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AbstractÐIn this paper, we propose a new approach to combine multiple features

in handwriting recognition based on two ideas: feature selection-based

combination and class-dependent features. A nonparametric method is used for

feature evaluation, and the first part of this paper is devoted to the evaluation of

features in terms of their class separation and recognition capabilities. In the

second part, multiple feature vectors are combined to produce a new feature

vector. Based on the fact that a feature has different discriminating powers for

different classes, a new scheme of selecting and combining class-dependent

features is proposed. In this scheme, a class is considered to have its own optimal

feature vector for discriminating itself from the other classes. Using an architecture

of modular neural networks as the classifier, a series of experiments were

conducted on unconstrained handwritten numerals. The results indicate that the

selected features are effective in separating pattern classes and the new feature

vector derived from a combination of two types of such features further improves

the recognition rate.

Index TermsÐHandwriting recognition, class separation, nonparametric method,

class-dependent feature combination, modular neural network.

æ

1 INTRODUCTION

AS a major factor influencing recognition performance, features
play a very important role in handwriting recognition. This has led
to the development of a variety of features for handwriting
recognition and their recognition performances have been reported
on standard databases. Readers can find surveys in [1], [2]. Some
recent papers include those proposing directional distance features
[2], gradient-based features [3], wavelet-based features [4], pixel
distance features [5], and concavity features [6]. The features do
not necessarily convey any intuitive meaning to a human and the
dimensionality of the feature vectors is very high, in the hundreds,
so it is difficult to understand their discriminative characteristics.
A systematic evaluation of features in a specific feature vector is
very important for designing a new feature vector by combining
different feature vectors.

Using a single feature type has shown a certain limitation in

achieving satisfactory recognition performance and this leads us to

use multiple types of feature. This can be viewed as an analogy to

the combination of multiple experts, which is now common

practice [7]. Likewise, combination of multiple types of feature has

been attempted. In [6], several combinations of features were

tested. Using three types of feature representing local, intermedi-

ate, and global shapes, they reached the conclusion that the

combination of three feature types improved recognition perfor-

mance. A feature selection-based approach has also been tested [8],

[9]. Those papers proved that the approach of multiple feature
combination produced a promising improvement in recognition
performance.

Some of the above-referenced papers used a simple scheme of
combination which just cascades multiple feature vectors. This
scheme results in a much larger dimensionality of the new feature
vector and it is highly probable that many redundant features
exist. Those redundant features may reduce the recognition
performance. Also, only features common to all classes were used.
This does not take into consideration that a feature has its own
expertise (specialties) for discriminating different classes.

Our primary objectives in this study are twofold: 1) to analyze
the class separation capability of features used in handwriting
recognition and 2) to improve recognition performance by
combining multiple features. In the first objective, we attempt to
understand intuitively the discriminative characteristics of the
features in a specific feature vector through a systematic experi-
ment using an evaluation tool appropriate for handwriting.
Regarding the evaluation tool, our research scope includes neither
the presentation of a new feature selection algorithm nor the
comparative study of the conventional algorithms, but the
important point of choosing a proper tool and methodology for
the domain of the handwriting. In the second objective, by utilizing
knowledge of the features, we attempt to combine multiple feature
vectors to produce a new compact feature vector with a higher
discriminative power. A new approach called class-dependent
features is proposed that uses knowledge of the features' different
expertise in discriminating the different classes.

Regarding the tool for evaluating features, a good tutorial on
the criteria and selection of a good subset of features can be found
in [10], [11], [12]. Node pruning for neural network classifiers [13],
entropy measurement [14], and class separation [15] are conven-
tional methods. Our choice for feature evaluation is class separation,
which is a measurement showing how well the class distributions
of different classes are separated in feature space. A wider class
separation implies a better discriminating power.

The first part of this paper explains class separation in
conjunction with the actual recognition rate. A systematic and
thorough analysis of features is used in designing a new feature
vector by combining multiple feature vectors. In the second part,
we combine multiple features based on class separation informa-
tion. A simple fact is that a feature may have different merits to
different classes in terms of discriminating power. For example, a
feature may be especially superior in discriminating the numeral
class 0 from the other nine classes while it is inferior to the other
nine classes. Based on this fact, a new scheme of combining class-
dependent features is proposed in this paper. In the proposed
scheme, a class is considered to have its own optimal feature vector
for discriminating itself from the other classes. These feature
vectors are designed using the class separation information. Since a
conventional neural network structure cannot accommodate this
scheme because the classes have different feature vectors, the
architecture of modular neural networks described in [16] is
adopted as a classifier. The modular network is suitable for class-
dependent features because it has a structure such that each class
has its own subnetwork independent of other classes.

