
Analysis of Checkpointing Schemes for Multiprocessor Systems*

Avi Ziv

Information Systems Laboratory
Stanford University

Stanford, CA 94305-4055
E-mail: avi@isl.stanford.edu

Abstract

Parallel computing systems provide hardware re-
dundancy that helps t o achieve low cost fault-tolerance,
by duplicating the task into more than a single pro-
cessor, and comparing the states of the processors a t
checkpoints. This paper suggests a novel technique,
based on a Markov Reward Model (MRM) , f o r ana-
lyzing the performance of checkpointing schemes with
task duplication. W e show how this technique can be
used to derive the average execution t ime of a task
and other important parameters related t o the perfor-
mance of checkpointing schemes. Our analytical re-
sults match well the values we obtained using a simula-
t ion program. W e compare the average task execution
t ime and total work of f our checkpointing schemes,
and show that generally increasing the number of pro-
cessors reduces the average execution t ime , but in-
creases the total work done by the processors. How-
ever, i n cases where there i s a big difference between
the t ime it takes t o perform different operations, those
results can change.

1 Introduction

Parallel computing systems provide hardware re-
dundancy that helps to achieve low cost fault-
tolerance] by duplicating the task into more than a
single processor, and comparing the states of the pro-
cessors at checkpoints [ll]. The usage of checkpoints
reduces the time spent in retrying a task in the pres-
ence of failures, and hence reduces the average execu-
tion time of a task [4][16]. Reducing the task execution
time is very important in many applications like real-
time systems with hard deadlines, and transactions

'This research was partially supported by the IBM Almaden
Research Center, San Jose, California, and partially supported
by NSF Young Investigator Award CCR-9457811.

1060-9857/94 $4.00 0 1994 IEEE
52

Jehoshua Bruck

California Institute of Technology
Mail Code 116-81

Pasadena, CA 91125
E-mail: bruck@systems.caltech.edu

systems, where high availability is required. Examples
of systems that use checkpointing for fault recovery are
Sequoia [2], Eternity from Tolerant Transactions Sys-
tems [13] and Nonstop from Tandem Computers [5] .

In checkpointing schemes the task is divided into n
intervals. At the end of each interval a checkpoint is
added, either by the programmer [4] or by the com-
piler [lo]. In the systems considered here, the check-
points serve two purposes: detecting faults that oc-
curred during the execution of a task, and reducing
the time spent in recovering from faults. Fault de-
tection is achieved by duplicating the task into two
or more processors, and comparing the states of the
processors at the checkpoints. We assume that the
probability of two faults resulting in identical states
is very small, so that two matching states indicate a
correct execution. By saving the state of the task at
each checkpoint] we avoid the need to restart the task
after each fault. Instead, the task can be rolled back
to the last correct checkpoint and execution resumed
from there, thereby shortening fault recovery.

The execution of a task is done in steps, Each con-
sisting of a series of operations. The first operation is
to execute one interval of the task by all the processors
that are assigned to i t . Note that it is not necessary
that all the processors execute the same interval at
the same step. After the execution of each interval is
completed, the system performs the operations neces-
sary to achieve fault detection and recovery. The first
operation is to store the states of the processors in the
stable storage and to compare those states. Based on
the result of the comparison and the scheme used, the
system decides what further action should take place.
If no fault occurred, then the execution of the task is
resumed with the next interval in the next step. Oth-
erwise the Checkpoint processor performs operations
to recover from the fault. Table 1 presents a list of
possible operations that are used in this paper, and
the time it takes to perform each of them.

mailto:avi@isl.stanford.edu
mailto:bruck@systems.caltech.edu

I Operation I Time 1
Execute one task interval

Roll back to last verified checkDoint
Store and compare checkpoint states

tI
tck
t,

Copy state from one processor to another
Load spare processor with task and start it

Table 1: List of possible operations

tc,
tl,,

Agrawal [l] describes a fault tolerance scheme,
called RAFT (Recursive Algorithm for Fault Toler-
ance), which achieves fault tolerance by duplicating
the computation of a task on two processors. If the
results of the two executions do not match, the task is
executed again in another processor until a pair of pro-
cessors produces identical results. The RAFT scheme
does not use checkpoints, and every time a fault is de-
tected the task has to be started from its beginning.
More recent schemes use checkpointing to avoid re-
execution of an entire task [ll]. At each checkpoint,
the state of the task is stored into a stable memory.
If a fault is detected and a rollback is needed, it can
be done to the last stored checkpoint, not to the be-
ginning of the task. Different recovery techniques are
used by the schemes to shorten the fault recovery time.
Examples of such techniques are rollback with look-
back [9] and roll-forward recovery [9][12].

