of the paper is organized as follows. In
Section II we review some related works. The system model
is presented in Section III, and its fundamental properties
are discussed in Section IV. In Section V, we present linear
equation systems for the purpose of determining solution
existence. In Section VI, we provide the relation between
solving the load-coupling system and convex optimization,
and discuss approximate solutions. The application of the
system model and our theoretical results to LTE network
optimization is illustrated in Section VII, and conclusions
are given in Section VIIL.

II. RELATED WORKS

Planning and performance optimization in cellular net-
works form a very active line of research in wireless commu-
nications. There are many works on UMTS network planning
and optimization. The research topics range from BS location
and coverage planning [3]-[5], [25], [43], antenna parameter
configuration [15], [16], [33], to cell load balancing [18],
[34]. For UMTS, the power control mechanism that links
together the cells in resource consumption is an important
aspect in performance modeling [2], [3], [19], [41], [42]. By
power control, the transmit power of each link is adjusted to
meet a given signal-to-interference-and-noise ratio (SINR)
threshold. By the SINR requirement, the power expenditure
of one cell is a linear function in those of the other cells.
As a result, the power control mechanism is represented by
a system of linear equations, which sometimes is referred
to as UMTS interference coupling [15], [16]. Interference
coupling can be modeled for both downlink and uplink. For
network planning, the interference coupling system needs
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to be solved many times for performance evaluation of
different candidate network configurations and multiple or
aggregate user demand snapshots. In [26], it is shown that,
for both downlink and uplink radio network planning, the
dimension of the power-control-based system of equations
can be reduced from the number of users in the system
to the number of cells. The observation stems from system
characteristics that also form the foundation of distributed
power control mechanisms, see, e.g., [19], [42]. In [12], the
authors provide theoretical properties of the power-control-
based system, and feasibility conditions in terms of target
data rates and QoS requirements. Motivated by the fact
that full-scale dynamic simulation is not computationally
affordable for large networks, the authors of [44] extend
the UMTS power-control system by a randomization-based
procedure of service and rate adaptation for HSUPA network
planning.

In cellular network planning, the power-control equation
system is considered under given SINR threshold. Thus
the system solution and its existence are induced by the
(candidate) network configuration in question. In a more
general context of wireless communications, power control
is often a means for performance optimization, that is, the
powers are optimization variables in minimizing or maxi-
mizing objectives representing error probability, utility, QoS,
etc., that are all functions of SINR. There is a vast amount
of theoretical analysis and algorithmic approaches for power
optimization under various (typically non-linear) objective
functions, where a gain matrix defines interference coupling
[37]-[40]. In [37], the authors identify objective functions
admitting a convex formulation of power optimization, and
develop a distributed gradient-projection-based algorithm.
Further developments include algorithmic design utilizing
Kuhn-Tucker condition [39], conditional Newton iteration
yielding quadratic convergence [40], and model extension
to include explicit SINR-threshold constraints [38].

Another line of research of power control is the character-
ization of the achievable performance region under various
utility and interference functions. The authors of [11] show
the strict convexity of the region for logarithmic functions
of SINR. In [7], the authors characterize utility functions
and function transformation of power, for which the resulting
power optimization problem is convex. The investigation in
[9] provides conditions under which the boundary points of
the region are Pareto-optimal. In [8], the authors present
graph representations of power and interference, and study
the relation between graph structure, irreducibility of the
interference coupling matrix, and the convexity of the utility
region.

In contrast to the power-control model, the service re-
quirement of rate-control scheme in cellular networks is
not a pre-defined SINR target, but the amount of data
to be served over a given time period. Among other ad-
vantages, this approach makes it possible to capture the
effect of scheduling without the need of explicitly modeling
full details of scheduling algorithms. The rate-control-based
approach is primarily targeting, although not limited to, non-
power-controlled systems or systems with a target rate traffic

demand. The approach has been less studied, but is of a
high interest for OFDMA-based networks. In general, the
rate-control scheme exhibits non-linear relations between the
cell-coupling elements (in our case, cell loads). The resulting
model is therefore more complex than the power-control
model for UMTS. For power control, fundamental solution
characterizations are well-established for linear as well as
more general interference functions. For the latter, see, for
example, [10]. For rate-control-based coupling systems (see
[23] and Section III), a structural difference from power con-
trol is that, in the former, one element cannot be expressed
as a sum of terms, each being a function denoting the impact
of another element, and the coupling is not scale-invariant.
For network planning, one known approach is to consider an
approximate linear function, obtained from system-specific
adaptive modulation and coding (AMC) parameters, to rep-
resent the relation between date rate and SINR [24], and
thereby arrive at a equation system being similar to that of
UMTS.

From an engineering standpoint, LTE network optimiza-
tion is becoming increasingly important. In [13], the authors
provide the fundamental principles of LTE network operation
and radio resource allocation. Among the optimization is-
sues, the research theme of scheduling strategies and radio re-
source management (RRM) algorithms has been extensively
investigated. See, for example, [6], [20]-[22], [29]-[31] and
the references therein. Two major aspects considered in
the references are the balance between resource efficiency
and fairness, and quality of service awareness. In [17], the
author gives a survey of tools enabling service and subscriber
differentiation. For cell planning, propagation modeling, link
budget consideration, and performance parameters have been
investigated in [36].

