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The extraction of texture features from high-resolution remote sensing imagery

provides a complementary source of data for those applications in which the

spectral information is not sufficient for identification or classification of

spectrally similar landscape features. This study presents the results of grey-level

co-occurrence matrix (GLCM) and wavelet transform (WT) texture analysis for

forest and non-forest vegetation types differentiation in QuickBird imagery.

Using semivariogram fitting, the optimal GLCM windows for the land cover

classes within the scene were determined. These optimal window sizes were then

applied to eight GLCM texture measures (mean, variance, homogeneity,

dissimilarity, contrast, entropy, angular second moment, and correlation) for

the scene classification. Using wavelet transformation, up to five levels of macro-

texture were computed and tested in the classification process. Comparing the

classification results, (1) the spectral-only bands classification gave an overall

accuracy of 58.69%; (2) the statistically derived 21621 optimal mean texture

combined with spectral information gave the best results among the GLCM

optimal windows with an accuracy of 73.70%; and (3) the combined optimal WT-

texture levels 4 and 5 gave an accuracy of 63.56%. The combined classification of

these three optimal results gave an overall accuracy of 77.93%. The results

indicate that even though vegetation texture was generally measured better by the

GLCM-mean texture (micro-textures) than by WT-derived texture (macro-

textures), the results show that the micro–macro texture combination would

improve the differentiation and classification of the overall vegetation types.

Overall, the results suggests that computer-assisted classification of high-spatial-

resolution remotely sensed imagery has a good potential to augment the present

ground-based forest inventory methods.

1. Introduction

There is the evidence of an ever-increasing need for accurate and cost-effective forest

information acquisition for operational and strategic applications in ecological

sustainability, forest exploitation, and rural development (Hyyppa et al. 2000,

Hyyppa and Hyyppa 2001). Tropical rain forests (TRFs) are of special concern.
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TRFs contain a substantial fraction of terrestrial biodiversity (Reaka-Kudla et al.

1997), their soils and biomass account for a large percentage of the total world

terrestrial carbon pool, and they are estimated to account for roughly one-third of

net primary productivity on land (Dixon et al. 1994). Further, understanding the

distribution of different tree species in TRFs and hence distribution of different

rates of transpiration would, for instance, give a clue to the availability and

management of ground water.

The potential of applying remote sensing to forestry resource mapping and

management has been recognized by several authors summarized in the following

review articles (Woodcock et al. 1994, Trotter et al. 1997). The use of ground-based

survey methods to obtain detailed inventory data, though still used, is both too

expensive and time-consuming (Schneider 1989, Woodcock et al. 1994). The need

for a less expensive and more comprehensive approach has prompted much research

on extracting forest information from aerial and satellite remote sensing (Trotter

et al. 1997).

Remotely sensed spectral data have been used to identify broad categories of forest

cover, for example, conifer versus deciduous stands (Nelson et al. 1985, Shen et al.

1985, Hodgson et al. 1988, Lathrop et al. 1994). Woodcock et al. (1994) mentions the

costs which can be saved, both in the long term and per unit area, and the high degree

of consistency between locations that is offered by remote-sensing data. A number of

studies have used broadband instruments like Landsat-Thematic Mapper (TM),

Multispectral Scanner (MSS), SPOT HRV, and Very High-Resolution Radiometer

(AVHRR) instruments to classify forest types with varying degrees of success (Frank

1988, Skidmore 1989, Franklin 1994, Schriever and Congalton 1995, White et al.

1995, Franklin et al. 2001a). Vegetation-species classifications have also been made

with an airborne multispectral scanner (Rohde and Olson 1972) and video imagery

(Everitt et al. 1987, Thomasson et al. 1994).Most related studies have been carried out

on conifers, though reasonable accuracies have been demonstrated with non-

coniferous trees (Thomasson et al. 1994). In the next sub-sections, the objectives of the

present research are stated, and a review on the utility of the most current very-high-

resolution spatial imagery in vegetation mapping is presented.

1.1 Extraction of vegetation from very-high-resolution imagery

The utility of very-high-spatial-resolution imagery (HRI) for semi-automated/

automated vegetation composition classification needs to be evaluated. The utility

of HRI has gained popularity in urban-related applications. However, there has not

been as much work in detailed vegetation mapping (Benediktsson et al. 2003), and

this needs to be investigated (Ehlers et al. 2003). This preference for urban areas is

partly due to the proximity of the spectral signatures for different species and the

difficulties in capturing texture features for vegetation (Carleer and Wolff 2004).

While high-spatial-resolution remote sensing provides more information than

coarse-resolution imagery for detailed observation of vegetation, an increasingly

smaller spatial resolution does not necessarily benefit classification performance and

accuracy. With the increase in spatial resolution, single pixels no longer capture the

characteristics of classification targets. The increase in intra-class spectral variability

causes a reduction of statistical separability between classes with traditional pixel-

based classification approaches. Consequently, classification accuracy is reduced,

and the classification results show a salt-and-pepper effect, with individual pixels

classified differently from their neighbours (Yu et al. 2006).

3418 Y. O. Ouma et al.
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1.1.1 Texture and vegetation extraction in HRI. A texture measure should describe

both the primitives from which the feature texture is composed and the spatial

relationships. However, the weakness of the commonly used grey-level co-

occurrence matrix (GLCM) texture measures is that they do not capture the shape,

here defined as the macro-texture, of the topographic objects of the grey-level

primitives. This implies that valuable information is lost if the co-occurrence method

is used by itself for derivation of texture measures. Thus, the significant questions

posted in this research are: (1) can a texture analysis approach be modelled in such a

way that the two basic texture characteristics, micro- and macro-texture features,

are completely and simultaneously satisfied, and (2) is it possible to establish robust

approaches for selecting optimal micro- and macro textures, i.e. texture measure

source and type, texture window size for TRFs?

