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Abstract 

Parallel computing systems provide hardware re- 
dundancy that helps t o  achieve low cost fault-tolerance, 
by duplicating the task into more than a single pro- 
cessor, and comparing the states of the processors a t  
checkpoints. This  paper suggests a novel technique, 
based on a Markov Reward Model (MRM) ,  f o r  ana- 
lyzing the performance of checkpointing schemes with 
task duplication. W e  show how this technique can be 
used to  derive the average execution t ime  of a task 
and other important parameters related t o  the perfor- 
mance of checkpointing schemes. Our  analytical re- 
sults match well the values we obtained using a simula- 
t ion program. W e  compare the average task execution 
t ime  and total work of f our  checkpointing schemes, 
and show that generally increasing the number of pro- 
cessors reduces the average execution t ime ,  but in- 
creases the total work done by the processors. How- 
ever, i n  cases where there i s  a big difference between 
the t ime  it takes t o  perform different operations, those 
results can change. 

1 Introduction 

Parallel computing systems provide hardware re- 
dundancy that helps to achieve low cost fault- 
tolerance] by duplicating the task into more than a 
single processor, and comparing the states of the pro- 
cessors at  checkpoints [ll]. The usage of checkpoints 
reduces the time spent in retrying a task in the pres- 
ence of failures, and hence reduces the average execu- 
tion time of a task [4][16]. Reducing the task execution 
time is very important in many applications like real- 
time systems with hard deadlines, and transactions 
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systems, where high availability is required. Examples 
of systems that use checkpointing for fault recovery are 
Sequoia [2], Eternity from Tolerant Transactions Sys- 
tems [13] and Nonstop from Tandem Computers [5 ] .  

In checkpointing schemes the task is divided into n 
intervals. At the end of each interval a checkpoint is 
added, either by the programmer [4] or by the com- 
piler [lo]. In the systems considered here, the check- 
points serve two purposes: detecting faults that oc- 
curred during the execution of a task, and reducing 
the time spent in recovering from faults. Fault de- 
tection is achieved by duplicating the task into two 
or more processors, and comparing the states of the 
processors at  the checkpoints. We assume that the 
probability of two faults resulting in identical states 
is very small, so that two matching states indicate a 
correct execution. By saving the state of the task at  
each checkpoint] we avoid the need to restart the task 
after each fault. Instead, the task can be rolled back 
to the last correct checkpoint and execution resumed 
from there, thereby shortening fault recovery. 

The execution of a task is done in steps, Each con- 
sisting of a series of operations. The first operation is 
to execute one interval of the task by all the processors 
that are assigned to i t .  Note that it is not necessary 
that all the processors execute the same interval at  
the same step. After the execution of each interval is 
completed, the system performs the operations neces- 
sary to achieve fault detection and recovery. The first 
operation is to store the states of the processors in the 
stable storage and to compare those states. Based on 
the result of the comparison and the scheme used, the 
system decides what further action should take place. 
If no fault occurred, then the execution of the task is 
resumed with the next interval in the next step. Oth- 
erwise the Checkpoint processor performs operations 
to recover from the fault. Table 1 presents a list of 
possible operations that are used in this paper, and 
the time it takes to perform each of them. 
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I Operation I Time 1 
Execute one task interval 

Roll back to last verified checkDoint 
Store and compare checkpoint states 

tI 
tck 
t, 

Copy state from one processor to another 
Load spare processor with task and start it 

Table 1: List of possible operations 

tc, 
tl,, 

Agrawal [l] describes a fault tolerance scheme, 
called RAFT (Recursive Algorithm for Fault Toler- 
ance), which achieves fault tolerance by duplicating 
the computation of a task on two processors. If the 
results of the two executions do not match, the task is 
executed again in another processor until a pair of pro- 
cessors produces identical results. The RAFT scheme 
does not use checkpoints, and every time a fault is de- 
tected the task has to be started from its beginning. 
More recent schemes use checkpointing to avoid re- 
execution of an entire task [ll]. At each checkpoint, 
the state of the task is stored into a stable memory. 
If a fault is detected and a rollback is needed, it can 
be done to  the last stored checkpoint, not to the be- 
ginning of the task. Different recovery techniques are 
used by the schemes to shorten the fault recovery time. 
Examples of such techniques are rollback with look- 
back [9] and roll-forward recovery [9][12]. 