High-level and accurate performance modeling is of high
value in planning cellular networks, as full-scale dynamic
simulations are not affordable for large planning scenarios
(e.g., [44]). The LTE system model that we analyze has
been introduced by Siomina et al. [32] for studying OFDM
network capacity region with QoS consideration. The work
in [32] does not, however, provide a general analysis of the
model, and the major part of the study relies on a simplifica-
tion assuming uniform traffic distribution. In the forthcoming
sections, we present both analytical and numerical results
overcoming these limitations.

Recently, the authors of [23] have presented a non-linear
LTE performance model being very similar to the one studied
in the current paper. That our performance model has been
independently proposed by others supports the modeling
approach. The work in [23] provides further an approxi-
mation of load coupling via another non-linear but simpler
equation system, along with incorporating continuous user
distribution. Our study differs from [23], as the focus of the
current paper is a detailed investigation of key properties and
solution characterization of the load-coupling system.

III. THE SYSTEM MODEL

Denote by N/ = {1,...,n} the set of cells in a given
network design solution. Without loss of generality, we
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assume that each cell has one antenna to simplify notation.
The service area is represented by a grid of pixels or
small areas, each being characterized by uniform signal
propagation conditions. The set of pixels is denoted by J.
The total power gain between antenna ¢ and pixel j is denoted
by gi;. We use J; C J to denote the serving area of cell i.
In a network planning context, both the gain matrix as well
as the cells’ serving areas are determined by BS location and
antenna configuration.

For realistic network planning scenarios, the traffic de-
mand is irregularly distributed. Let the user demand in pixel
j be denoted by d;. The demand represents the amount of
data to be delivered to the users located in pixel j within
the time interval under consideration. By defining a service-
specific index, the demand parameter and the system model
can be extended to multiple types of services (see [32]). We
will, however, consider one service type merely for the sake
of compactness.

We use p; to denote the level of resource consumption in
cell . The entity is also referred to as cell load. In LTE sys-
tems, the cell load can be interpreted as the expected fraction
of the time-frequency resources that are scheduled to deliver
data. The network-wide load vector, p = (p1, p2,. .., pn)%,
plays a key role in performance modeling. In particular,
a well-designed network shall be able to meet the target
demand scenarios without overloading the cells. Hence the
load vector forms a natural performance metric in network
configuration (cf. power consumption in UMTS networks).
The load of a cell is a result of the user demands in the pixels
in the cell serving area, the channel conditions, as well as
the amount of interference. The last aspect interconnects the
elements in the load vector, as the load of a cell is determined
by the SINRs and the resulting bit rates over the cell’s serving
area, and these values are in turn dependent on the load
values of the other cells. To derive the performance model,
we consider the SINR in pixel j € J; defined as follows,

P;gi;
Zke/\/\{i} Prgkjpr + o2

vi(p) = ()

In (1), P; is the power spectral density per minimum
resource unit in scheduling (in LTE, this corresponds to a
pair of time-consecutive resource blocks), and o2 is the noise
power. By (1), the inter-cell interference grows by the load
factor. In effect, p;, can be interpreted as the probability of
receiving interference originating from cell k£ on all the sub-
carriers of the resource unit. Let Blog,(1 + ~,(p)) be the
function describing the effective bitrate per resource unit.
This formula is shown to be very accurate for LTE downlink
[27]. Thus to serve demand d; in j, m resource
units are required.

Let K denote the total number of resource units in the
frequency-time domain in question, and denote by p;; the
proportion of resource consumption of cell ¢ due to serving
the users in j € J;. By these definitions, we obtain the
following equation,

@

From (2), it is clear that the load of a cell is a function of
the load levels of other cells. Observing that p; = > jed Pij
and putting the previous equations together lead to the
following equation,

pizzpij—

= Z K Blog,( 1+%( )

0 3)

. Pigij ’
JET: KB 1Og2 (1 + ZkEN\{i} Pkgkjpk+0'2)

The equation above represents the coupling relation
between cells in their resource consumption. In vector
form, we have p = f(p,g9,d,K,B), where f =
(fi,--s fise-os f)T, and fi,i = 1,...,n, represents the
R’}:l — R, function as defined by (3); here, Ry and R’}:l
are used to denote the single- and (n — 1)-dimension space
of all real non-negative numbers, respectively. Since in the
subsequent discussions there will be no ambiguity in the
input parameters, we use the following compact notation to
denote the non-linear equation system,

p=f(p) “4)

From (3), three immediate observations follow. First, for
alli =1,...,n, the load function f; is strictly increasing in
the load of other cells. Second, for non-zero o2, this function
is strictly positive when the load values of other cells (and
thus interference) are all zeros, i.e., f(0) > 0. Third, the
function is continuous, and at least twice differentiable for
p>0.