In this research, we demonstrate that a useful addition to the GLCM texture is to

perform multiscale-multichannel decomposition for the extraction of the macro-

texture elements for combination with micro-texture and spectral elements as cues in

vegetation species (types) differentiation. The aim is to acquire shape and size

information through wavelet transformation.

Given that the size and shape of vegetation types can best be derived from very-

high spatial resolution data, the main objective of this study is to identify and map

natural and planted tree species or types on part of Mt. Kenya from very-high

spatial resolution (QuickBird) imagery, using the proposed texture-analysis

approach based on the combination of micro- and macro-vegetation texture and

in combination with vegetation spectral information. The specific objectives of this

study are to assess the:

1. potential synergy of texture and spectral data from high-resolution satellite

images, in order to classify spectrally complex landscapes like forest

environments, by comparison and analysis;

2. ability of combined micro- and macro-texture analysis techniques in digital

discrimination of different vegetation types from high-spectral-resolution

optical multispectral data.

1.1.2 Review: HRI and vegetation mapping. The use of space-borne remote-sensing

data has been hindered by the coarse-spatial-resolution satellite imagery as mentioned

in §1. Until recently, forest managers had continued to use almost solely aerial

photographs and field surveys (Gillis and Leckie 1996, Muinonen et al. 2001). The

advent of very-high-resolution multispectral as well as panchromatic imagery appears

particularly promising as a source of information for forest inventory survey tools.

With the launch of QuickBird in 2001, sub-metre-resolution panchromatic and less

than 2.5-m multispectral imagery has become commercially available from satellite-

based sensors. Image analysis at this resolution enables the identification of parts of

trees and hence individual trees. In practice, however, it has been proved to be difficult

to classify these very-high-resolution images on a pixel-by-pixel basis due to the high

level of information captured by these images (Puissant et al. 2005, Yu et al. 2006).

With regards to automatic analysis of such data, actual cases of practical application

are still hardly established (Leckie and Gougeon 1999, Wulder et al. 2000, Culvenor

2002, Ehlers et al. 2003, Yu et al. 2006).

Considering well-established approaches for analysing classical optical remote-

sensing data from Landsat TM and SPOT HRV, very-high-spatial-resolution data

like those from QuickBird or IKONOS have a range of particularities. First, Toutin

Differentiation of forest and non-forest vegetation 3419
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and Cheng (2000) showed that an accurate geometric correction of IKONOS-2 data

requires the use of a rigorous model or at least the rational polynomial model and a

DEM, and that the sub-pixel accuracy which may be obtained with satellite sensors

such as SPOT HRV and Landsat TM/ETM + will not be achievable for IKONOS-2

data, even for flat terrain.

Second, as the spatial resolution increases, the internal radiometric variability within

meaningful objects for land-cover mapping increases (Aplin et al. 1999). At the spatial

resolution of 1m or sub-metre, the per-pixel classification of forested land cannot be

conducted without taking into account the spatial context information. The radiometric

value of an isolated pixel provides little information, since the objects of interest are

much larger than the pixel size. Thus, a per-object or per-parcel classification is

required. Even for imagery with a lower resolution, the per-object classification may

give better accuracy than the broadly used per-pixel approach (Kilpelainen and Tokola

1999, Lobo et al. 1996, Aplin and Atkinson 2001). This approach assumes that object

boundaries are known. They can be derived from image-segmentation results (Lobo

1997, St. Onge and Cavayas 1997), from manual digitizing or from existing GIS data

(Janssen andMolenaar 1995, Aplin et al. 1999, Smith and Fuller 2001). There is indeed

an increasing use of GIS technology for forest management and topographic mapping

in temperate zones so that parcel boundaries would be more easily available in the

future. On the other hand, the extraction of parcel boundaries of image segmentation

are not yet well established, even if there are significant improvements with using

morphological tools to deal with the spatial context (Definiens 2000).

Third, one must pay particular attention to texture analysis of very-high-spatial-

resolution imagery. At a spatial resolution of about 1m or less, texture analysis

becomes as important as spectral analysis for land-cover classification (Gougeon

1996, Bakker et al. 2001, Atzberger 2004). Franklin et al. (2001b) showed that a

higher accuracy was obtained using texture data alone than using spectral data

alone when classifying forest stands in CASI imagery of a spatial resolution of about

1m. Similar results pointing out the significance of the texture of such data were

reported by Franklin et al. (2000). Fundamental to the discrimination of tree species

from HRI is the extraction of signatures from the crown (Lucas et al. 2004). Lewis

(1994) exposed a methodology for vegetation classifications to spectral classifica-

tions in order to map variation in species composition within natural vegetation of

the Australian spinifex hummock grassland.

In the analysis of forest HRIs, Pinz (1989) suggested that it is no longer applicable

to work with pixels as the basic units. The natural approach is to detect visible single

trees as light image objects and use them as individuals in the subsequent analysis.

The estimated tree crown dimensions are appropriate to predict the stem dimensions

(Minor 1951, Jakobsons 1970). Further measures of the image objects might be used

as a complement.

Several other methods have been developed in an attempt to delineate trees from

HRI. Some methods have been based on local maxima or also referred to as the

valley-following approach (Gougeon 1998, Warner et al. 1998) and regions

(Brandtberg and Walter 1998, Culvenor et al. 1998). However, these methods are

most robust for detecting trees which are partly in shadow and pre-processing is

necessary to avoid detecting light patches in lower density areas. Pollock (1994)

presented a model for matching, training, and spatial information to locate tree

crowns with the advantage of avoiding improbable regions. The disadvantage of this

approach is that it is in part manually based.