Performance analysis is very important when trying 
to  evaluate and compare different schemes, or check if 
a scheme achieves its goals in a certain system. Most 
authors rely on simulations for performance evalua- 
tion [12], or use a simplified fault model [9][12]. The 
use of simulation leads to  long and time consuming 
evaluation, and does not allow examination of many 
cases. The simplified fault model provides only ap- 
proximate results. 

In this paper we describe an analysis technique for 
studying the performance of checkpointing schemes for 
fault-tolerance. The technique provides means to eval- 
uate important parameters in the performance of a 
scheme. It provides a way to compare various schemes 
and select optimal values for some parameters of the 
scheme, like the number of checkpoints [18]. 

The analysis of a scheme is based on the analysis of 
a discrete time Markov Reward Model(MRM) [7]. The 
analysis is done in three steps. In the first step, the 
analyzed scheme is modeled as a state-machine. The 
transition edges of the state-machine are assigned with 
values that correspond to the properties that need to  
be evaluated, like the useful work done by the tran- 

sition, the time to  execute the transition etc. In the 
second step, the edges of the state-machine are as- 
signed transition probabilities according to the events 
that cause the transition and the fault model used. In 
the last step, the Markov chain, created by the first 
two steps, is analyzed, and values for the properties of 
interest are derived. 

The proposed analysis technique is used to  compare 
four checkpointing schemes: Triple Modular Redun- 
dant with checkpointing (TMR-F) [9], Double Mod- 
ular Redundant with backward recovery and two re- 
covery processors (DMR-B-2) [9], Double Modular Re- 
dundant with forward recovery and one recovery pro- 
cessor (DMR-F-1) [9], and Roll-Forward Checkpoint- 
ing Scheme (RFCS) [12]. We evaluate two quantities, 
the average execution time of a task and the total work 
done to complete a task. The execution time of a task 
is defined as the total elapsed time from the beginning 
of the execution of the task, until the last checkpoint 
is compared correctly. This parameter is important in 
real-time systems, where fast response is desired. We 
show that the number of processors used to  implement 
the scheme has a major effect on the average execution 
time, while the complexity of the scheme has only a 
minor effect. Out of the four schemes examined in this 
paper, the TMR-F scheme, which uses three proces- 
sors and a simple recovery technique, is the quickest. 
The DMR-F-1 and RFCS schemes, which use two pro- 
cessors during normal execution and add spare proces- 
sors during fault recovery, are slower than TMR-F but 
quicker than the DMR-B-2 scheme, that always uses 
two processors. 

The total work to complete a task depends on not 
only the time to  complete the task but also the number 
of processors used. It is defined as the sum of the 
time each of the processors is used by the scheme. 
This parameter is important in transactions systems, 
where high availability is important. In these types of 
systems, reducing the total work to complete a task 
means increasing the total throughput of the system. 
We show that schemes with low execution time are not 
work efficient, and that the lowest work is done using 
schemes that use a small number of processors, and 
have higher execution time. The total work results of 
the four schemes examined here were the reverse of 
the execution time results. The DMR-B-2 scheme has 
the lowest total work, while the TMR-F scheme has 
the highest total work. 

There are some cases where a big difference in 
the time it takes to  perform various operations can 
cause the schemes to behave differently than described 
above. Those cases can still be analyzed with the 

53 



technique described in this paper. For example, when 
workstations connected by a LAN are used to imple- 
ment the schemes, operations that involve more than 
one workstation, and need the LAN, take longer time 
to  execute than operations that can be done locally. In 
this case the DMR-B-2 scheme that uses the network 
only lightly is quicker than the TMR-F scheme. 

The rest of the paper is organized as follows. Sec- 
tion 2 describes the analysis technique, using Double 
Modular Redundant scheme with backward recovery 
and a single recovery processor (DMR-B-1) [9] as an 
example. In Section 3 we compare the average exe- 
cution time and the total work of four checkpointing 
schemes. Section 4 concludes the paper. 