2 MEASURING CLASS SEPARATION

2.1 Preliminaries

We have g classes, each represented as !i. A feature vector X is a d-
dimensional vector composed of a set of feature cells identified by
xi, that is, X � �x0; x1; . . . ; xdÿ1�. A class !i has Ni samples in the
training database. A set of samples from the class !i is denoted by
Z!i � fz1

i ; z
2
i ; . . . ; zNii g, where zki means a sample located at the kth

position in Z!i.
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First, let us introduce some definitions regarding class
separation, which is a measurement of how well two classes
are separated by a feature vector X. It is labeled as
Scc�!i; !j;X�, where !i and !j are two classes and X is a
feature vector composed of one or more feature cells. In case
that we have the g classes, X must separate a group of those g
classes instead of only two classes. So, for this case, we use the
measurement, Sg�
; X�, where 
 � f!1; !2; . . . ; !gg. Another
measurement, Scg�!i;
;X) is related with class-dependent feature
combination which will be proposed in Section 4. Scg�!i;
;X� is a
separation measurement between a class !i and a group of g-1
classes, 
 � f!kj1 � k � g; k 6� ig by a feature vector X. In other
words, Scg represents a degree of how well X can discriminate a
class from the other g-1 classes. This measurement will be used to
design a new feature vector for each of g classes.

A series of experiments will be performed for the task of
evaluating features and improving recognition performance by
combining multiple features. The database and features to be used
are as follows: We have chosen the CENPARMI handwritten
numeral database, which consists of 4,000 training samples (400
samples/class) and 2,000 test samples (200 samples/class). Since
this database has been constructed from real-life postal mail pieces,
it contains totally unconstrained samples produced by more than
1,000 anonymous writers and writing tools. So, we believe that it is
well-suited to our experiments of estimating the class distributions.
Actually, many researchers in handwritten numeral recognition
have shown the effectiveness of their approaches by using this
database from early 80s until now.

Two feature sets are used in the experiments. They are
numerical features that have good recognition performance for
handwritten numerals. An input pattern Pm�n is first size-normal-
ized into a 16*16 mesh, R16�16, and then converted into a 16*16
binary mesh. The first feature, called CGD (Contour-based
Gradient Distribution), is computed by first applying the Sobel
edge operator to the normalized mesh R and computing the
gradient direction distribution map. The map has 256 real values
and they constitute a 256-dimensional feature vector, CGD. The
second feature called DDD (Directional Distance Distribution) is
computed using distance information. Each pixel in the binary
map R shoots rays in eight directions and each ray computes the
distance to the pixel with opposite color (black or white). Using the

directional distance information of the pixels in R, the directional
distance distribution map is computed. The map has 256 real
values and they constitute a 256-dimensional feature vector, DDD.
Both CGD and DDD can be represented with a 256-dimensional
feature vector X � �x0; x1; . . . ; x255�. For their detailed algorithms,
we refer the readers to [3], [2].

The CGD contains the local shape information about the input
pattern because the edge operator can extract only the local
gradient direction information. On the contrary, DDD has the
global shape information since the eight directional distance
information provides a rough sketch of the global pattern shape.
Because of this, we have chosen the CGD and DDD as a pair of
feature vectors having a good complementarity. This choice is
similar to [6], where the authors used local, intermediate, and
global shape features to exploit the complementarity.