3420 Y. O. Ouma et al.
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1.2 Theoretical background on vegetation-type differentiation

Tree canopy spectral response and texture provide important clues in tree species

mapping. Canopy roughness refers to the variation in vertical structure of the

canopy as illustrated in figure 1, and reflects the tree surface texture. As seen in the

hypothetical scenarios in figure 1(a), it is possible to have rough and smooth texture

over the canopies, and these canopy-texture characteristics correspond to different

vegetation types. In figure 1(b), the geometric and spectral patterns over the

coniferous pine and deciduous (broadleaf) tree types are hypothesized, as in the case

of Pollock (1994). The deciduous broadleaf trees may, for example, take a near-

uniform over the surface reflectance pattern, as opposed to coniferous trees. It is

argued here that different trees closely exhibit similar spectral patterns, but with

respect to texture, the patterns are species-biased, and consequently a single texture

model may not suffice for the different texture patterns exhibited by different tree

species. Patterns are also dependent on the age and condition of the trees. However,

this may be difficult to derive for wide-natural areas.

Generally, the registered spectral reflectance patterns determine the textural

aspects of every tree species. That is, a stand with a large variance in tree height has

a rougher upper canopy than a stand with a small variance in tree height. Young

and even-aged stands of pure species tend to have smoother upper canopies than

mixed-aged and mixed-wood stands. Larger shadows of trees are cast in stands of

uneven height than in stands of even height. Furthermore, in stands of varying tree

heights, the shadows are less uniform in their spatial distribution. These differences

in tone and texture between smooth and rough canopy surfaces can be distinguished

Figure 1. Theoretical plan view of: (a) possible tree type(s) and canopy texture-whether
coniferous or deciduous; (b) spectral patterns/intensity for coniferous (pine) and deciduous
(broadleaf) trees; and (c) oblique photo of deciduous and coniferous trees. The question mark
(?) between (a) and (c) denotes the lack of models for comprehensive textural analysis in
vegetation mapping, more so in new very-high-spatial-resolution optical satellite sensors like
QuickBird.

Differentiation of forest and non-forest vegetation 3421
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in high-spatial-resolution remotely sensed imagery by using their texture patterns

and can adequately aid in discriminating tree types. Conclusively, the overall shape

of the tree species or type may also significantly contribute in tree-species

discrimination.

While micro-textures can be used to represent a texture sample, they are spatially

localized and do not characterize global attributes of global textures. For instance,

consider the textures in figure 1(c); the visually observed textural differences could

be as a result of the arrangement of the different sizes of tree leaves or tree branches

referred to in this study as macro-texture. This provides one way by which different

vegetation types or tree species can be differentiated. For classification, a better

texture model may be derived from the combination of micro- and macro-model

parameters than from micro-textures alone. The conceptual differences represented

in figure 1 suggest that it may not always be simple and direct to integrate the

spectral and co-occurrence textural information and obtain good classification

results in tree species mapping. This may be attributed to the fact that some canopy

structures exhibit micro-textural behaviours, others exhibit macro-textural char-

acteristics, while others exhibit both the textural characteristics. Other complexities

arise from spacing of tree crowns. Crowns with interlocking branches are

challenging to delineate, and the complexity of stand composition and understorey

vegetation makes the background complicated.

The fundamental question then is how to define, identify, and integrate the

suggested micro- and macro-textural patterns so that we do not lose information or

include irrelevant information in discriminating among vegetation types. In general,

even though combining the per-pixel approach with spatial-or-texture processing

approaches has been shown to provide additional accuracy, the reduction of the

accuracies observed in some cases may be attributed to the following factors:

1. Insufficient utility of the relevant spatial features or structural information in

the classification process.

2. Insufficient sensor spatial resolution for deriving the informative spatial

attributes.

3. As identified in this study, the Gray Level Co-occurrence Matrix (GLCM)

(Haralick et al. 1973) textures are restricted to the analysis of spatial

interactions over relatively small neighbourhoods on a single scale. As a

consequence, their performance is best suited for the analysis of micro-

textures only.

4. The general lack of the utility of both spatial (texture) and topographic-

feature-based shape information in high spatial resolutions images, as

identified in this study. Shape may be viewed theoretically as an element of

macro-texture. Shape derived by manual digitization or Geographic

Information Systems (GIS) has been included in other studies but not related

to vegetation species mapping in HRI.

In both practical and theoretical modelling of tree types, the shape and the size of

the tree are significant components of the formulations. For example, if we model

the basic tree crown as a generalized ellipsoid that in the (x, y, z) Cartesian

coordinates has the surface defined by the following equation (1):

z2
� �n=2

an
z

x2zy2
� �n=2

bn
~1

" #

, ð1Þ

3422 Y. O. Ouma et al.
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the n in equation (1) corresponds to the shape parameter. The other variables of

course correspond to the standard ellipsoid definition parameters.

In this study, vegetation-type discrimination is based on the integration of

spectral and optimized GLCM and wavelet-derived texture measures in the

classification process. A strategy for GLCM selection is used to determine the

most suitable micro-texture measure and window size. A wavelet filter bank is used

to split the input image into different directional sub-bands to derive the macro-

texture. Then the optimal texture features based on co-occurrence matrices and

wavelet are determined using semivariance geostatistical fitting and classification

accuracy reports. The organization of the rest of the paper is as follows: §2 describes

the study area and data used in this research. §3 introduces the background theory

for the co-occurrence matrices textures, the wavelet transformation and the

proposed combined texture approach (methodology). Implementation details,

experimental results and analysis of the results are summarized in §4. §5 presents

the discussions and research conclusions.