From the network performance standpoint, the capacity is
sufficient to support the traffic demand, if equation system
(4) admits a load vector p with 0 < p; < 1,5 € N. In our
analysis, however, we do not restrict p to be at most one,
in order to avoid any loss of generality. In addition, even
if the solution contains elements being greater than one, the
values are of significance in network planning, because they
carry information about the amount of shortage of resource
in relation to the demand.

Solving (4) deals with finding a fixed point (aka invariant
point) of function f in R, or determining that such a point
does not exist. In the remainder of the paper, we use S as
a general notation for the space of non-negative solutions to
systems of equations or inequalities. The system in question
is identified using subscript. Thus, S,_f,) denotes the
solution space of (4). Note that, for (4) as well as the linear
equation systems to be introduced later, only non-negative
solutions are of interest. Hence, throughout the article, a
(linear or non-linear) system is said to be feasible, if there
exists a solution for which non-negativity holds, otherwise
the system is said to be infeasible (even if a solution of
negative values exists). The case that (4) is infeasible is
denoted by S,—z(,) = 0.

A useful optimization formulation in our analysis is the
minimization of the total cell load, subject to the inequality
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(a) Feasible solution within network capacity:

0<p<1. 3@ € N)lpi > 1.

(b) Feasible solution beyond network capacity:

1 0 P1

(c) Infeasible system: S,_p(p) = 0.

Fig. 1: An illustration of a load-coupling system of two cells.

form of (4). The formulation is given below.

min Z Di (5a)
1EN
p>f(p) (5b)
p R} (5¢)

For (5), its solution space S,> f(p) 18 also referred to as the
feasible load region. Recall that f(p) is strictly increasing,
hence if S,> ¢,y # (), then for any optimal solution to (5),
(5b) holds with equality, as otherwise (5a) can be improved,
contradicting that the solution is optimal. In conclusion, any
optimum of (5) is a solution to (4).

We end the section by an illustration of the load-coupling
system for two cells in Figure 1. The two cells have symmet-
ric parameters. In the figure, the two non-linear functions are
given by the blue solid lines. In the first two cases, system
(4) has solutions in R2, though one of them represents a
solution beyond the network capacity. In the last case, the
system is infeasible, as the two curves will never intersect
in the first quadrant. The red straight lines with markers in
the figure represent linear equations related to (4). Details of
these linear equations are deferred to Section V.

IV. FUNDAMENTAL PROPERTIES

In this section, we present and prove some fundamental
properties of the load-coupling system (4). These theoreti-
cal results are of key importance in the study of solution
existence and computation. For compactness, we introduce
additional notation to simplify (3) wh11e keeping the essence

Prgk
of the equation. Define a; = d , bikg = qu, and
2
cij = qu . These parameters contain, respectively, the
K3

relation between the demand in pixel j and the resource in
cell ¢, the inter-cell coupling in gain between cells k£ and ¢ in
pixel j, and the channel quality of cell ¢ in relation to noise

in pixel 7. The load equation (3) can then be written in the
following form,

Pi = fl(p) =

Z 1 - . (6)

a;log,(1
jeg ? g2( +Zk€/\f\{i}bikjpk+cij)

The first fundamental property of (4) is how fast the load
of a cell asymptotically grows in the load of another cell.
We formulate and prove the fact that, in the limit, the first-
order partial derivative of the load function converges to a
constant. For any two cells i, k (i # k), g% is equal to

n(2) 2% — %
aj In*(1 + Eh,eN\{vv}b“”p”JrC“)

>

JET:

1
L )2
(X hean gy Dingpn + cig)*(1 + Shen\iiy

bik;
> (22
: a;
JET:
Proof: Consider the component for pixel 7 in the sum

in (7), and ignore the constant multiplier In(2) b;’fj . Letting
u = Zhe/\/\{i} bin;pn + cij, Equation (7) can be written as
the following expression,

1

w?(1+ 2)In(1+

T (7

binjpn+cij )

lim Of _
Pr 00 (9p1C N

Theorem 1:

Dn(l+3)
1

o In(l+ 2)en(l+ )+ In(1+ L)en(1 + L)

The theorem follows then from the facts that  is linear
in pi and lim, 00 (1+ 1) =e. [

By Theorem 1, the load of a cell increases linearly in the
load of another cell in the limit, i.e., the function converges
to a line in the high-load region. Moreover, the slope of the
line is strictly positive.
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The next fundamental property is concavity. The examples
in Figure 1 indicate that the load of a cell is a strictly
concave function in the other cell’s load. We show that this
is generally true.

Theorem 2: For any cell i € N, f; is strictly concave for

(Pis-- - Pie1,Pit1s-- - pn) € R
Proof: Without loss of generality, consider f, and
its (n — 1) x (n — 1) Hessian matrix. Let v =

Zhej\/\{n} bynnjph + cpj. For two cells k and h, the Hessian
element has the following expression,

=1In(2) Z

JETn

In(1+4H2 - 2u+1)In(1 + )]
[In?(1 + Ly (w2 4+ w))?