2.2 Nonparametric Method

In this method, a probability density distribution for a class by a
feature vector X � �x0; x1; . . . ; xdÿ1� is estimated as follows [15]: A
unit step function is defined as follows:

��X� � 1; if jxij < 1=2; i � 0; 1; . . . ; dÿ 1
0; otherwise

�
Note that ��X� is a function whose summation over the whole d-
dimensional space Rd will be 1. ��X� is called a kernel function. A
probability distribution for the class !i can be estimated by the
formula,

Pn�X� � 1

Ni

XNi

k�1

���Xÿ zik�=hn�
Vn

;

where hn acts as a smoothing factor and Vn � �hn�d. Note that
Pn�X� depends on the smoothing factor hn. Large hn means a large
degree of smoothing and small hn means a small degree of
smoothing. Using the estimated class distributions, the separation
between two classes !i and !j can be defined as,

Scc�!i; !j;X� �
Z
Rd

Pn!i�X� ÿ Pn!j�X��� ��dx;
where Rd is a d-dimensional real space and P!i

n �X� and P!j
n �X�

are the estimated distributions for the classes !i and !j,
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TABLE 1
Class Separation and Recognition Rate for the Top 16 Feature Cells in the Ordered List



respectively. This formula measures the degree of overlapping

distance between two distributions. In an extreme case of

nonoverlapping, Scc will be 2.0 which is the maximum. In this

case, the feature vector X can discriminate two classes !i and

!j perfectly. In case of exact overlapping, Scc will be 0 and X is

useless in discriminating !i and !j.
The class separation for a group of classes is formulated using

Scc as follows:

Sg�
;X� �
X
!i2


X
!j2
;j 6�i

Scc�!i; !j;X�;

where 
 � f!1; !2; . . . ; !gg. Also, the separation between a class !i
and a class group 
 � f!kj1 � k � g; k 6� ig can be formulated

using Scc as

Scg�!i;
;X� �
X
!k2


Scc�!i; !k;X�:

3 CLASS SEPARATIONS AND RECOGNITION

CAPABILITIES

We evaluate features considering class separation in conjunction

with the recognition rate obtained experimentally. In the

experiments, individual feature cells are manipulated separately

and they are ordered according to their values of class

separation. The following describes the ordering algorithm for

two classes !p and !q .

Algorithm-1D:
1. R = empty list and P � fxij0 � i � dÿ 1g:

2. If P is empty, stop.
3. Choose xk � P such that Scc�!p; !q;X � �xk�� �
Scc�!p; !q;X � �xk0 �� for all xk0 � P and k0 6� k.

4. Insert xk into R and P � P ÿ xk.
5. Goto step 2.

We use both a partial classifier and a full 10-classifier. A partial

k-classifier where k is less than g is a classifier which takes into

consideration only k classes. (In actual applications, 2-classifiers

could be used as a confusing pair resolver.) A neural net classifier

is trained and tested using individual feature cells one by one. The

neural network architecture of a k-classifier is the same as a 10-

classifier except that it has only k output nodes and we use only

the samples belonging to the k classes in training the classifier.
To test a 2-classifier, the pair of numeral classes 3 and 8 were

chosen for the experiment. We computed Scc�3; 8;X � �xi�� by

changing i from 0 to 255 for the CGD and DDD feature vectors.

Table 1 lists the 16 feature cells in the top of the ordered list and

their class separations. The DDD feature cells have much better

class separation. (Actually, DDD has a better recognition rate than

CGD, as can be seen in Table 4 in Section 4.) Also, the 2-classifier is

trained and tested using one feature cell one by one taken from the

CGD and DDD. Table 1 also shows the recognition rate of the

individual feature cells. The general trend is that a feature cell with

a higher class separation produces a better recognition rate. This

means that class separation represents well the discriminating

power of a feature cell.
For 10-classification, Fig. 1 depicts the class distributions

estimated for a feature cell, x79 of DDD. In this case, we use the

criterion function Sg�
;X� defined already in Section 2.2. Table 2
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Fig. 1. Class distributions for 10 numeral classes.

TABLE 2
Class Separations for a Feature Cell, x79 of DDD



shows the class separations, Scc, Scg, and Sg for the distributions.
The pair of classes 3 and 4 have the biggest class separation, 1.75.
In the graphs of Fig. 1, we can observe the large overlapping
distance between the classes 3 and 4. Contrary to this, the classes 2
and 7 have the smallest class separation, 0.31.