2 Analysis Technique 

The analysis of the schemes is based on the analysis 
of a discrete time Markov Reward Model (MRM) [7]. 
In the Markov Reward Model used in this paper, each 
transition edge of the Markov chain has a reward level 
associated with i t .  The properties of the reward of the 
Markov chain are used to evaluate the measures of in- 
terest. Markov Reward Models are often used in eval- 
uating the performance of computing systems. Smith 
and Trivedi [14] give examples of the use of MRM 
in evaluating reliability and performance of parallel 
computer, task completion time in faulty systems and 
properties of queueing systems. Others like [3], [6] ,  
[15], use MRM to evaluate various aspects of computer 
system performance. 

The analysis of the schemes is done in three steps: 
building the eziended state-machine of the scheme, 
assigning probabilities to the transitions of the ma- 
chine according to the fault models, and solving the 
Markov chain created by the the first two steps to 
get the desired analysis. Next we describe the three 
steps in more detail, using as an example the DMR- 
B-1 scheme [9]. 

In the DMR-B-1 scheme the task is executed by two 
processors in parallel. At the end of each interval the 
states of both processors (or signatures of them) are 
compared. If they match then a correct execution is 
assumed, and the execution of the next interval starts. 
In case the states do not match, a new processor exe- 
cutes the interval, and its state is compared to all the 
states of the previous executions of the interval until 
two identical states are found. 

Figure 1 gives an example of execution of a task 
with the DMR-B-1 scheme. In the figure, the horizon- 
tal lines represent execution of the task code by the 

Figure 1: Example of execution with the DMR-B-1 
scheme 

processors assigned to it (PE A and B )  or the spare 
processor, with the interval number indicated by the 
I... above the horizontal lines. The boxes represent op- 
erations done by the system to achieve fault-tolerance. 
In step 2 of the execution, while executing interval 
I j+l ,  a fault occurred in processor B ,  so in the step 
3 a spare processor repeats the execution of the same 
interval. After it finishes, its state matches the state 
of processor A ,  hence the interval is verified, and nor- 
mal execution can be resumed. During step 4, both 
processors have faults, and the spare processor has to 
produce two correct executions before fault recovery is 
achieved, and normal execution can be resumed. As 
the spare processor has a fault during the recovery 
process (in step 6), it takes 3 steps to  complete the 
recovery. We assume that at  each step a new spare 
processor is used, in order to avoid a match between 
two faulty states that  were caused by the same per- 
manent fault. Because of that ,  a processor has to be 
loaded every step during fault recovery. 

2.1 Building The State-Machine 

The first step in analyzing a fault recovery scheme is 
to build the extended state-machine that describes the 
operation of the scheme. The extended state-machine 
describes the behavior of the scheme in the eyes of an 
external viewer, who can observe the faults that oc- 
curred during a step. Two fault patterns that are not 
distinguishable in the scheme, but might later cause 
different actions, cause transitions to different states in 
the extended state-machine. For example, when two 
processors execute the same interval, and their states 
do not match at  the end, the scheme can not tell if 
the fault occurred in one of the processors or in both. 
The number of faults might affect the ability of the 
scheme to recover from the faults, and thus should 
cause transitions to different states in the extended 
state-machine. 

Each transition in the state-machine represents one 
step, and a transition is done at  the end of each 
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step. Because of the way the state-machine is con- 
structed, the transition is determined only by the cur- 
rent state and the faults that occur during the current 
step (Markov property). 

Each transition has associated with it a set of prop- 
erties, called rewards. The rewards are used to  eval- 
uate the measures of interest related to  the scheme. 
In this paper we are interested in the execution time 
of the schemes, and use two rewards for that .  Other 
measures, such as the number of checkpoints stored in 
the stable storage and the number of processors used, 
can also be viewed as rewards and analyzed using the 
technique described here. The two quantities we use 
for execution time analysis are: 

V i  - The amount of useful work that is done during 
the transition. We measure the useful work as 
the number of intervals whose checkpoints were 
matched as a result of the event that caused the 
transition. 

t i  - The time it  takes to complete the step that 
corresponds to the transition. As defined earlier a 
step starts when the processor(s) start to execute 
an interval, and ends the next time an interval is 
ready to  be executed. 