Performance analysis is very important when trying
to evaluate and compare different schemes, or check if
a scheme achieves its goals in a certain system. Most
authors rely on simulations for performance evalua-
tion [12], or use a simplified fault model [9][12]. The
use of simulation leads to long and time consuming
evaluation, and does not allow examination of many
cases. The simplified fault model provides only ap-
proximate results.

In this paper we describe an analysis technique for
studying the performance of checkpointing schemes for
fault-tolerance. The technique provides means to eval-
uate important parameters in the performance of a
scheme. It provides a way to compare various schemes
and select optimal values for some parameters of the
scheme, like the number of checkpoints [18].

The analysis of a scheme is based on the analysis of
a discrete time Markov Reward Model(MRM) [7]. The
analysis is done in three steps. In the first step, the
analyzed scheme is modeled as a state-machine. The
transition edges of the state-machine are assigned with
values that correspond to the properties that need to
be evaluated, like the useful work done by the tran-

sition, the time to execute the transition etc. In the
second step, the edges of the state-machine are as-
signed transition probabilities according to the events
that cause the transition and the fault model used. In
the last step, the Markov chain, created by the first
two steps, is analyzed, and values for the properties of
interest are derived.

The proposed analysis technique is used to compare
four checkpointing schemes: Triple Modular Redun-
dant with checkpointing (TMR-F) [9], Double Mod-
ular Redundant with backward recovery and two re-
covery processors (DMR-B-2) [9], Double Modular Re-
dundant with forward recovery and one recovery pro-
cessor (DMR-F-1) [9], and Roll-Forward Checkpoint-
ing Scheme (RFCS) [12]. We evaluate two quantities,
the average execution time of a task and the total work
done to complete a task. The execution time of a task
is defined as the total elapsed time from the beginning
of the execution of the task, until the last checkpoint
is compared correctly. This parameter is important in
real-time systems, where fast response is desired. We
show that the number of processors used to implement
the scheme has a major effect on the average execution
time, while the complexity of the scheme has only a
minor effect. Out of the four schemes examined in this
paper, the TMR-F scheme, which uses three proces-
sors and a simple recovery technique, is the quickest.
The DMR-F-1 and RFCS schemes, which use two pro-
cessors during normal execution and add spare proces-
sors during fault recovery, are slower than TMR-F but
quicker than the DMR-B-2 scheme, that always uses
two processors.

The total work to complete a task depends on not
only the time to complete the task but also the number
of processors used. It is defined as the sum of the
time each of the processors is used by the scheme.
This parameter is important in transactions systems,
where high availability is important. In these types of
systems, reducing the total work to complete a task
means increasing the total throughput of the system.
We show that schemes with low execution time are not
work efficient, and that the lowest work is done using
schemes that use a small number of processors, and
have higher execution time. The total work results of
the four schemes examined here were the reverse of
the execution time results. The DMR-B-2 scheme has
the lowest total work, while the TMR-F scheme has
the highest total work.

There are some cases where a big difference in
the time it takes to perform various operations can
cause the schemes to behave differently than described
above. Those cases can still be analyzed with the

53

technique described in this paper. For example, when
workstations connected by a LAN are used to imple-
ment the schemes, operations that involve more than
one workstation, and need the LAN, take longer time
to execute than operations that can be done locally. In
this case the DMR-B-2 scheme that uses the network
only lightly is quicker than the TMR-F scheme.

The rest of the paper is organized as follows. Sec-
tion 2 describes the analysis technique, using Double
Modular Redundant scheme with backward recovery
and a single recovery processor (DMR-B-1) [9] as an
example. In Section 3 we compare the average exe-
cution time and the total work of four checkpointing
schemes. Section 4 concludes the paper.