2. Study area and data

A section of Mt. Kenya forest in Kenya was selected for this study. The study site

(figure 2) has a rich vegetation diversity, including the natural afromontane forests,

mostly camphor trees, and planted vegetation like coniferous pine trees and cash

crop trees like tea plantations (non-forest vegetation). Other land covers found

(a) (b)

Figure 2. (a) Different vegetation types within the study area. (b) Afromontane forest
camphor trees (top); tea and pine (middle); and logged areas (bottom). The scene comprises
vegetated (natural and planted) and non-vegetated land cover. Not to scale.

Differentiation of forest and non-forest vegetation 3423
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within this site are logged areas consisting of understorey non-forest vegetation like

grass and shrubs and bare soil surfaces (non-vegetated land cover). This scene, apart

from being rich in vegetation diversity, was also chosen due to its accessibility for

field validation. Figures 2(a) and 2(b) detail some of the test-scene vegetation covers.

The QuickBird image in figure 2 was acquired on 5 September 2004 using the

QuickBird (QB02) satellite sensor.

The entire location was approximately 5 km65 km in size with the image central

coordinates located at 20.3300u (S) in latitude and 37.5600u (E) in longitude. Only

part of the whole imagery shown in figure 2 was used in this study. The entire scene

was re-projected to the local UTM coordinate system (zone 37, South) on the WGS-

84 datum, and resampled to 1-m spatial resolution using nearest-neighbour

convolution before sub-setting the 2048 pixels62048 pixels scene shown in

figure 2(a). The resampling to 1m is because of the utility of the dyadic-orthogonal

discrete wavelet transforms discussed later in the paper.

The QuickBird data used in this study consisted of the pan-sharpened

multispectral channels. The availability of a 0.61-m panchromatic band, in

conjunction with 2.44-m IR bands, affords the opportunity to create an effective

0.61-m IR pan-sharpened image through a fusion technique. The PANSHARP

algorithm (PCI Geomatics’ exclusive pan-sharpening algorithm to QuickBird data)

‘fuses’ the high-resolution panchromatic and lower-resolution multispectral imagery

to create a high-resolution colour image. The high-resolution colour image preserves

the original colour fidelity and allows for a better visualization and interpretation.

Comparatively better visual results are obtained from this fusion technique than

from other transformations especially in tree crown delineations, and the results are

preferred to the original bands (PCI 2001, Keeletsang 2004).

Other data used in this research comprised Landsat ETM + acquired on 21

February 2000, covering the same area as the QuickBird data, and were used for

general reconnaissance. The coarser resolution of ETM + compared with QuickBird

was useful in the rapid depiction of the general distribution of different vegetation

patches. This substantially eased the ground data sampling process in time economy,

especially in such difficult topography. Using aerial photography and differential

global positioning systems (DGPS) data from the Kenya Wildlife Services (KWS),

locations of ground data points including specific land cover within the scene were

captured.

2.1 Training data analysis

Scene-representative training data were identified for the investigation and

understanding of the spectral characteristics of the features within the test area.

In figure 3, the spectral signatures of the ‘training samples’ are presented for blue,

green, red, NIR bands and NDVI (5(NIR2red)/(NIR + red)), of the pan-sharpened

QuickBird image. These ‘training samples’ represented vegetation/non-vegetation

land cover within the study area as marked out in figure 2: clouds; afro-montane

forest; planted pine trees–older; planted pine trees–younger; tea plantations, logged

areas; soil surface and grass cover. Clouds and bare soil surfaces are used in this

study only to analyse the behaviour of ‘100% pure’ or homogenous surface

signatures.

The differences and similarities between the ‘training samples’ are illustrated in

figure 3. All the curves in figure 3 appear to be similar or to overlap in the compared

wavebands except for clouds and bare soil, which of course is because of the absence

3424 Y. O. Ouma et al.
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of green matter (chlorophyll). The degree of confusion in the visible bands is very

high, thus showing that the visible bands are by themselves not suitable for the

separation of vegetation types. It is noted that even in the NIR and NDVI, where

vegetation is supposed to be most sensitive, there is a high degree of spectral

confusion, as observed from the pattern similarities, thus reasserting that spectral

information alone may not be wholly relied upon for accurate and complete

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3. Histograms of the training areas as recorded in pan-sharpened QuickBird
imagery: band 1 (blue), band 2 (green), band 3 (red), band 4 (NIR), and NDVI (represented as
band 5) for the different training samples.

Differentiation of forest and non-forest vegetation 3425
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vegetation differentiation. NDVI measures the amount of green vegetation and

consequently does not capture the unique features of specific vegetation conditions

and characteristics and/or structures. These preliminary investigations suggest that

neither the NIR band nor NDVI can be relied upon as significant measures for

vegetation spectral differentiability.

For reliable forest texture extraction, suitable or relevant band(s) must be

identified so as to minimize the inclusion of non-tree textural primitives within the

scene like soil, cut-trees stems, etc. To determine which of the QuickBird bands

available for this research is suitable for the spatial information (texture) extraction,

the regressions between the NIR-band versus the blue, green and red bands were

first compared. The following regressions with the NIR band were obtained: (a) 0.71

(blue), (b) 0.85 (green), and (c) 0.79 (red). All the visible bands showed a high

correlation (R2
.0.70) with the NIR band. Second, NIR gave the highest average of

the variance within each training sample class, by comparing similar sizes of the

training samples in each of the four bands. This is in part due to the fact that the

location and narrower wavelength of the NIR band capture better vegetation

structural information than the other compared wavelengths and the wider

panchromatic band, respectively (Ouma et al. 2006). Other studies have used a

combination of the VIS and NIR for vegetation texture extraction from HRI (e.g.