4 FEATURE COMBINATIONS

As can be observed from the last section, feature cells have
different class separations, which means different power for
discriminating the classes. The difference between the best group
and the worst group is extreme. The set of feature cells in the best
group can be used without loss of recognition performance. On the
contrary, most of the cells in the worst group have no
discriminatory power or are redundant. Based on this fact, this
section proposes methods of combining multiple features using the
class separation information with the purpose of increasing
recognition performance. The task of feature combination is to
compose a new feature vector from two or more original feature
vectors. The dimensionality of the new feature vector must be less
than the sum of dimensions of the original feature vectors. The
purpose of feature combination is to construct a new feature vector
which will produce a better recognition rate than any of the
original feature vectors.

We can construct one feature vector which will be used by all
the classes. We call this a class-common approach. In another
approach, a class has its own specific feature vector different from
those of the other classes. It will be called a class-dependent
approach. Its rationale, algorithm, and modular classifier archi-
tecture suitable for this approach are described in Section 4.2. To
the best of our knowledge, the class-dependent approach is a novel
technique.

4.1 Class-Common Feature Combination

The original feature vectors are denoted by Xi, 1 � i � n, with a
dimension of di. The total number of feature cells in them is N
computed by summing all the di, 1 � i � n. These N feature cells
form the input to the algorithm. Using the ordering algorithm
described in Section 3, we obtain the ordered list of N feature cells.
The best k feature cells are used as a new feature vector F. It is sure
that F will provide a better class separation than the CGD or DDD.

The setting of k is not our main concern in this paper. It may be
determined empirically. In the experiment described in Section 4.3,

we used two feature vectors, CGD and DDD, each having 256-

dimensions. So, N is 512. And, we take 256 feature cells from the

ordered list of 512, so k is 256. The new feature vector F will be

used by all the classes.

4.2 Class-Dependent Feature Combination

The basic idea behind the combination of class-dependent features

comes from the simple fact that a feature cell has different merits to

different classes in terms of its discriminatory power. Fig. 2

clarifies the idea. Two charts in the figure illustrate the class

distributions for 10 numeral classes for feature cells, x140 and x237

in the DDD feature vector. The feature cell x140 in the first chart is

very powerful in discriminating the specific numeral classes 0 and

6 from the other eight classes. However, discrimination between

the classes 0 and 6 is poor. The second chart shows another case

where the class 1 can be expected to be discriminated very well

from the other nine classes.
In the class-dependent approach, we must have a modular

concept to manipulate a class !i independently from the other g-1

classes. Note that we have already defined a criterion function,

Scg�!i;
;X� for this concept in Section 2.2. The function Scg is

computed for two feature cells in Fig. 2. Table 3 summarizes the

results. As we have already seen in Fig. 2, x140 gives good class

separation for the classes 0 and 6 and x237 results in an excellent

separation for class 1.
In the class-dependent combination scheme, each of g classes is

processed separately and a new feature vector Fi will be designed

for the class !i from the original feature vectors Xi, 1 � i � n. Like

the class-common approach, we can use the ordering algorithm in

Section 3. Since the class-dependent scheme uses different criterion

functions, the algorithms are modified accordingly. The following

algorithm shows the modified Algorithm-1D.

Algorithm-1D-class-dependent:
for each !c from c = 1 to g do begin

1. Rc � empty list and P � fxij0 � i � N ÿ 1g.
2. If P is empty, stop.
3. Choose xk � P such that Scg�!c;
;X � �xk�� �
Scg�!c;
;X � �xk0 �� for all xk0 � P and k0 6� k where

 � f!jj1 � j � g; j 6� cg.

4. insert xk into Rc and P � P ÿ xk.
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Fig. 2. Example class distributions advocating the class-dependent feature combination.

TABLE 3
Class Separations of 10 Numeral Classes for Two Cases in Fig. 2



5. Goto step 2.
end.

The execution of Algorithm-1D-class-dependent provides g

ordered lists, Ri for a class !i, 1 � i � g. For the class !i, we can

take the best ki feature cells from Ri as a new feature vector which

will provide a large class separation between the class !i and the

class group 
 � f!jj1 � j � g; j 6� ig. The value of ki may differ

among classes. Some classes with a poorer class separation or a

lower recognition performance can have a bigger dimension than

the other classes. We do not concern ourselves with deciding ki in

this paper. In our experiment, CGD and DDD are used as the

original feature vectors, so N is 512. All the Fi have the same

dimension, 256.
Now, we have the g different feature vectors for the g classes.