Let g(u) =2 — (2u+1)In(1+ 2). We show that ¢(u) <
0 for v > 0. This holds, for example, for v = 1. Next,
limy o0 q(u) = 2= limy oo In [(1+ 2)%(1 + 2)%(1 + 1)]
= 0. Consider ¢'(u) and ¢’(u): ¢'(u) = —2In(1+ 1) +
L4 u+r1’ and ¢"(u) = m < 0,Yu > 0. Therefore
q'(u) is strictly decreasing and lim, . ¢’(u) = 0. Hence,
¢’ (u) > 0, meaning that ¢(u) is strictly increasing for u > 0.
This, together with ¢(1) < 0 and lim,_ g(u) = 0, prove
that ¢(u) < 0, Vu > 0. By the definition of w, for p > 0,
u > cpj which a strictly positive number for non-zero noise
power. Hence (8) is well-defined and negative for all p > 0.
Next, observe that the Hessian matrix is the result of the
following expression,

0% fn
Opr0pn

bnkjbnn;j
|:n]77,]><
a;

®)

Z (bnlja-'-7bn(n71)j)(bn1ja'-wbn(nfl)j)T
e T a;
e ©)
In(2) In(1 + 2)g(u)
(1 + 1) (u2 + )]

Because of the form of (9) and that ¢(u) < 0,Vu > ¢,; >
0, the Hessian matrix is negative definite for any p > 0.
Hence the conclusion. ]

From the concavity result, it follows that, for any cell i,
filp1y - s pic1s Pit1s .- pn) — pi exhibits a strict radially
quasiconcave structure. A function is radially quasiconcave,
if for a given stationary positive point, which in our case is
a solution to fi(p1,..., Pi—1,Pit1s--->Pn) = pi» and any
scalar in range (0, 1), the function value of the scaled point
is greater than or equal to zero. If the value is positive, the
function is strictly radially quasiconcave.

Corollary 3: For each i € N, fi(lp1,...,pi_1,
Pitls---sPn) — pi is strictly radially quasiconcave,
i.e., if .fi(pla ey Pi—15Pit1y - pn) = Pis then
fi()\pla ceey )\pi—lu /\pi+1, ey )\pn) > /\pi for any
A€ (0,1).

Proof: Note that fi(A(p1,...,Pi—1,Pit1s---1Pn)) =
fi()\(pl,...,pi_l,pi+1,...,pn) + 0(1 — )\)) By The-
orem 2, we have fi(A(p1,..-yPim1,Pit1s---+Pn)) >
)\fz(Ph s Pi—1s Pi+1ly - - ,pn) + (1 — )\)fZ(O) Since
fi((pl,...,pifl,piJrl,...,pn)) = pP; and fl(O) > O, the
result follows. [ |

In a real-life LTE network, if the capacity is sufficient to
accommodate the demand, then the network load will be at
a stable working point, which should be unique. Thus the
performance model f is reasonable only if uniqueness holds
mathematically. The following theorem states this is indeed
the case. In the rest of the paper, the unique solution, if it
exists, is denoted by p*.

Theorem 4: If Sgp)—p # 0, then it is a singleton, i.e.,
f(p) = p has at most one solution p* in R!.

Proof: Suppose there are two solutions p! and p?, both
satisfying (4), and p' # p?. Let m € argmin,_; . p}/p?,
and A\ = pl. /p2,. Thus pl = \p2,. Assume \ < 1. Then by
construction, A\p? < p!, and because f is strictly increasing
in the domain of R’} f,,,(Ap?) < fm(p'). Also, by Lemma
3, M2, < fm(Ap?), and thus f,,(p') > Ap2,. Note that
fm(pt) = pl, = \p?, gives an contradiction. Therefore \ >
1. Considering scaling down p' with X instead, and applying
the same line of argument, a similar contradiction is obtained.
Hence the conclusion. [ |

V. DETERMINING SOLUTION EXISTENCE AND LOWER
BOUNDING

Having proven solution uniqueness, we examine the ex-
istence of p*, that is, whether or not (4) has a fixed point.
There are a number of theorems characterizing the existence
of a fixed point (e.g., Brouwer’s fixed-point theorem in
topology). However, these results do not apply to (4) because,
in general, the output of function f is not confined to a
compact set in R?}. In this section, we use a linear equation
system for analyzing solution existence. To this end, we first
present and prove some basic properties of the optimization
formulation (5).

Theorem 5: Assume szf(p) # (), i.e., there exists p >
f(p) > 0, then (5) has an optimal solution.

Proof: ~ Consider the  optimization  problem
min ), pi, p € S, where S = Sp>¢,) N {p < p}. By
the assumption in the theorem, S # (). From the definition
of S, it is clear that any point being arbitrarily close to
S (i.e., boundary point) is in the set, thus S is closed. In
addition, S is bounded since S C R? N {p < p}. Hence S
is compact, and the result follows from Weierstrass theorem

in optimization. [ |
Corollary 6: If there exists p > f(p) > 0, then
Sp:f(p) # 0.