The time it takes to complete a step is the time 
to perform all the operations of that step. Each 
step includes a t  least the execution of the interval, 
denoted as t r ,  and the comparison of the states 
a t  the end of the interval, denoted as t e k .  Some 
steps may include other operations that appears 
in Table 1. 

Note that the first step in the analysis depends only 
on the scheme and is totally independent of the fault 
model. 

In the DMR-B-1 scheme the operation has two ba- 
sic modes. The first mode is the normal operation 
mode, where two processors are executing the task in 
parallel. The second mode is the fault recovery mode, 
where a single processor tries to find a match to  an 
unverified checkpoint. 

Figure 2 shows the extended state-machine for the 
DMR-B-1 scheme. The state-machine has two differ- 
ent fault recovery states, the first state has no correct 
execution of the current interval so far, and the second 
state has a single correct execution. State 2 in the ma- 
chine is the normal execution state, and states 0 and l 
are the fault recovery states with the respective num- 
ber of correct executions. Table 2 gives all the possible 
transitions in the state-machine with their properties. 
The first two columns in the table describe for each 

possible transition the event that causes it. The rest 
of the columns are explained later in the section. 

The execution of the scheme starts a t  state 2, and 
if no faults occur it remains there, or in other words a 
transition is made via edge 0. If a mismatch between 
the states of the processors is found a transition to  a 
fault recovery state is made. As the external observer 
knows how many faults occurred, it knows if it has to  
move along edge 2 to state 0 (faults in both proces- 
sors), or along edge 1 to  state 1 (one fault only). 

Normal exccutim j Fault recovery 

Figure 2: Extended state-machine for the DMR-B-1 
scheme 

In the fault recovery states the recovery processor 
executes the task again, and every time it fails it re- 
mains in the same state (transition via edge 3 or 5 ) .  
When a correct execution is completed a transition to  
the next state is made. 

For example, the execution of Figure 1 causes the 
following transitions (the number above the arrows are 
the edges that are used for the transitions) 

After the state-machine is built, rewards are as- 
signed to each of its edges. The third and fourth 
columns in Table 2 show the values of the two rewards 
of interest, vi and t i .  

In DMR-B-1 there are two transitions that com- 
plete the execution of an interval, and hence do useful 
work. The first transition is edge 0, where no fault 
occurred during normal execution. The second one is 
the transition out of the recovery mode, edge 6. The 
value of vi for those two edges is 1. All other transi- 
tions do not do any useful work, and thus their value 
of v i  is 0. 

The time to  complete any step in the DMR-B-1 
scheme includes the time to execute the interval and 
compare the checkpoints a t  the end. We assume that a 
spare processor is loaded before every step in the fault 
recovery mode, and the main processors are loaded 
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Table 2: Transition description for the DMR-B-1 extended state-machine 

when the recovery is completed. Hence all the edges 
have execution time of t r + t e k + t l d ,  except edge 0 that  
has execution time of t o  = t r  + t e k .  

2.2 Creating the Markov Chain 

The second step in the analysis is assigning proba- 
bilities to each of the transitions in the state-machine 
constructed in the first step. Each edge i is assigned a 
probability p i ,  which is the probability that the event 
that causes the transition via that edge will occur. 

The probabilities assigned to  the edges are deter- 
mined by the fault model. In the simplest case it is 
assumed that the fault patterns do not change with 
time, and thus the transition probabilities are con- 
stants. More complex models assume that the fault 
pattern changes with time, or is a random process. In 
this case the probabilities of transitions are functions 
of time or random processes. 

The transition probabilities out of a state do not 
depend on the way this state was reached. Hence the 
state-machine with the transition probabilities corre- 
sponds to  a Markov chain. Together with the proper- 
ties of the transitions, or the rewards, described earlier 
a Markov Reward Model is created. The analysis of 
this MRM provides results related to  the fault recov- 
ery scheme. 