2 Analysis Technique

The analysis of the schemes is based on the analysis
of a discrete time Markov Reward Model (MRM) [7].
In the Markov Reward Model used in this paper, each
transition edge of the Markov chain has a reward level
associated with i t . The properties of the reward of the
Markov chain are used to evaluate the measures of in-
terest. Markov Reward Models are often used in eval-
uating the performance of computing systems. Smith
and Trivedi [14] give examples of the use of MRM
in evaluating reliability and performance of parallel
computer, task completion time in faulty systems and
properties of queueing systems. Others like [3], [6] ,
[15], use MRM to evaluate various aspects of computer
system performance.

The analysis of the schemes is done in three steps:
building the eziended state-machine of the scheme,
assigning probabilities to the transitions of the ma-
chine according to the fault models, and solving the
Markov chain created by the the first two steps to
get the desired analysis. Next we describe the three
steps in more detail, using as an example the DMR-
B-1 scheme [9].

In the DMR-B-1 scheme the task is executed by two
processors in parallel. At the end of each interval the
states of both processors (or signatures of them) are
compared. If they match then a correct execution is
assumed, and the execution of the next interval starts.
In case the states do not match, a new processor exe-
cutes the interval, and its state is compared to all the
states of the previous executions of the interval until
two identical states are found.

Figure 1 gives an example of execution of a task
with the DMR-B-1 scheme. In the figure, the horizon-
tal lines represent execution of the task code by the

Figure 1: Example of execution with the DMR-B-1
scheme

processors assigned to it (PE A and B) or the spare
processor, with the interval number indicated by the
I... above the horizontal lines. The boxes represent op-
erations done by the system to achieve fault-tolerance.
In step 2 of the execution, while executing interval
I j+l , a fault occurred in processor B , so in the step
3 a spare processor repeats the execution of the same
interval. After it finishes, its state matches the state
of processor A , hence the interval is verified, and nor-
mal execution can be resumed. During step 4, both
processors have faults, and the spare processor has to
produce two correct executions before fault recovery is
achieved, and normal execution can be resumed. As
the spare processor has a fault during the recovery
process (in step 6), it takes 3 steps to complete the
recovery. We assume that at each step a new spare
processor is used, in order to avoid a match between
two faulty states that were caused by the same per-
manent fault. Because of that , a processor has to be
loaded every step during fault recovery.

2.1 Building The State-Machine

The first step in analyzing a fault recovery scheme is
to build the extended state-machine that describes the
operation of the scheme. The extended state-machine
describes the behavior of the scheme in the eyes of an
external viewer, who can observe the faults that oc-
curred during a step. Two fault patterns that are not
distinguishable in the scheme, but might later cause
different actions, cause transitions to different states in
the extended state-machine. For example, when two
processors execute the same interval, and their states
do not match at the end, the scheme can not tell if
the fault occurred in one of the processors or in both.
The number of faults might affect the ability of the
scheme to recover from the faults, and thus should
cause transitions to different states in the extended
state-machine.

Each transition in the state-machine represents one
step, and a transition is done at the end of each

54

step. Because of the way the state-machine is con-
structed, the transition is determined only by the cur-
rent state and the faults that occur during the current
step (Markov property).

Each transition has associated with it a set of prop-
erties, called rewards. The rewards are used to eval-
uate the measures of interest related to the scheme.
In this paper we are interested in the execution time
of the schemes, and use two rewards for that . Other
measures, such as the number of checkpoints stored in
the stable storage and the number of processors used,
can also be viewed as rewards and analyzed using the
technique described here. The two quantities we use
for execution time analysis are:

V i - The amount of useful work that is done during
the transition. We measure the useful work as
the number of intervals whose checkpoints were
matched as a result of the event that caused the
transition.

t i - The time it takes to complete the step that
corresponds to the transition. As defined earlier a
step starts when the processor(s) start to execute
an interval, and ends the next time an interval is
ready to be executed.

The time it takes to complete a step is the time
to perform all the operations of that step. Each
step includes a t least the execution of the interval,
denoted as t r , and the comparison of the states
a t the end of the interval, denoted as t e k . Some
steps may include other operations that appears
in Table 1.

Note that the first step in the analysis depends only
on the scheme and is totally independent of the fault
model.

In the DMR-B-1 scheme the operation has two ba-
sic modes. The first mode is the normal operation
mode, where two processors are executing the task in
parallel. The second mode is the fault recovery mode,
where a single processor tries to find a match to an
unverified checkpoint.