Proof: Follows immediately from Theorem 5 and the
previously made observation that any optimal solution to (5)
satisfies (5b) with equality. ]

To further characterize solution existence, we define the
following type of linear equation systems,

p=h(p)=H-(p—p)+ f(p),

where h = (hq,...,hy) is a vector of linear functions, and
each of them is defined in R’}:l — R, p is a vector in
R with given values, and f(p) is a vector-function with
elements defined by (6). In (10), H is an n X n matrix where
the diagonal elements, H;;,7 = 1,...,n are zeros, and the
other elements H;x, i # k, are strictly positive. Note that if

(10)
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H is the Jacobian of function f evaluated at point p, (10) is
a linearization of the non-linear equation system (4) where
the right-hand side of (10) represents the tangent hyperplane
to function f(p) at p. Such linear approximations are further
discussed in Section VI

Observing the fact that the partial derivative (7) asymptoti-
cally approaches a constant, as formulated in Theorem 1, we
consider linear approximation of f by means of the linear
function having the limit values of the partial derivatives as
the matrix elements in H, and passing through the point
defined by the load function values with zero load. Define
h° the case of h where H;; = In(2) > je bikj/a; for
k # i, and p = 0. For this linear approximation, there
are similarities between the elements of H and the UMTS
interference-coupling matrix (see, e.g., [15], [28]) in that
both capture the relation between the gain factors of the
serving and interfering cells; however, the target QoS in the
interference-coupling matrix is link quality, whilst in H it is
given by the amount of user traffic demand.

If Sp:ho(p) = (), the solution, denoted by p%, is clearly
unique. The lemma below states that the linear function h?
provides an under-estimation of the true load function f,
thus p%, if exists, gives a lower bound on the solution to the
non-linear system (4).

Lemma 7: h°(p) < f(p) for any p > 0.

Proof: We prove the validity of the result for an arbitrary
cell 4, that is, h?(p) < fi(p), p > 0. Because both
hY(p) and f;(p) are formed by a sum over j € J;, it is
sufficient to establish the inequality for any 5 € J;. Let
u = Zke./\/\{i} bixj pr.+-cij. The proof boils down to showing

the following inequality,

(e ()
————(u—¢y)ln

logy(1+ 1) !

1

= 1n(2) (7111(1 T %) — (u - Cij))
< 1 ~ In(2)

T logy(1+g-)  In(l+

-
Cij )

Note that u > c¢;; by definition. The inequality holds
as equality for u = ¢;;. It is then sufficient to prove that
ﬁ — (u — ¢;;) is increasing for u > ¢;;. Taking the
derivative and doing some simple manipulations, one can
conclude that non-negativity of the derivative corresponds to
the inequality below,

q(u) = u(u+ 1)1n? (1 + %) <1, u>g¢. (11)

One can show easily that lim,_.q+ ¢(u) = 0, hence (11)
is satisfied for some u < ¢;;. Moreover, lim, o q(u) =
limy oo In(14 )% In(1+ 2)% +In(14+ 1) In(1+ 1) = 1.
Hence it suffices to prove that ¢'(u) = (2u+1)In* (1 + 1) —
2In(1+ 1) >0, u > 0. Using the fact that In(1+ 1) >0
for all w > 0, the non-negativity of ¢’(u) for u > 0 becomes
equivalent to that the second numerator in (8) is negative,
which is proven in the proof of Theorem 2, and the result
follows. ]

From Lemma 7, one can expect that the load-coupling
system (4) has a solution, only if a solution exists to
p= ho(p). The following theorem formalizes this necessary
condition, and establishes the result that p?l bounds p* from
below.

Theorem 8: If S, (o) # 0, then S,_po(,,) # 0 and pj, <
p*.

Proof: Consider the following linear programming (LP)
formulation.

min Z pi (12a)
ieEN
p>h(p) (12b)
pERY (12¢)

Similar to the result in Theorem 5, it can be easily proven
that (12) has an optimal solution if there exists any p > 0
satisfying (12b). In addition, it is clear that any optimum
to (12) is in S,_po(p), and S,_po(, is either empty or a
singleton. Consider p*. By Lemma 7, h"(p*) < f(p*) =
p*. Hence p* is a feasible solution to (12). It follows then
Sp—ho(p) # (). Furthermore, (12) obviously remains feasible
with the additional constraint p < p*. Since the LP optimum
is unique and equal to p), ph < p*. [

By Theorem 8, the linear system p = ho(p) is potentially
useful for detecting infeasibility. If the linear system is
infeasible, then it is not meaningful to attempt to solve
(4). In addition, if feasibility holds for p = ho(p), the
solution provides a lower bound to the true load values. Thus
having p% close to one indicates an overloaded network,
and its corresponding configuration can be discarded from
further consideration in network planning, without the need
of solving the non-linear system (4).