Zhang 2001). In vegetation analysis, the wavelength of the panchromatic band is

argued to be too wide, and the panchromatic band image contains extra information

that can be viewed as noise for vegetation texture mapping. Thus, the optimal or

suitable multispectral band is derived for vegetation texture extraction. It is worth

pointing out here that the selection of a suitable textural band is an open research

question and varies from scene to scene (Zhang 2001, Asner et al. 2002). In this

study, it was found that the texture or spatial pattern structure of the vegetation

classes was resident in the NIR band. Detailed experimentation on the derivation of

textural band(s) for vegetation textural primitives’ extraction can be found in Ouma

et al. (2006).

3. Methodology

Texture analysis has a history of almost three decades. During the 1970s and early

1980s, the algorithms have been mainly based on first- and second-order statistics of

the image pixel grey-level values as a spatial domain grey-level co-occurrence matrix

(SDCM) and neighbouring grey-level dependence matrix (GLCM). In the mid-

1980s, model-based methods such as Markov Random Fields (MRF), simultaneous

autoregressive models, and the Gibbs distribution appeared as alternatives. From

the late 1980s, based on the theoretical impact of the works of Daubechies (1988),

who provided the discretization of the wavelet transforms (WTs), and Mallat (1989),

who established the connection between the WT and the multiresolution theory,

signal-processing methods based on the Gabor transform and the WT rapidly

competed with the former two in the fields of computer vision and image processing.

By representing signals, or images as in our case, in multiple resolutions by the WT,

it is thought that one can extract more powerful features than the single scale case.

3.1 Mathematical framework

3.1.1 Discrete wavelet transformation. The wavelet transform provides a multi-

resolution decomposition of an image in an orthonormal basis and results in a

3426 Y. O. Ouma et al.
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non-redundant image representation. Wavelet transforms extract information from

an image at different scales (sub-band). A family of basis functions can be generated

by translating and dilating the mother wavelet corresponding to that family (Mandal

and Aboulnasr 1996). The wavelets form a family, and the basic form is called the

mother wavelet. All the daughter wavelets are derived from this wavelet (Y)

according to equation (2):

Y s, t tð Þ~ 1
ffiffi

s
p Y

t{t

s

� �

ð2Þ

The two variables, s and t, are the scale and translation of the daughter wavelet, and

t is the theoretical time element. The term s21/2 normalizes the energy for different

scales, whereas the other terms define the width and translation of the wavelet. The

Continuous Wavelet Transform (CWT) is defined in equation (3), whereby the

asterisk denotes a complex conjugate function.

c s, tð Þ~
ð

f tð ÞY�
s, t tð Þdt: ð3Þ

As good as the theory of the CWT is, it still has three major problems. These

problems make the continuous wavelets difficult to implement for solving any real

problem. These are:

1. Redundancy—the basis functions for the continuous wavelet transform are

shifted and scaled versions of each other. It is clear that these cannot form a

very orthogonal basis;

2. Infinite solution space—the result holds an infinite number of sub-spaces.

This makes it hard to solve and even harder to find the desired results out of

the transformed data; and

3. Efficiency—most of the transforms cannot be solved analytically. The

solutions have to be calculated numerically, which takes an incredible amount

of time. In order to use the wavelet transform for rational application(s), we

must find very efficient algorithms.

The redundancy in the continuous wavelets can be fixed. First, the continuous

variables s and t are discretized, hence a discrete wavelet transform (DWT), so that

the mother wavelet can only be scaled and translated in discrete steps. The

discretized values of t are made dependent on s in such a manner that low-frequency

components are sampled less often. As a result of the discretization, we obtain

equation (4) for deriving daughter wavelets:

Y j, k tð Þ~ 1
ffiffiffiffi

s
j

0

q Y
t{kt0s

j

0

s
j

0

0

@

1

A: ð4Þ

s
j

0 is usually assigned a value of 2 and t0 a value of 1. This results in dyadic

sampling, hence the multiresolution products of the wavelets transformation

process, represented in figure 4.

This characterization of the wavelet transform allows the study of an image from

fine to coarse resolution and the extraction of information in any of the levels of

decomposition. Further details on the mathematical representation and applications

of the DWT can be found in Mallat (1989) and Ouma et al. (2006) respectively.
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The underlying idea in the use of the multiresolution analysis is first to obtain

multiple evidences from the same feature, and search for the sub-band(s) that

correctly, with respect to resolution, shape, and size, defines the features of interest.

Second, our approach follows the paradigm of fusion that utilizes multiple evidences

of the same feature(s) resident in multiple sub-bands or scales. A useful property of

the wavelet transform is that the wavelet coefficients are sensitive to spatial

variations of a signal and can isolate details at a given scale. This is justified by the

fact that a signal with a high variation has high wavelet coefficients and vice versa.

Compared with other frequency-domain-based transformations like the Windowed

Fourier Transform (WFT) (e.g. Gabor), WTs offer superior image-computational

abilities such as: the resulting mutually orthogonal coefficients, reversibility, and the

fact that the filters used remain the same at all scales (van de Vower et al. 1999).

Therefore, in this study, we use the 2D discrete wavelet transform to extract multiple

sub-band vegetation with macro-texture information.

An algorithm for implementing the wavelet decomposition follows the Mallat

(1989) approach, with a two-channel filter bank using quadrature mirror filters. The

algorithm applies a one-dimensional high- and low-pass filtering step to both the

rows and columns to the input image. Each filtering step is followed by sub-

sampling, which results in a change in scale. The filter bank to implement the

wavelet transform is shown in figure 4. At each decomposition level, there are four

different output images.