Figure 2 shows the extended state-machine for the
DMR-B-1 scheme. The state-machine has two differ-
ent fault recovery states, the first state has no correct
execution of the current interval so far, and the second
state has a single correct execution. State 2 in the ma-
chine is the normal execution state, and states 0 and l
are the fault recovery states with the respective num-
ber of correct executions. Table 2 gives all the possible
transitions in the state-machine with their properties.
The first two columns in the table describe for each

possible transition the event that causes it. The rest
of the columns are explained later in the section.

The execution of the scheme starts a t state 2, and
if no faults occur it remains there, or in other words a
transition is made via edge 0. If a mismatch between
the states of the processors is found a transition to a
fault recovery state is made. As the external observer
knows how many faults occurred, it knows if it has to
move along edge 2 to state 0 (faults in both proces-
sors), or along edge 1 to state 1 (one fault only).

Normal exccutim j Fault recovery

Figure 2: Extended state-machine for the DMR-B-1
scheme

In the fault recovery states the recovery processor
executes the task again, and every time it fails it re-
mains in the same state (transition via edge 3 or 5) .
When a correct execution is completed a transition to
the next state is made.

For example, the execution of Figure 1 causes the
following transitions (the number above the arrows are
the edges that are used for the transitions)

After the state-machine is built, rewards are as-
signed to each of its edges. The third and fourth
columns in Table 2 show the values of the two rewards
of interest, vi and t i .

In DMR-B-1 there are two transitions that com-
plete the execution of an interval, and hence do useful
work. The first transition is edge 0, where no fault
occurred during normal execution. The second one is
the transition out of the recovery mode, edge 6. The
value of vi for those two edges is 1. All other transi-
tions do not do any useful work, and thus their value
of v i is 0.

The time to complete any step in the DMR-B-1
scheme includes the time to execute the interval and
compare the checkpoints a t the end. We assume that a
spare processor is loaded before every step in the fault
recovery mode, and the main processors are loaded

55

R

Table 2: Transition description for the DMR-B-1 extended state-machine

when the recovery is completed. Hence all the edges
have execution time of t r + t e k + t l d , except edge 0 that
has execution time of t o = t r + t e k .

2.2 Creating the Markov Chain

The second step in the analysis is assigning proba-
bilities to each of the transitions in the state-machine
constructed in the first step. Each edge i is assigned a
probability p i , which is the probability that the event
that causes the transition via that edge will occur.

The probabilities assigned to the edges are deter-
mined by the fault model. In the simplest case it is
assumed that the fault patterns do not change with
time, and thus the transition probabilities are con-
stants. More complex models assume that the fault
pattern changes with time, or is a random process. In
this case the probabilities of transitions are functions
of time or random processes.

The transition probabilities out of a state do not
depend on the way this state was reached. Hence the
state-machine with the transition probabilities corre-
sponds to a Markov chain. Together with the proper-
ties of the transitions, or the rewards, described earlier
a Markov Reward Model is created. The analysis of
this MRM provides results related to the fault recov-
ery scheme.

In the example here, we assume that the fault pat-
tern does not change with time, and thus the transi-
tion probabilities are constants. We also assume that
the faults in different processors are independent of
each other. This fault model is used in [9] and [12]. In
this model F is the probability that a processor will
have a fault while executing an interval. The proba-
bilities of the transitions using this fault model appear
in the fifth column of Table 2.

2.3 Analyzing the Scheme Using the
MRM

After constructing the MRM induced by the fault
recovery scheme and the fault model, its analysis pro-
vides the required results. The first step in solving
the MRM is constructing the transition matrix of the
Markov chain. In the transition matrix, called P , each
entry pa,j is the probability of transition from state i
to state j . If the transitions are not time dependent
the Markov chain is called homogeneous and its tran-
sition matrix is constant. Otherwise the Markov chain
is non-homogeneous, and the transition matrix at time
t is denoted by P(t) .

There are two ways to analyze a Markov chain,
transient analysis and steady-state or limiting anal-
ysis. In the transient analysis we look at the state
probabilities a t each step, and from those probabili-
ties get the desired quantities. In limiting analysis we
look at the state probabilities in the limit as t + CO.

A detailed discussion on analysis of Markov chains can
be found in [8]. In this paper we use the steady-state
analysis. At the end of the section we show that the
steady-state analysis results match well simulation re-
sults.