In Figure 1, the red lines with markers represent the linear
function h°. In the first two cases, p* exists, and solving the
linear system leads to a lower bound p}, (i.e., the intersection
point of the straight lines) of p*. In the last case, the linear
system has no solution, and consequently S,— ¢,y = 0.

Thus far, it has become clear that p = h’(p) provides
an optimistic view of the cell load. We are able to prove
a slightly unexpected but much stronger result. The linear
equations p = ho(p), in fact, give an exact characterization
of solution existence of the load-coupling system. Namely,
that p = ho(p) has a solution is not only a necessary, but
also a sufficient condition for the feasibility of (4).

The intuition of the sufficiency result is as follows. Con-
sider Figures la-1b, for which the linear equation system
has solution. Suppose the slopes of the lines are increased
slightly. Intuitively, if the increase is sufficiently small, the
new linear system will remain feasible. Also, the figure gives
the hint that the modified linear function will eventually go
above the non-linear load function for large load, indicating
Sp—f(p) # 0. To rigorously prove the result, we define the
linear equation system p = h(p), obtained by increasing the
slope coefficients of h° by a positive constant €. That is, h®
denotes the case of (10) where H;;, = In(2) Zjeji birj/a;+
e, and p = 0.
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Lemma 9: If S,_po,) # 0, ie., p), exists, then there
exists € > 0 such that S,_pe(,) # 0.
Proof: First, note that S,>p0(,) has a non-empty in-
terior. In particular, it is easily verified that A\pj is an
interior point for any A > 1. Denote by p such a point,

F 0/ ~
that is, p; > h?(ﬁ)vl € N. Letting & = ZZIEAZX{(’?)’B’“’

thus p; = hY(p) + eiZkeN\{i} pr,i € N. Next, set

€ = min;en €;. Then p; > hd(p) + € henn\fiy Pkri €N

Thus for this value of €, p € Sthe(p), and the result follows.

|

Lemma 10: Consider any p > 0 and any € > 0. Denote

by A\ a positive number. For any ¢ € N, [hs(AP) —
fi(Ap)] = oc.

Proof: Consider the definitions of h$(Ap) and f;(A\p).
After some straightforward re-writing and ignoring the con-
stant term f(0) in hS(Ap), the difference between the two
functions has the following form,

In(2
Z % Z bikj prA
JET: 7 | keN\{i}

1 13)

lim
A—00

B 1
In (1 * 2ken\{i} bvﬂkjﬁk”rt?ij)
+( ) n(2)birn; 5 \
keN\{i} 2ejed; — a; Pk) AN

Let ¢(\) denote the expression in the square brackets of
(13). By repeatedly using 1’Hopital’s rule, one can show that

limy 00 g(N) = —% — ¢ij, which is a constant. Observing
that the last term in (13) grows linearly in A, the lemma
follows. ]

Theorem 11: 1f S,_po(,) # 0, then S,_¢(,) # 0.

Proof: By Lemma 9, there exists ¢ > 0 and pj,
satisfying p§, = h(p§,). It is easily verified that \pj§, >
he(A\p§,), A > 1. Using Lemma 10, there exists A such that
Aps, = hE(Aps) > F(Ap§,). Therefore S,s () # 0, and
the result follows from Corollary 6. ]

Theorems 8 and 11 together provide a complete answer to
the solution existence of LTE load coupling, that is, whether
or not the system has a fixed point in R”} is equivalent to
the feasibility of the linear equation system p = ho(p).
Clearly, given an LTE network design, this feasibility check
should be performed first, before determining the load values.
Furthermore, from Theorem 8, violating p(,)l < 1is a
simple indication of that p* is beyond the network capacity.
For a two-cell example, the solution to the linear system

p=h"p) is

_ f1(0) + f5(0) - Hiy

, 14a

1—Hoy Hyo (142)
~ f2(0) + f1(0) - Hoy

p2 = |yl (14b)

With (14), a feasible solution exists when 1— Hyy H15 > 0,
ie., Hig = H121 forms the (open) boundary of the feasibility
region in the two coefficients. Note that H12 and Hy; are
linear in the traffic demands to be satisfied in cell 1 and cell 2,
respectively. The derived relation representing the resource

sharing trade-off for the two neighbor cells in this example is
well in line with the commonly known radio resource sharing
and capacity region concepts.

VI. CONVEX OPTIMIZATION AND UPPER BOUNDING

Provided that S,_¢,) # (), a solution algorithm needs
to be applied to find p*. Solving p = f(p) is equivalent
to finding the (unique) root of the m-dimensional function
p— f(p). Thus one approach is to use the Newton-Raphson
method. In this section, we show that approaching p* can
alternatively be viewed as solving the convex optimization
problem formulated below.

max Z pi (15a)
ieEN
p—Ff(p)<0 (15b)
pERY (15¢)

Corollary 12: Formulation (15) is a convex optimization
problem, and if S,_z(,) # (), then p* is the unique optimum
to (15).