In the example here, we assume that the fault pat- 
tern does not change with time, and thus the transi- 
tion probabilities are constants. We also assume that 
the faults in different processors are independent of 
each other. This fault model is used in [9] and [12]. In  
this model F is the probability that a processor will 
have a fault while executing an interval. The proba- 
bilities of the transitions using this fault model appear 
in the fifth column of Table 2. 

2.3 Analyzing the Scheme Using the 
MRM 

After constructing the MRM induced by the fault 
recovery scheme and the fault model, its analysis pro- 
vides the required results. The first step in solving 
the MRM is constructing the transition matrix of the 
Markov chain. In the transition matrix, called P ,  each 
entry pa,j is the probability of transition from state i 
to  state j .  If the transitions are not time dependent 
the Markov chain is called homogeneous and its tran- 
sition matrix is constant. Otherwise the Markov chain 
is non-homogeneous, and the transition matrix at time 
t is denoted by P(t) .  

There are two ways to  analyze a Markov chain, 
transient analysis and steady-state or limiting anal- 
ysis. In the transient analysis we look at  the state 
probabilities a t  each step, and from those probabili- 
ties get the desired quantities. In limiting analysis we 
look at  the state probabilities in the limit as t + CO. 

A detailed discussion on analysis of Markov chains can 
be found in [8]. In this paper we use the steady-state 
analysis. At the end of the section we show that the 
steady-state analysis results match well simulation re- 
sults. 

A discrete time Markov chain has limiting probabil- 
ities if it is irreducible, aperiodic and homogeneous [8]. 
The limiting, or steady-state probabilities ?r can be 
found by solving the system of equations 

a = T . P ,  

CiTi = 1. 
i 

The steady-state probability e i  of transition via edge 
i, from state U to state v is 
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where pi is the transition probability of the edge. The 
average reward R for edge reward vector T is 

R = E r i e * .  
i 

We now show how rl e and R can be used to perform 
time analysis of a checkpointing scheme of a task with 
n intervals. 

Average Execution Time 

The first thing we can get from the steady-state anal- 
ysis of the Markov chain is the average number of in- 
tervals completed in a step, or the amount of useful 
work done during a step. This quantity is the average 
reward for the reward v and is given by 

The average number of steps it takes to complete a 
single interval is 

The average time it takes to complete a single step 
is the average reward for the reward vector t and is 
given by 

T, = C t i e ;  ( 3 )  
i 

From Eqs. (2) and (3) the average time to complete 
one interval and the whole task of n intervals are 

(4) 

(5) 

Analysis of DMR-B-1 

We now apply the results to the DMR-B-1 scheme 
with the fault model described earlier. The transition 
matrix of the scheme is 

P = [  P3 0 P4 p5 :GI=[: (1 - F F )  

P z  Pl PO F 2  2 F ( l - F )  (1-F)2 

the steady-state probabilities are 

F 2  ( 2 - F ) F  1 - F  
. = { - I  l + F  "}I 

and the average execution time of a task is 

n 
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Figure 3: Comparison between analytical and simu- 
lation results of the average execution time for the 
DMR-B-1 scheme 

Simulation Results 

We compared the average execution time derived in 
this section with values measured using a simulation 
program. Figure 3 shows a comparison between the 
analytical values and those measured by the simula- 
tion program when faults occur according to a Poisson 
random process with rate A ,  i.e., the probability of a 
fault in a processor during the execution of an interval 
is F = 1 - e - ; .  The comparison was made for a task 
of length 1 with 20 checkpoints ( n  = 20, I1 = .05), 
t ,k = 0.001 and t l d  = 0.003. The solid line is the exe- 
cution time given in Eq. (6) and the asterisks are the 
average execution time measured using the simulation 
program. We can see that the simulation points fall 
on the line of analytical plot. In [17] we compared 
the analytical results with simulation results for other 
schemes. In all the schemes we examined the analyti- 
cal and simulation results match well. 