The information contained in the output sub-bands of the wavelet transform is

the approximation of the input image and three detail images conventionally named

LL1, an approximation of the input image, and HL1, a detail image containing

information on edges in the horizontal. A high value indicates the presence of a

vertical edge. With LH1, the detail image containing information on edges in the

Figure 4. Generalized computational approaches for wavelet transform (WT).

3428 Y. O. Ouma et al.
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vertical, a high value, indicates the presence of a horizontal edge. With HH1, the

detail image containing information on edges, a high value indicates the presence of

a corner point. In the second level of decomposition, the low-pass sub-band, LL1, is

further decomposed into one low-pass and three high-pass sub-bands (horizontal,

vertical, and diagonal direction). The process can be repeated on the low-pass sub-

band to form a higher-level wavelet decomposition. In this study, the Daubechies

eight-tap filters (db8)-DWT (Daubechies 1988) were chosen, since they are

compactly supported and well localized in both time and space.

3.1.2 Grey-level co-occurrence matrix (GLCM). Statistical relations between pairs

of pixels are called second-order statistics. The statistical behaviour of two pixels in

an image can be described by the joint probability density function, which fully

defines the second-order statistics. Nearest-neighbour grey-tone spatial-dependence

matrices or grey level co-occurrence matrices (GLCM) as proposed by Haralick et al.

(1973) provide measures from which the texture features are derived. The GLCM

has grown to be a standard technique for extracting texture characteristics. The

technique works by forming a window on the image and then calculating the

frequency of co-occurrence for the pixel values (DN). If the pixels’ grey values range

from m6n, then the matrix will be of dimensions m6n, and the frequency of co-

occurrence with pixel value i and j will be put into the entry (i, j). The GLCM P(i, j)

is defined by specifying a displacement vector and counting all pairs of pixels

separated by distance d and direction w having a grey level (i, j).

Once the counting for the co-occurrence frequencies of all the bi-pixels within the

window has been completed, one can then design statistical measures to extract the

characteristics of the matrix. The resulting measures reflect the grey-values variation

(i.e. texture) within the prescribed window. For example, if the area covered by the

window is relatively smooth, the resulting GLCM will hold peaks along the main

diagonal. Likewise, if the pixels’ values within the window are nearly random, it will

form a GLCM with a similar frequency for all the entries. The GLCM has been

shown to be very successful in capturing image textures (Anys et al. 1994, Treitz et al.

2000, Arzandeh and Wang 2002).

The window size, directions, and lag value selected for GLCM will vary according

to the problem at hand and the spatial scale for the features of interest. Normally,

the lag value of 1 is chosen (i.e. neighbouring pixels), and four directions, namely

horizontal, vertical, left diagonal, and right diagonal, are used for forming GLCM.

In our study, after the GLCM is generated for each direction, eight statistical

measures are used for texture extraction. The four directions are then averaged to

remove directional effects, hence omnidirectional texture derivation. Details on the

eight-texture measures analysed in this work are summarized in table 1. A more

complete theoretical description of the most commonly used co-occurrence

measures can be found in Haralick et al. (1973) and Soares et al. (1997). To

evaluate the window sizes, the selected ‘training samples’ were used. To carry out the

training samples window evaluation, the eight GLCM texture measures (table 1) are

computed for 20-window sizes ranging from 363 to 41641.

3.2 Texture feature extraction

A block diagram of the proposed combined spectral and macro–micro texture

classification approach is shown in figure 5. The significant steps in figure 5 are

described in subsequent subsections.

Differentiation of forest and non-forest vegetation 3429
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Table 1. GLCM texture measures tested in this study.

GLCM texture measure Description

Mean: MeanDxDy~
P

i

ip ið Þ Mean is the average grey level in the local
window.

Variance: VarDxDy~
P

i

P

j

i{mið Þ2P i, jð Þ Grey-level variance in the local window.
High when there is a large grey-level
standard deviation in the local region.

Entropy:
ENTHDxDy~{

P

i

P

j

P i, jð ÞDxDylogP i, jð ÞDxDy
Entropy is a measure of the degree of
disorder in an image. Entropy is larger
when the image is texturally non-uniform
or heterogeneous and approaches its
maximum when all GLCM entries have
similar contents, indicating an image with
completely random pixel values. High
entropy when GLCM have relatively
equal values and low when the elements
are close to either 0 or 1.

Angular Second Moment (ASM):

ASMDxDy~
P

i

P

j

P i, jð Þ2DxDy
Also called energy, angular second moment
and uniformity is a measure of textural
uniformity or pixel-pair repetitions. When
the pixels of the image window under
consideration have similar grey levels, the
energy reaches its maximum (equal to or
close to 1). Therefore, a constant or
periodic distribution of grey levels over the
window will produce high values for
energy. It is high when GLCM has few
entries of large magnitude, when all entries
are almost equal. This is the measure of the
local homogeneity. Entropy and ASM are
inversely
correlated.

Homogeneity:

HomDxDy~
P

i

P

j

P i, jð ÞDxDy
1z i{jð Þ2

Also called inverse difference moment,
homogeneity is a measure of lack of
variability or the amount of local
similarity in the scene. High homogeneity
values suggest a small grey tone
differences in pair elements. In this case,
the associated GLCM will present
elements around the main diagonal.
Homogeneity is high when GLCM con-
centrates along the diagonal. This occurs
when the image is locally homogenous in
the scale of the length of spatial

Contrast:

ContDxDy~
P

i

P

j

i{jð Þ2DxDyP i, jð ÞDxDy
Contrast is a measure of the degree of
spread of the grey levels or the average
grey level difference between neighbouring
pixels. The contrast values will be higher
for regions exhibiting large local varia-
tions. The GLCM associated with these
regions will display more elements distant
from the main diagonal, than regions with
low contrast. Contrast is high when the
local regions have a high contrast in the
scale of spatial. Local statistics contrast
and GLCM contrast are strongly
correlated. Contrast and homogeneity are
inversely correlated.