A discrete time Markov chain has limiting probabil-
ities if it is irreducible, aperiodic and homogeneous [8].
The limiting, or steady-state probabilities ?r can be
found by solving the system of equations

a = T . P ,

CiTi = 1.
i

The steady-state probability e i of transition via edge
i, from state U to state v is

56

where pi is the transition probability of the edge. The
average reward R for edge reward vector T is

R = E r i e * .
i

We now show how rl e and R can be used to perform
time analysis of a checkpointing scheme of a task with
n intervals.

Average Execution Time

The first thing we can get from the steady-state anal-
ysis of the Markov chain is the average number of in-
tervals completed in a step, or the amount of useful
work done during a step. This quantity is the average
reward for the reward v and is given by

The average number of steps it takes to complete a
single interval is

The average time it takes to complete a single step
is the average reward for the reward vector t and is
given by

T, = C t i e ; (3)
i

From Eqs. (2) and (3) the average time to complete
one interval and the whole task of n intervals are

(4)

(5)

Analysis of DMR-B-1

We now apply the results to the DMR-B-1 scheme
with the fault model described earlier. The transition
matrix of the scheme is

P = [P3 0 P4 p5 :GI=[: (1 - F F)

P z Pl PO F 2 2 F (l - F) (1-F)2

the steady-state probabilities are

F 2 (2 - F) F 1 - F
. = { - I l + F "}I

and the average execution time of a task is

n

57

2

$
c

j
I
1
(I)

1

I

/

I
1 2 3 4 5 6 7 8 9 x

Figure 3: Comparison between analytical and simu-
lation results of the average execution time for the
DMR-B-1 scheme

Simulation Results

We compared the average execution time derived in
this section with values measured using a simulation
program. Figure 3 shows a comparison between the
analytical values and those measured by the simula-
tion program when faults occur according to a Poisson
random process with rate A , i.e., the probability of a
fault in a processor during the execution of an interval
is F = 1 - e - ; . The comparison was made for a task
of length 1 with 20 checkpoints (n = 20, I1 = .05),
t ,k = 0.001 and t l d = 0.003. The solid line is the exe-
cution time given in Eq. (6) and the asterisks are the
average execution time measured using the simulation
program. We can see that the simulation points fall
on the line of analytical plot. In [17] we compared
the analytical results with simulation results for other
schemes. In all the schemes we examined the analyti-
cal and simulation results match well.

3 Scheme Comparison

In this section the analysis technique is used to
compare between four existing checkpointing schemes.
The schemes we compare are Triple Modular Redun-
dant with checkpointing (TMR-F) [9], Double Mod-
ular Redundant with backward recovery and two re-
covery processors (DMR-B-2) [9], Double Modular Re-
dundant with forward recovery and one recovery pro-
cessor (DMR-F-1) [9], and Roll-Forward Checkpoint-
ing Scheme (RFCS) [la]. A short description of the

schemes is given here. A more detailed description and
the analysis of those schemes can be found in [17].

The simplest scheme is the TMR-F scheme [9]. In
this scheme the task is executed by three processors,
all of them executing the same interval. A fault in
a single processor can be recovered without a roll-
back because two processors with correct execution
still agree on the checkpoint. If faults occur in more
than one processor all the processors are rolled back
and execute the same interval again.

The DMR-B-2 scheme is described by Long e l al.
in 191. In this scheme two processors execute the task.
Whenever a fault occurs both processors are rolled
back and execute the same interval again. The differ-
ence between this scheme and simple rollback schemes,
like TMR-F, is that all the unverified checkpoints are
stored and compared, not just the checkpoints of the
last step. Hence two steps with a single fault are
enough to verify an interval.

The next two schemes, DMR-F-1 and RFCS, use
spare processors and the roll-forward recovery tech-
nique in order to avoid rollback [ll]. In the DMR-F-1
scheme, suggested by Long et al. in [9], two proces-
sors are used during fault free steps. Three additional
spare processors are added for a single step after each
fault to try to recover without a rollback. The states
of the two processors that are currently executing the
task are copied to two of the spare processors. The
third spare processor is loaded with the last verified
checkpoint and tries to verify the faulty checkpoint. If
it fails, either because it had a fault or because both
processors had faults in the previous step, a rollback
is done. If the verification succeeds then no rollback
is done and the processor with the correct checkpoint
and the one that this checkpoint was copied to con-
tinue to execute the task.