One problem regarding this feature structure must be considered.

The conventional classifiers have a structure which can accom-

modate only one feature vector common to all the g classes. So, a

classifier with a new structure is required to accommodate our

feature structure. Since a class !i has its own feature vector Fi, it

must also have its own subclassifier. And, as Fi has been designed

to discriminate the class !i from the other g-1 classes, the

subclassifier should have a structure which can classify the

patterns coming from the class !i and those from the other g-1

classes.
The modular neural network classifier which has been

proposed in [16] is well suited to this application. It consists of g

subnetworks, each responsible for one of g classes. A subnetwork

is shown in Fig. 3a. The function of this subnetwork is to classify

two groups of classes, 
1 � f!ig and 
2 � f!kj1 � k � g; k 6� ig.

So, it has two nodes at the output layer, one for 
1 and the other for


2, called O1 and O2, respectively.
We put one input layer, one hidden layer, and one output layer

on the subnetwork. The three layers are fully connected. The input

layer has n nodes to accept the feature vector Fi � �f0; f1; . . . ; fnÿ1�
for the class !i. Each of the g subnetworks is trained independently

by using the error backpropagation algorithm. To train the

subnetwork for the class !i, we reorganize the training samples

into two groups, Zpositive and Znegative. Zpositive will have the samples

from the class in 
1 and Znegative the samples from the classes in 
2.

The samples in Zpositive are fed with the expected output,

�O1; O2� � �1:0; 0:0�, and the samples in Znegative with the expected

output, �O1; O2� � �0:0; 1:0�. In the recognition process, the subnet-

work produces a single output by subtracting the value of O1 by

the one of O2.
The architecture of the whole classifier is depicted in Fig. 3b.

From an input pattern, the original feature vectors are extracted.

Each class has its own feature combiner which has been

determined by the process of the class-dependent feature

combination described in the above. The combined feature vectors

are fed into the corresponding subnetworks. A class !i has its own

subnetwork M!i which produces a single output, O!i. The input

pattern is finally classified into the class !i with maximum output.

4.3 Experimental Results

We used two features, CGD and DDD as the original feature

vectors. Both have 256 dimensions. As already stated, each

subnetwork is trained using two sample groups, Zpositive and

Znegative. The training and testing are performed using CENPARMI

numeral database.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 10, OCTOBER 1999 1093

Fig. 3. Classifier architecture for the class-dependent features. (a) A subnetwork. (b) Whole network.

TABLE 4
Comparison of Recognition Rates (%) for CENPARMI Database (No Rejection)



Table 4 compares the recognition rate of the original feature
vectors, CGD and DDD, and their class-common and class-
dependent combinations. The DDD has a much better recognition
performance than CGD. This can be explained using their class
separation measurements shown in Table 1. The better class
separation of DDD means a better discriminating power.Two
combinations were tested. The first combination is class-common.
The best 256 feature cells from the ordered list of 512 feature cells
from the CGD and DDD feature vectors are taken as a new feature
vector which is commonly used by all 10 classes. In this case, 42
CGD features and 214 DDD features have been selected. The
second combination is class-dependent. From two feature vectors,
CGD and DDD, we extract 10 new feature vectors with 256
dimensions for 10 numeral classes. Between 47 and 64 CGD
features have been selected for each class. The others were DDD
features. The class-dependent features produced the highest
recognition rate of 97.85 percent on the CENPARMI test set, while
the class-common features showed 97.6 percent.

We think that the improvement of 0.55 percent from the single
best feature vector DDD by using the class-dependent combination
is meaningful in view of the state of the art in the handwritten
numeral recognition. A survey of recent papers like [2], [4], [14]
revealed that the state of the art performance for the CENPARMI
database is between 97 percent and 98 percent. We believe that the
improvement by 0.55 percent is quite meaningful. The improve-
ment is also promising in the sense that there still exists some room
for further improvement by methods that choose more comple-
mentary feature types and take into consideration the mutual
dependency of features.

To confirm the test results and our conclusion, we performed
another experiment using CEDAR handwritten numeral database.
The database consists of 18,468 training samples (BR dataset), 2,711
test samples (BS dataset), and 2,213 test samples (good BS dataset).
The good BS has been constructed by choosing the well-segmented
samples from the BS dataset. From Table 5, we can also conclude
that the class-dependent features produce a significant improve-
ment over the original and class-common features.