3 Scheme Comparison 

In this section the analysis technique is used to 
compare between four existing checkpointing schemes. 
The schemes we compare are Triple Modular Redun- 
dant with checkpointing (TMR-F) [9], Double Mod- 
ular Redundant with backward recovery and two re- 
covery processors (DMR-B-2) [9], Double Modular Re- 
dundant with forward recovery and one recovery pro- 
cessor (DMR-F-1) [9], and Roll-Forward Checkpoint- 
ing Scheme (RFCS) [la]. A short description of the 



schemes is given here. A more detailed description and 
the analysis of those schemes can be found in [17]. 

The simplest scheme is the TMR-F scheme [9]. In 
this scheme the task is executed by three processors, 
all of them executing the same interval. A fault in 
a single processor can be recovered without a roll- 
back because two processors with correct execution 
still agree on the checkpoint. If faults occur in more 
than one processor all the processors are rolled back 
and execute the same interval again. 

The DMR-B-2 scheme is described by Long e l  al. 
in 191. In this scheme two processors execute the task. 
Whenever a fault occurs both processors are rolled 
back and execute the same interval again. The differ- 
ence between this scheme and simple rollback schemes, 
like TMR-F, is that all the unverified checkpoints are 
stored and compared, not just the checkpoints of the 
last step. Hence two steps with a single fault are 
enough to verify an interval. 

The next two schemes, DMR-F-1 and RFCS, use 
spare processors and the roll-forward recovery tech- 
nique in order to avoid rollback [ll]. In the DMR-F-1 
scheme, suggested by Long et al. in [9], two proces- 
sors are used during fault free steps. Three additional 
spare processors are added for a single step after each 
fault to try to recover without a rollback. The states 
of the two processors that are currently executing the 
task are copied to two of the spare processors. The 
third spare processor is loaded with the last verified 
checkpoint and tries to verify the faulty checkpoint. If 
it fails, either because it had a fault or because both 
processors had faults in the previous step, a rollback 
is done. If the verification succeeds then no rollback 
is done and the processor with the correct checkpoint 
and the one that this checkpoint was  copied to con- 
tinue to execute the task. 

Pradhan and Vaidya [12] describe another roll- 
forward scheme called Roll-Forward Checkpointing 
Scheme (RFCS). In this scheme, as in DMR-F-1, a 
spare processor is used in fault recovery in order to 
avoid rollback. The difference between the schemes is 
that RFCS uses only one spare processor and the re- 
covery takes two steps instead of one step in DMR-F-1. 
In the first step of fault recovery the spare processor 
is loaded with the last verified checkpoint and it tries 
to verify the current checkpoint, while the two regular 
processors continue with the normal execution. If the 
spare processor succeeds in verifying the first check- 
point the state of the correct processor is copied to 
the faulty processor. In the next step the spare pro- 
cessor tries to verify the next checkpoint, that has only 
one correct execution. 

The behavior of the schemes is greatly affected by 
their exact implementation and the architecture of the 
parallel computer. Those parameters affect the time 
it takes to execute the operations that are needed 
at  the end of each step, like comparing checkpoints 
and rolling back. To obtain general properties of the 
schemes, we will use a simpler model than the one used 
in Section 2. In this model the time to execute each 
step is t~ +t&, where t o h  is the overhead time required 
by the scheme. This overhead time is the same for all 
the transitions of the state-machine of the scheme. It 
is also assumed to be the same for all schemes. 

The results of the simplified model are still valid 
when a more precise model, like the one used in Sec- 
tion 2, is used, for a large range of scheme parameters. 
However, in cases where there is a big difference be- 
tween the time it takes to perform different operations, 
those results can change. Later in the section we give 
an example of such a case, where we assume that the 
schemes are implemented on workstations connected 
by a LAN. This implementation causes the slowest 
scheme in the general case, the DMR-B-2 scheme, to 
become the quickest scheme. 

We compare here two properties of the schemes. 
The first property is the average execution time of a 
task using the scheme. The second property is the av- 
erage work used to complete the execution of a task 
using the scheme. We assume that faults occur ac- 
cording to a Poisson random process with rate A,  i.e., 
the probability of a fault in a processor during the ex- 
ecution of an interval is F = 1 - e-:. w e  also assume 
that the number of checkpoints in the task is chosen 
such that the best possible result is achieved, given 
the scheme and the fault rate A. 