Pradhan and Vaidya [12] describe another roll-
forward scheme called Roll-Forward Checkpointing
Scheme (RFCS). In this scheme, as in DMR-F-1, a
spare processor is used in fault recovery in order to
avoid rollback. The difference between the schemes is
that RFCS uses only one spare processor and the re-
covery takes two steps instead of one step in DMR-F-1.
In the first step of fault recovery the spare processor
is loaded with the last verified checkpoint and it tries
to verify the current checkpoint, while the two regular
processors continue with the normal execution. If the
spare processor succeeds in verifying the first check-
point the state of the correct processor is copied to
the faulty processor. In the next step the spare pro-
cessor tries to verify the next checkpoint, that has only
one correct execution.

The behavior of the schemes is greatly affected by
their exact implementation and the architecture of the
parallel computer. Those parameters affect the time
it takes to execute the operations that are needed
at the end of each step, like comparing checkpoints
and rolling back. To obtain general properties of the
schemes, we will use a simpler model than the one used
in Section 2. In this model the time to execute each
step is t~ +t&, where t o h is the overhead time required
by the scheme. This overhead time is the same for all
the transitions of the state-machine of the scheme. It
is also assumed to be the same for all schemes.

The results of the simplified model are still valid
when a more precise model, like the one used in Sec-
tion 2, is used, for a large range of scheme parameters.
However, in cases where there is a big difference be-
tween the time it takes to perform different operations,
those results can change. Later in the section we give
an example of such a case, where we assume that the
schemes are implemented on workstations connected
by a LAN. This implementation causes the slowest
scheme in the general case, the DMR-B-2 scheme, to
become the quickest scheme.

We compare here two properties of the schemes.
The first property is the average execution time of a
task using the scheme. The second property is the av-
erage work used to complete the execution of a task
using the scheme. We assume that faults occur ac-
cording to a Poisson random process with rate A, i.e.,
the probability of a fault in a processor during the ex-
ecution of an interval is F = 1 - e-:. w e also assume
that the number of checkpoints in the task is chosen
such that the best possible result is achieved, given
the scheme and the fault rate A.

The average execution time of a task is important
in real-time systems where fast response is desired.
We show here that the average execution time is af-
fected mostly by the number of processors used by the
scheme, and the complexity of the scheme has only a
minor effect.

The total work to complete the execution of a task
is the sum, over all processors used by the scheme to
complete the task, of the time they were in use. As the
number of processors does not change during a step,
the work W can be defined as

step i

where ti is the length of the step and ci is the number
of processors used in that step.

The average work of a scheme can be found by using
the analysis technique described in Section 2. The

58

number of processors used in every transition edge of
the state-machine of the scheme is used as a reward
C. The average number of processors used in a step
is given by - c = e i c i ,

edges i
and the average work is

- - -
W = C . T ,

where T is the average execution time of the task.
For example, in the state-machine of the DMR-B-1
scheme described in Figure 2, two processors are used
during normal execution (state 2) and a single proces-
sor is used in the fault recovery mode (states 0 and
1). The reward vector of the number of processors for
the scheme is {2,2,2,1,1,1,1}. The average number
of processors is given by

- 2F c = 2 - -
1 + F '

The work is important in transaction systems,
where high availability of the system is required, and
thus the system should use as few resources as pos-
sible. We show here that the best work is achieved
when a small number of processors is used, and again
the complexity of the scheme has only a minor effect.

3.1 Simplified Model

To obtain general properties of the schemes without
the influence of a specific implementation, we use a
simpler model than the one used in Section 2. Using
this model, we can also prove achievable lower bounds
on both the average execution time and the total work.
In the simplified model the time to execute each step
is t s + t o h , where t o h is the overhead time required by
the scheme. This overhead time is the same for all the
transitions of the state-machine of the scheme. It is
also assumed to be the same for all schemes. Using
this simplified model, the average execution time and
the total work of a task with n intervals (ts = i) are
simplified to

T =
W = C . T = C . S ~ (l + n t o h) ,

-
R . s . (t r + t 0 h) = s . (1 + ntoh), - - -

where S is the average number of steps to complete
an interval.