Proof: Because f(p) is concave (Theorem 2), p— f(p)
is convex in R’}. Thus p — f(p) < 0 is a convex set. The
proof is complete by observing that, similar to (5), optimum
to (15) must satisfy (15b) with equality, and p* is the unique
solution to p = f(p). [ |

Following Corollary 12, any convex optimization solver
can be used to approach p*. In network planning, one will
need to solve (4) repeatedly to evaluate many candidate BS
location and antenna configurations. Typically, the perfor-
mance evaluation does not have to be exact in order to relate
the quality of a candidate solution to that of another. Utilizing
the structure of f, we can numerically obtain upper bounds
to p* via linear equations. Consider any p € R’;. Using the
Jacobian of f at p, and the point f(p), we obtain an upper
approximation of f due to concavity. Formally, denote by h
the linear function of (10) where p = p and H;j, defined by
(7), takes the following value,

Ofi

H;, = p

k B (P)

bik; 1

=> In(2)—~ — . X

JET: i In (1+ Y hen\ti} bih,jﬁ}t“l’cij)

1

X

2
_ 1
(ZheN\{l} bih-jph + Cij) (1 + 2ohenn\ (i} DingPrtcij )

The positive-valued solution to the linear system p =
h(p), if it exists, is denoted by pj,. As established below, h
and py, yield upper estimations of f and p*, respectively.

Corollary 13: h(p) > f(p),p > 0.

Proof: Follows immediately from the concavity of f
and the definition of h. [ ]

Theorem 14: 1f S,_p,,) # 0, then pp > p*.

Proof: Consider the linear programming (LP) formula-
tion max{} ;.\ pi : p < h(p), p € R }. Similar to (15),
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Fig. 2: Network configurations for numerical studies.

it is easily realized that the LP formulation, if feasible, has
a unique optimum satisfying p = h(p). Hence the unique
optimum is pz. Moreover, p* is, by Corollary 13, a feasible
point to the LP, and hence the LP remains feasible after
including p > p*, and the result follows. [ |

The process of solving the load-coupling system, e.g., an
interior point method for (15), will typically generate a se-
quence of iterations approaching p* from below. By Theorem
14, the iterations can be used to compute upper bounds,
thus yielding an interval confining p*. In order to speed up
the process of network optimization, performance evaluation
of a candidate planning solution can use a threshold of the
maximum size of the bounding interval, instead of computing
the exact solution of the load vector.

Computing an upper bound pj, involves solving a system
of n linear equations. The same amount of computation
applies to the feasibility check and computing lower bound
pY in Section V. It is straightforward to see that calculating
the coefficients is of complexity O(n?). Thus the overall
complexity lies in the matrix inversion operation that runs in
the time range O(n?377) and O(n?), where the former is
attainable only asymptotically by the Coppersmith—Winograd
algorithm.

VII. NUMERICAL RESULTS

In this section, we numerically investigate the theoretical
findings in the previous sections. An illustrative simulation
study has been conducted for a three-site 3GPP LTE network
with an inter-site distance of 500 m, adopting a wrap-around
technique. The simulated system operates at 2 GHz with
10 MHz bandwidth. Each site is equipped with a three-sector
downtilted directional antenna with 14 dBi antenna gain.
The propagation environment and user distribution follow
the 3GPP specification in [1], assuming propagation model 1
(Okumura-Hata, urban, 8 dB standard deviation shadow
fading) and user generation scenario 4b with one hotspot of

40 m radius per macro cell area. Note that, as for any system
model, the complete assessment of the model validity would
also include validating numerical results against results from
real deployments, which is beyond the scope of the current
paper.

The network layout we have used is illustrated in Figure 2.
Two layers of users are generated, with 30 users per macro
cell area in total, out of which 2/3 (the pink dot markers) is
in a randomly placed hotspot, and 1/3 (the black x-markers)
are distributed randomly and uniformly over the area. Each
user equipment has an omni-directional antenna with 0 dBi
antenna gain. The traffic demand corresponds to 400 kbps for
all users within a duration of one second in the time domain.

Two network configurations are illustrated in Figure 2,
with the only difference being the antenna direction of cell 1,
which impacts the sets of users served by the cell and its
neighbors. Intuitively, configuration two is inferior, since it
results in that the hotspot users in cell 1’s original coverage
area (see Figure 2a) are to be served by cell 8 and/or cell 9
(due to wrap-around), although these users are relatively far
away from the two cells. The likely impact is poorer link
quality for the users in the handed-over hotspot as well as
increased number of users to be served by the neighbors of
cell 1. These effects are expected to be seen in the load of
the neighbor cells.

First, for both configurations, the existence of system so-
lutions has been verified by finding p9 to the corresponding
linear system, as described in Section V. Next, the non-
linear coupling system (4) is solved using the non-linear
optimization toolbox of MATLAB. Both p?L and p* are
shown in Figure 3. As expected, the load of cells 8 and 9
increases for the second configuration. At the same time,
the load of cell 1 does not decrease either, even though
it serves fewer users under the second configuration. This
is due to a joint effect of several factors. Firstly, as can
be seen from Figure 2b, users served by cell 1 are likely
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Fig. 3: Load solutions for the two example network configurations.

to experience high interference from cell 6 and vice versa.
From Figure 3b, we observe that the load of cell 6 has also
slightly increased. Secondly, the increased load in cells 8
and 9 implies more frequent transmissions in these cells and
thus higher probability of interference to other cells; this in
turn increases the load of the other cells, which can also be
clearly seen in Figure 3. We further note that the solution
p* in Figure 3b and thus the second configuration are not
feasible from the capacity point of view.