The average execution time of a task is important 
in real-time systems where fast response is desired. 
We show here that the average execution time is af- 
fected mostly by the number of processors used by the 
scheme, and the complexity of the scheme has only a 
minor effect. 

The total work to complete the execution of a task 
is the sum, over all processors used by the scheme to 
complete the task, of the time they were in use. As the 
number of processors does not change during a step, 
the work W can be defined as 

step i 

where ti is the length of the step and ci is the number 
of processors used in that step. 

The average work of a scheme can be found by using 
the analysis technique described in Section 2. The 

58 



number of processors used in every transition edge of 
the state-machine of the scheme is used as a reward 
C. The average number of processors used in a step 
is given by - c = e i c i ,  

edges i 
and the average work is 

- - -  
W = C . T ,  

where T is the average execution time of the task. 
For example, in the state-machine of the DMR-B-1 
scheme described in Figure 2, two processors are used 
during normal execution (state 2) and a single proces- 
sor is used in the fault recovery mode (states 0 and 
1). The reward vector of the number of processors for 
the scheme is {2,2,2,1,1,1,1}.  The average number 
of processors is given by 

- 2F c = 2 - -  
1 + F '  

The work is important in transaction systems, 
where high availability of the system is required, and 
thus the system should use as few resources as pos- 
sible. We show here that the best work is achieved 
when a small number of processors is used, and again 
the complexity of the scheme has only a minor effect. 

3.1 Simplified Model 

To obtain general properties of the schemes without 
the influence of a specific implementation, we use a 
simpler model than the one used in Section 2. Using 
this model, we can also prove achievable lower bounds 
on both the average execution time and the total work. 
In the simplified model the time to execute each step 
is t s  + t o h ,  where t o h  is the overhead time required by 
the scheme. This overhead time is the same for all the 
transitions of the state-machine of the scheme. It is 
also assumed to be the same for all schemes. Using 
this simplified model, the average execution time and 
the total work of a task with n intervals ( ts  = i) are 
simplified to 

T = 
W = C . T = C . S ~ ( l + n t o h ) ,  

- 
R .  s .  ( t r  + t 0 h )  = s .  (1 + ntoh), - - -  

where S is the average number of steps to  complete 
an interval. 

3.1.1 Lower Bounds 

Before the four schemes are compared, we give achiev- 
able lower bounds on both the average execution time 

and the average work. Later the performance of the 
schemes will be compared to these lower bounds. The 
lower bound for the average execution time is 

and the lower bound for the average work is 

(7) 
The DMR-B-1 scheme with optimal number of check- 
points achieves the lower bound for the average work. 
Proofs for both lower bounds can be found in [17]. 

3.1.2 Average Execution Time 

The average execution time of a task with n check- 
points is 

T = n . S . ( t r  + to*)  = S . (1 + nt,h), 

where S is the average number of steps it takes to 
complete an interval. Using the analysis technique 
described in Section 2, we calculated the average ex- 
ecution time of the four schemes considered in this 
section [17]: 

- 

- 
TTMR-F = 1-(3F:-2F3)  ' (l + n t O h ) ,  

1 3Fa-2F3 . - 
TDMR-F-1 = h 

Figure 4 shows the average execution time of a task 
using each of the four schemes, with overhead time of 
t o h  = 0.002 for each step. The number of checkpoints 
for each scheme is chosen such that its average execu- 
tion time is minimized [18]. 

The figure shows that the TMR-F scheme, despite 
being the simplest of the four schemes, has the lowest 
execution time. The TMR-F scheme has better exe- 
cution time because it is using more processors than 
the other schemes, and thus has a much lower proba- 
bility of failing to find two matching checkpoints. The 
DMR-B-2 scheme is the worst because it uses only 
two processors, and does not use spare processors to 
try to overcome the failure. The RFCS and DMR-F- 
1 schemes use spare processors during fault recovery, 
and thus have better performance than DMR-B-2. 