3.1.1 Lower Bounds

Before the four schemes are compared, we give achiev-
able lower bounds on both the average execution time

and the average work. Later the performance of the
schemes will be compared to these lower bounds. The
lower bound for the average execution time is

and the lower bound for the average work is

(7)
The DMR-B-1 scheme with optimal number of check-
points achieves the lower bound for the average work.
Proofs for both lower bounds can be found in [17].

3.1.2 Average Execution Time

The average execution time of a task with n check-
points is

T = n . S . (t r + to*) = S . (1 + nt,h),

where S is the average number of steps it takes to
complete an interval. Using the analysis technique
described in Section 2, we calculated the average ex-
ecution time of the four schemes considered in this
section [17]:

-

-
TTMR-F = 1-(3F:-2F3) ' (l + n t O h) ,

1 3Fa-2F3 . -
TDMR-F-1 = h

Figure 4 shows the average execution time of a task
using each of the four schemes, with overhead time of
t o h = 0.002 for each step. The number of checkpoints
for each scheme is chosen such that its average execu-
tion time is minimized [18].

The figure shows that the TMR-F scheme, despite
being the simplest of the four schemes, has the lowest
execution time. The TMR-F scheme has better exe-
cution time because it is using more processors than
the other schemes, and thus has a much lower proba-
bility of failing to find two matching checkpoints. The
DMR-B-2 scheme is the worst because it uses only
two processors, and does not use spare processors to
try to overcome the failure. The RFCS and DMR-F-
1 schemes use spare processors during fault recovery,
and thus have better performance than DMR-B-2.

3.1.3 Average Work

Applying the analysis technique to the four schemes
gives the following average work:

59

7

1.35-

1.3-

Figure 4: Average execution time with optimal check-
points

DMR-B-2

DMR-F-1

- - - -
.

- IMF-F

- 2 6F 3F2-4F3 ,
WDMR-F-1 1 +1-&2+2F3

3.8

(1 + ntoh).

~ TMR-F
DMR-F-I
RFCS

-
.
- - - -

The average work of a task of length 1 with over-
head time of t,,, = 0.002 for the four schemes is shown
in Figure 5. The figure also shows the lower bound of
the work, as given in Eq. (7).

3.8

4, , , , , , , , , , ,
~ TMR-F

DMR-F-I
RFCS

-
.
- - - -

Figure 5: Average work with optimal checkpoints

The results here are the reverse of the results in
the average execution time. The best scheme here is

the DMR-B-2, which always uses only two processors.
The RFCS and DMR-F-1, which use 2 processors dur-
ing normal execution and add spare processors dur-
ing fault recovery, require more work. The TMR-F
scheme, which uses 3 processors, is the worst scheme.

3.2 Precise Model

When a more precise model is used, in which the
time to perform each operation is used (as in the anal-
ysis done in Section a), the results shown here for
the simplified model are still valid for a large range
of scheme parameters. There are some cases where a
big difference in scheme parameters can cause differ-
ent behaviors of the schemes than those described for
the simplified model. These cases can still be analyzed
with the technique described in this paper, by using
the execution time equations given in [17] instead of
the equation used in the simplified model.

For example, consider the following case: worksta-
tions connected by a LAN are used to implement the
schemes. Each workstation saves its own checkpoint
states, and sends only a short signature of them to
the other workstations for comparison. In this imple-
mentation, operations that are done within a work-
station can be completed relatively quickly, while op-
erations that involve more than one workstation, and
need the LAN, take much longer to execute. In this
case schemes that do not use the network heavily have
lower execution time than those which do. Specifi-
cally, the slowest scheme under the general model, the
DMR-B-2 scheme, which uses the network only for
state comparison can become the quickest scheme un-
der these conditions. Figure 6 shows the execution
time of a task when t,k = 0.001, t, = .001, t,, = 0.03
and t l d = 0.03, with optimal checkpoints. It can be
seen that the DMR-B-2 scheme is the quickest after
the failure rate, A , reaches some critical value that
require the other schemes to use the network heavily.

4 Conclusions

In this paper we have proposed a novel technique
to analyze the performance of checkpointing schemes.
The proposed technique is based on modeling the
schemes under a given fault model with a Markov Re-
ward Model, and evaluating the required measures by
analyzing the MRM.