5 CONCLUDING REMARKS

A nonparametric method for feature selection was shown to work
well on handwritten numeral data. Significant class separation was
observed, as well as an improvement in recognition performance.
Using the class separation information, feature combination was
applied. A new scheme for class-dependent feature combination
was proposed which exploits the simple fact that a feature has
different merits to different classes in terms of discriminating
power. By letting a class have its own feature vector specifically
suitable for that class, an improvement of recognition performance
was obtained.

Future work is to develop a more sophisticated formulation of
the search space for composing new feature vectors and an
efficient searching algorithm which takes into consideration the

mutual dependencies of features. Another future task is to conduct
an analysis of the complementarity among various features. This
paper used only two types of features without information about
their complementarity. We believe that using more complementary
features will further improve recognition performance.

ACKNOWLEDGMENTS

The authors of this paper wish to acknowledge the constructive
comments made by the referees and the associate editor handling
this paper.

REFERENCES

[1] O.D. Trier, A.K. Jain, and T. Taxt, ªFeature Extraction Methods for
Character RecognitionÐA Survey,º Pattern Recognition, vol. 29, no. 4, pp.
641-662, 1996.

[2] I.-S. Oh and C.Y. Suen, ªDistance Features for Neural Network-Based
Recognition of Handwritten Characters,º Int'l J. Document Analysis and
Recognition, vol. 1, no. 2, pp. 73-88, 1998.

[3] G. Srikantan, S.W. Lam, and S.N. Srihari, ªGradient-Based Contour
Encoding for Character Recognition,º Pattern Recognition, vol. 29, no. 7,
pp. 1,147-1,160, 1996.

[4] S.W. Lee, C.H. Kim, H. Ma, and Y.Y. Tang, ªMultiresolution Recognition of
Unconstrained Handwritten Numerals with Wavelet Transform and
Multilayer Cluster Neural Network,º Pattern Recognition, vol. 29, pp.
1,953-1,961, 1996.

[5] N.W. Strathy and C.Y. Suen, ªA New System for Reading Handwritten ZIP
Codes,º Proc. ICDAR, pp. 74-77, 1995.

[6] J.T. Favata, G. Srikantan, and S.N. Srihari, ªHandprinted Character/Digit
Recognition Using a Multiple Feature/Resolution Philosophy,º Proc.
IWFHR '94, pp. 57-66, 1994.

[7] J. Kittler and M. Hatef, ªImproving Recognition Rates by Classifier
Combination,º Proc. IWFHR '96, pp. 81-101, 1996.

[8] A.K. Chhabra et al., ªHigh-Order Statistically Derived Combinations of
Geometric Features for Handprinted Character Recognition,º Proc. ICDAR,
pp. 397-401, 1993.

[9] L. Heutte et al., ªHandwritten Numeral Recognition Based on Multiple
Feature Extractors,º Proc. ICDAR, pp. 167-170, 1993.

[10] J. Kittler, ªFeature Selection and Extraction,º Handbook of Pattern Recognition
and Image Processing, T.Y. Young and K.-S. Fu, eds. Academic Press, 1986.

[11] J. Schurmann, Pattern Classification: A Unified View of Statistical and Neural
Approaches. John Wiley and Sons, 1996.

[12] B.D. Ripley, Pattern Recognition and Neural Networks. Cambridge Univ.
Press, 1996.

[13] R. Reed, ªPruning AlgorithmsÐA Survey,º IEEE Trans. Neural Networks,
vol. 4, no. 5, pp. 740-747, 1993.

[14] P.D. Gader and M.A. Khabou, ªAutomatic Feature Generation for Hand-
written Digit Recognition,º IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 18, no. 12, pp. 1,256-1,261, Dec. 1996.

[15] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis. Wiley-
Interscience, 1973.

[16] I.-S. Oh, J.-S. Lee, K.-C. Hong, and S.-M. Choi, ªClass-Expert Approach to
Handwritten Numeral Recognition,º Proc. IWFHR '96, pp. 35-40, 1996.

1094 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 21, NO. 10, OCTOBER 1999

TABLE 5
Comparison of Recognition Rates (%) for CEDAR Database (No Rejection)