3.1.3 Average Work 

Applying the analysis technique to the four schemes 
gives the following average work: 
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1.35- 

1.3- 

Figure 4: Average execution time with optimal check- 
points 

DMR-B-2 

DMR-F-1 

- - - -  
. 

- IMF-F 

- 2 6F 3F2-4F3 , 
WDMR-F-1 1 +1-&2+2F3 

3.8 

(1 + ntoh). 

~ TMR-F 
DMR-F-I 
RFCS 

- 
. . . . . . . . . 
- - - -  

The average work of a task of length 1 with over- 
head time of t,,, = 0.002 for the four schemes is shown 
in Figure 5. The figure also shows the lower bound of 
the work, as given in Eq. (7). 

3.8 

4, , , , , , , , , , , 
~ TMR-F 

DMR-F-I 
RFCS 

- 
. . . . . . . . . 
- - - -  

Figure 5: Average work with optimal checkpoints 

The results here are the reverse of the results in 
the average execution time. The best scheme here is 

the DMR-B-2, which always uses only two processors. 
The RFCS and DMR-F-1, which use 2 processors dur- 
ing normal execution and add spare processors dur- 
ing fault recovery, require more work. The TMR-F 
scheme, which uses 3 processors, is the worst scheme. 

3.2 Precise Model 

When a more precise model is used, in which the 
time to perform each operation is used (as in the anal- 
ysis done in Section a),  the results shown here for 
the simplified model are still valid for a large range 
of scheme parameters. There are some cases where a 
big difference in scheme parameters can cause differ- 
ent behaviors of the schemes than those described for 
the simplified model. These cases can still be analyzed 
with the technique described in this paper, by using 
the execution time equations given in [17] instead of 
the equation used in the simplified model. 

For example, consider the following case: worksta- 
tions connected by a LAN are used to  implement the 
schemes. Each workstation saves its own checkpoint 
states, and sends only a short signature of them to 
the other workstations for comparison. In this imple- 
mentation, operations that are done within a work- 
station can be completed relatively quickly, while op- 
erations that involve more than one workstation, and 
need the LAN, take much longer to execute. In this 
case schemes that do not use the network heavily have 
lower execution time than those which do. Specifi- 
cally, the slowest scheme under the general model, the 
DMR-B-2 scheme, which uses the network only for 
state comparison can become the quickest scheme un- 
der these conditions. Figure 6 shows the execution 
time of a task when t,k = 0.001, t, = .001, t,, = 0.03 
and t l d  = 0.03, with optimal checkpoints. It can be 
seen that the DMR-B-2 scheme is the quickest after 
the failure rate, A ,  reaches some critical value that 
require the other schemes to  use the network heavily. 

4 Conclusions 

In this paper we have proposed a novel technique 
to  analyze the performance of checkpointing schemes. 
The proposed technique is based on modeling the 
schemes under a given fault model with a Markov Re- 
ward Model, and evaluating the required measures by 
analyzing the MRM. 

We used the proposed technique to  compare the av- 
erage execution time of a task and the total processor 
work done for four known checkpointing schemes. The 
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RFCS 1’9t -TMR-F 
1 8  - - -  DMR-F-1 1 - - - -  DMR-B-2 
1.7 4 

Figure 6: Average execution time for the workstations 
example 

comparison shows that generally the number of pro- 
cessors has a major effect on both quantities. When 
a scheme uses more processors, its execution time de- 
creases, while the total work increases. The complex- 
ity of the scheme has only a minor effect on its perfor- 
mance. In some cases, when there is a big difference 
between the time it takes to perform different oper- 
ations, the general comparison results are no longer 
true. However, the proposed technique can still han- 
dle these cases and give correct results for them. 

The proposed technique is not limited to the 
schemes described in this paper, or to the fault model 
used here. It can be used to analyze any checkpointing 
fault-tolerance scheme, with various fault models. The 
proposed technique can be also used to provide ana- 
lytical answers to problems that haven’t been dealt 
with before or were handled by a simulation study. 
Examples of such problems are deriving the number 
of checkpoints that minimizes the average execution 
time and computing the probability of meeting a given 
deadline. 
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