We used the proposed technique to compare the av-
erage execution time of a task and the total processor
work done for four known checkpointing schemes. The

60

RFCS 1’9t -TMR-F
1 8 - - - DMR-F-1 1 - - - - DMR-B-2
1.7 4

Figure 6: Average execution time for the workstations
example

comparison shows that generally the number of pro-
cessors has a major effect on both quantities. When
a scheme uses more processors, its execution time de-
creases, while the total work increases. The complex-
ity of the scheme has only a minor effect on its perfor-
mance. In some cases, when there is a big difference
between the time it takes to perform different oper-
ations, the general comparison results are no longer
true. However, the proposed technique can still han-
dle these cases and give correct results for them.

The proposed technique is not limited to the
schemes described in this paper, or to the fault model
used here. It can be used to analyze any checkpointing
fault-tolerance scheme, with various fault models. The
proposed technique can be also used to provide ana-
lytical answers to problems that haven’t been dealt
with before or were handled by a simulation study.
Examples of such problems are deriving the number
of checkpoints that minimizes the average execution
time and computing the probability of meeting a given
deadline.

References

[l] P. Agrawal. Fault tolerance in multiprocessor systems
without dedicated redundancy. IEEE Transactions on
Computers, 37:358-362, March 1988.

[2] P. A. Bernstein. Sequoia: A fault-tolerant tightly cou-
pled multiprocessor for transaction processing. Com-
puter, 21:37-45, February 1988.

[3] A. Bobbio. A multi-reward stochastic model for the
completion time of parallel tasks. In Proceedings of the

Thirteenth International Teletrafic Congress, pages

Rollback
and recovery strategies for computer programs. IEEE
Transactions on Computers, 21:546-556, June 1972.

[5] C. I. Dimmer. The tandem nonstop system. In T. An-
derson, editor, Resilient Computing Systems, pages
178-196. John Wiley, 1985.

[6] L. Donatiello and V. Grassi. On evaluating the cumu-
lative performance distribution of fault-tolerant com-
puter systems. IEEE Transactions on Computers,
40:1301-1307, November 1991.

Semi Markov and Decision Processes.
1971.

577-582, 1991.

[4] K. M. Chandy and C. V. Ramamoorthy.

[7] R. A. Howard. Dynamic Probabilistic Systems Vol U:
John Wiley,

[8] L. Kleinrock. Queueing Systems, Vol. I: Theory. John
Wiley, 1975.

[9] J. Long, W. K. Fuchs, and J. A. Abraham. Forward
recovery using checkpointing in parallel systems. In
The 19th International Conference on Parallel Pro-
cessing, pages 272-275, August 1990.

[lo] J. Long, W. K. Fuchs, and J. A. Abraham. Compiler-
assisted static checkpoint insertion. In The 22nd
IEEE International Symposium on Fault- Tolerant
Computing, pages 58-65, July 1992.

Redundancy schemes for recovery.
TR-89-cse-16, ECE Department, University of Mas-
sachusetts, Amherst, 1989.

[123 D. K. Pradhan and N. H. Vaidya. Roll-forward check-
pointing scheme: Concurrent retry with nondedicated
spares. In IEEE Workshop on Fault- Tolerant Parallel
and Distributed Systems, pages 166-174, July 1992.

[13] 0. Serlin. Fault-tolerant systems in commercial ap-

[14] R. M. Smith and K. S. Trivedi. The analysis of com-
puter systems using Markov reward processes. In
H. Takagi, editor, Stochastic Analysis of Computer
and Communication Systems, pages 589-629. North-
Holland, 1990.

Dependability measure-
ment and modeling of a multicomputer system. IEEE
Transactions on Computers, 42:62-75, January 1993.

[16] S. Toueg and 0. Babaoglu. On the optimum check-
point selection problem. SIAM Journal on Comput-
ing, 13:630-649, August 1984.

[17] A. Ziv and J. Bruck. Analysis of checkpointing
schemes for multiprocessor systems. IBM Research
Report RJ 9593, November 1993.

in checkpointing schemes. Manuscript, 1993.

[I l l D. K . Pradhan.

plications. Computer, 17:19-30, August 1984.

[15] D. Tang and R. K. Iyer.

[la] A. Ziv and J. Bruck. Optimal number of checkpoints

61