3430 Y. O. Ouma et al.
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3.2.1 GLCM feature selection. Traditionally, texture methods have been evaluated

over windows of a single size, the latter being commonly defined on an experimental

basis, e.g. in Puissant et al. (2005). Although many studies regarding the

performance of the different families of texture feature extraction methods have

been carried out in the past, only a few have dealt with the issue of determining

Table 1. (Continued.)

Figure 5. Generalized flow of the proposed combined texture classification approach. The
term ‘‘optimization’’ is used here to infer the process of selecting and/or deriving the suitable
band(s) or subband(s) accordingly. QB02 denotes QuickBird sensor-2.

GLCM texture measure Description

Dissimilarity:
DisDxDy~

P

i

P

j

P i, jð ÞDxDy i{jj j
Similar to contrast. High when the local
region has a high contrast.

Correlation:

CorDx, Dy~

P

i

P

y

i{mið Þ j{mjð ÞP i, jð ÞDxDy

sisj

Correlation is a measure of grey-level
linear dependencies in the image. High
correlation values denote a linear rela-
tionship between the grey levels of pixel
pairs. A completely homogeneous area is
a limiting case of linear dependency, for
which the correlation reaches its max-
imum (equal to 1). Correlation is uncor-
related to entropy and energy, i.e. to pixel
pair repetitions.

Where px ið Þ~
P

j

p i, jð Þand p i, jð Þ~ P i, jð Þ
P

j

P

j

P i, jð Þ. Each element P(i, j)DxDy represents the relative

frequency with which two neighbouring pixels separated by a distance of Dx columns and Dy
lines occur (Soares et al. 1997).
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optimal window sizes, especially in tree or vegetation-type differentiation. Within

the scope of pixel-based vegetation-type discrimination in high-resolution imagery, a

technique for determining the optimal window size for each ground cover that leads

to the best possible estimator among different texture models of interest is necessary.

Determining the optimal GLCM window via trial-and-error methods is time-

consuming and may not always be reliable.

An optimal window size for calculating GLCM texture measures is a

compromise between providing enough spatial information to characterize the

land cover and limiting overlapping textures between different land covers (Ulaby

et al. 1986). No rules have been recommended for the texture-measures selection.

The most appropriate combination of texture features depends very much on the

surface properties of the land-cover types of interest to a user. Since unique texture

patterns are hypothesized to discriminate different land-cover types, a proper

window size that approximately matches the patch size can extract the textural

pattern of the particular landscape feature. A large window size can capture the

spatial patterns of each land-cover type better but may contain more than one land

category, which could introduce systematic errors. The window should then be

small enough to keep the variance low and to maximize the potential for class

separability.

With the assumption that the ‘training samples’ are homogenous and accurately

represent the scene under investigation, it can theoretically be argued that the best

GLCM texture should have the least variance over the training sample for the given

image. Thus, the variance for each of the tested GLCM texture type is computed

over the test windows and compared for each training sample. This texture measure,

with the minimum variance, is then used to determine the optimal window size for

each of the ‘training sample’ classes using the variogram fitting geostatistical

method. This optimal window is assumed to be the same for the rest of the GLCM

texture measures. The resultant optimal window texture types are then tested in the

classification process to determine the suitable texture measure through accuracy

assessments.

3.2.2 Wavelet transforms sub-bands selection. Suitable wavelet transforms sub-

band selection is focused on evaluating the variations of parameters related with

multiscale texture from wavelet decomposition like: influence of decomposition level

(scale) and direction on the classification results. However, many features result

from WT processing, and considerations as to whether the features are independent

and discriminating must be carried out to avoid unnecessary and redundant

computations.

For example, there are Cn
k possible combinations of k sub-bands from a total of n

sub-bands. It is not practical to employ a brute force approach, which finds the best

combination by trying out each one. This calls for deriving an efficient way of

determining which of these combinations of sub-bands are optimal in terms of being

best at discriminating different textures for subsequent classification. A reduction in

the dimensionality of the problem may result in not only a better accuracy but also a

faster classification (Ouma et al. 2006).

Theoretically, natural vegetation and other vegetation cover, unlike urban

structures, exhibit multidirectional or omnidirectional textural primitives that

cannot be represented accurately in a single direction. Thus, in this study, a faster

and reliable approach to determine the relevance of the sub-bands is to compare the

classification results for the sum of the three output channels per decomposition

3432 Y. O. Ouma et al.
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level. This approach was adopted based on the conclusions from our earlier

experimentation and experiences presented in Ouma et al. (2006).

3.2.3 Combined features classification and accuracy assessment. For classification,

we chose a classifier which is already implemented, is well tested, and has shown a

good performance in many practical applications. One such classifier is the

Gaussian maximum-likelihood classifier (MLC) (Yu et al. 2006). Several other

authors have applied maximum likelihood due to its more exhaustive and rigorous

statistical formulation compared with other classifiers based on a statistical

computational approach. The MLC is easy to implement, and its formulation is

more robust than the other decision-rule-based classifiers. Based on the MLC, a

supervised classification was adopted whereby groups of contiguous pixels were

selected as training, testing, and validation samples in the class signatures. Note that

it is not the aim of this study to investigate the performances of different

classification algorithms.

The results of the GLCM and wavelet transform sub-bands selection phase are

integrated with the spectral channels in the classification process, as shown in

figure 5, and the classification results analysed for accuracy for the following

combinations: (1) spectral-only classification; (2) spectral +GLCM; spectral +wave-

let transform (WT); (3) and spectral +GLCM +wavelet transform (WT).