In Figure 3, we also illustrate the load solutions to the
linear systems described in Section VI, i.e., the upper bound
py, assuming p = pY. Table I provides further details of
the quality of both the lower and upper bounds obtained for
all 9 cells in configuration one for which the scenario is
illustrated in Figure 2a. The upper bound quality (UB) is
calculated as 12271 . 100%, and the lower bound quality

(LB) is calculated as ‘ﬁﬁﬁ%’«l -100%.

TABLE I: Lower and upper bound quality, Configuration 1.

Bound Cell 1 Cell 2 Cell 3 Cell 4 Cell 5
UB 5.19 % 5.55 % 6.66 % 4.61 % 4.93 %
LB 48.05 % | 48.15 % | 4444 % | 43.08 % | 43.21 %

Bound Cell 6 Cell 7 Cell 8 Cell 9 -
UB 4.94 % 3.33 % 5.20 % 4.17 % -
LB 50.62 % | 51.66 % | 46.82 % | 50.00 % -

The tight upper bound indicates the efficiency of the
linear approximation described in Section VI. In average,
the estimation deviates only a few percent from the true
load value. For p? the values are significantly lower than
pr as p= ho(p) represents a very optimistic view of load
coupling. The observation sheds further light on the impor-
tance of fundamental characterization that the two systems
are completely equivalent in solution existence, despite the
large difference in numerical values of pg and p*. Improving
the lower bounds, although being beyond the scope of the

current paper, is an interesting topic for future investigation.
For example, in [35], the model discussed in this paper is
applied for load balancing, for which very tight lower and
upper bounds are obtained using few fixed-point iterations.
It should be further noted that although the results have
been presented for downlink, the model and the theoretical
findings can be adapted to uplink.

For the two network configurations, in Figure 4 we il-
lustrate the behavior of the cell-load coupling system with
respect to demand, which is successively scaled up uniformly
over the service area. Figure 4a and Figure 4b show, respec-
tively, the results for the non-linear load-coupling system
(4), and the linear equation system p = ho(p) that provides
lower estimation and characterizes feasibility of (4). The two
configurations are distinguished by using respectively solid
and dotted curves. For each of the two configurations, the
curves are plotted in different colors for the load solutions
of nice cells. In Figure 4a, the thicker curves represent the
load of cell 8. For the linear system, only the maximum value
among the cells is shown in Figure 4b for the sake of clarity.

From Figure 4a, it is apparent that the solution values
of (4) grow rapidly in the high-demand region, and the
system becomes infeasible beyond some point. The feasi-
bility boundaries for the two configurations are shown by
the red vertical lines. Configuration one is clearly superior,
as its load values, shown by the solid curves, are below
those of configuration two, and the feasibility boundary is
considerably higher. For configuration two, cell 8 has the
highest load (the dotted thick line). Using configuration one,
some of the users are served by cell 1 instead (see Figure 2),
leading to lower load in cell 8 (the solid thick line). Note
that, for both configurations, when getting somewhat close
to the infeasible region, the solver gives solutions containing
some zero elements, indicating that the solution is invalid
(the system becomes unstable), before all the values abruptly
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drop to zeros showing false infeasibility. The inaccuracy is
to a large extent due to the numerical behavior of the solver,
as when the solution becomes invalid, the distance to the
true feasibility boundary is, in fact, significant. The observa-
tion shows the importance of our analysis of characterizing
feasibility exactly by the linear system p = ho(p).

In Figure 4b, the linear system gives values growing
consistently in demand. The system gives the feasibility
boundary point of the non-linear load coupling equations,
when the determinant of I — H, where I is the identity
matrix and H is the matrix defined for h°, equals zero.
After passing the boundary point, the linear system returns
negative (infeasible) solutions. Hence the numerical results
verify that the significance of the linear system to identifying
solution existence. Moreover, using the linear system, one is
able to conclude, as shown in Figure 4, that configuration
one is clearly superior to configuration two.

VIII. CONCLUSIONS

We have provided a theoretical analysis of the LTE load
coupling system originally presented in [32], and derived
its fundamental properties, including concavity, behavior in
limit, and solution uniqueness. We have also formulated the
necessary and sufficient condition for solution existence, The
analysis leads to a simple means for determining feasibility.
In addition, we have presented two linear approximations.
The analysis has been supported by theoretical proofs and nu-
merical experiments and can serve as a basis for developing
radio network planning and optimization strategies for LTE.
Furthermore, the presented linearizations and the bounding-
based optimization can potentially be used for more general
convex optimization problems with similar properties.
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