Fifty per cent of the collected ground data (test data set) were used for the

accuracy assessment. The test points were carefully chosen to ensure that the test,

and the training data were equally spread geographically. Each classified image was

then crossed with the test data to generate a confusion matrix. The respective

confusion matrices were then used to calculate the different accuracy measures, i.e.

class producer and user accuracy, and the overall accuracy. Kappa statistics and its

variance were also calculated to test the significance of difference in accuracy. The

significance of difference test between the confusion matrices was done using the

Z-test with a50.05. A qualitative assessment of the classification results was carried

out with field-data comparisons.

4. Results: texture measures, classification results and comparative analysis

This section presents the results of this study as well as a detailed comparison and

analysis thereof in the following order: (a) scene texture derivation, for input texture

band selection; and (b) a comparison of the classification results for spectral-only

and spectral combined with the optimal texture band(s).

4.1 Texture derivation results

4.1.1 GLCM texture features. All the eight-texture measures showed differing

results for the ‘training samples’. There were, however, some common observations

for all the ‘training samples’: (a) the texture measure with the least variance was

consistently recorded as the angular second moment (ASM or S-Moment), and (b)

the second least variance was recorded by the homogeneity texture. The rest of the

textures were mixed with respect to the variance-based ranking. Thus, as

hypothesized in the methodology, the ASM results were utilized to model or

determine the optimal window size using Variowin 2.2 Geostatistics software

(Pannatier 1996). Variowin 2.2 software is based on the variogram geostatistical

fitting method for deriving the optimal widow sizes (Pannatier 1996, Curran and

Differentiation of forest and non-forest vegetation 3433
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Atkinson 1998). The results from this variogram fitting were then applied to the rest

of the GLCM texture measures.

A summary of the ASM variance over the 20-moving windows is shown in

figure 6. It is observed that apart from the clouds and soil, the rest of the ‘training

samples’ had a lower variance and reached a saturation point after around the first

nine or so windows i.e. around the 19619 window size. Clouds and bare soil are

‘pure’ homogeneous surfaces whose spatial scale may be explained in terms of patch

or grain sizes and not spatial scale. For this reason, it may be difficult to directly

determine or measure the optimal scales for their texture mapping, unless they are

considered as landscape patches. Surfaces with such characteristics require some

modelling like the proposed semivariance fitting.

For each of the curves in figure 6, Spherical, Gaussian, and Exponential models

were fitted to the variograms using Variowin 2.2 software. In table 2, the ‘range’

column depicts the optimal texture window size as derived from the semivariogram

fit, ‘sill’ is proportional to object (class) variance, and the ‘nugget variance’ is the

variance unexplained by the fitted curve (Pannatier 1996, Curran and Atkinson

1998). The quality of the semivariogram fit to the data ‘goodness of fit (F )’ was

determined using regression (R2) and an F-test calculated as in equation (5):

F~
R2

1{R2
|

N{k

k{1
, ð5Þ

where N is the number of samples, and k is the number of variables in the regression

model. The Spherical fitting model estimator gave the best fit, as shown in table 2 for

all the ‘training samples’.

The results in table 2 show that clouds, trees, and logged areas required two

optimal windows. For these classes, even-numbered windows were approximated to

be best, i.e. by taking the average of the minimum and maximum as illustrated in the

approximation (approx.) column. Thus, for the afromontane trees, for example, the

12612 window size was approximated as the optimal for texture mapping. Clouds

and bare soil had the largest optimal window sizes compared with afromontane trees

Figure 6. ASM-variance patterns for the training samples over the 20-test windows.

3434 Y. O. Ouma et al.
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Table 2. Descriptive statistics for the training samples based on the standard semivariance fitting (OTP and YTP refer to old and young tree plantations,
respectively).

Training
sample Range Sill

Nugget
variance

Best-fit
model

Goodness of fit
found (F)

Selected square windows

Min Approx. Max

Clouds 22.006 1.0000 0.1199 Spherical 2.383661023 21621 22622 23623
Trees 12.123 0.9399 0.1300 Spherical 1.249161023 11611 12612 13613
OTP 14.924 0.9900 0.1499 Spherical 7.293861023 15615
YTP 13.074 0.9699 0.1399 Spherical 6.479461024 13613
Tea 13.342 1.0000 0.0900 Spherical 9.740861024 13613
Soil 19.093 1.0000 0.0050 Spherical 8.916661023 19619
Logging 13.612 0.9999 0.0600 Spherical 5.459061023 13613 14614 15615
Grass 12.415 0.9800 0.1000 Spherical 5.052561023 13613

D
ifferen

tia
tio

n
o
f
fo
rest

a
n
d
n
o
n
-fo

rest
veg

eta
tio

n
3
4
3
5



D
o
w

n
lo

a
d
e
d
 B

y
: 
[C

h
ib

a
 U

n
iv

e
rs

it
y
] 
A

t:
 1

4
:1

1
 3

0
 M

a
y
 2

0
0
8
 

with the smallest window size. Old and young trees, tea, soil, and grass could be

mapped using approximated window sizes, as shown in table 2. If one were to

empirically determine the optimal texture bands, from the variance of the ASM

plots directly as shown in figure 6, then the multiple window concept for some

‘training samples’ would probably be used. The drawback with this empirical

selection, however, is that it is time-consuming, and there is a high likelihood of

errors due to subjective estimations.

4.1.2 Wavelet transforms texture selection. In this study, ‘wavelet transforms

texture selection’ refers to the determination of the suitable or optimal band(s) for

the classification of the land-cover features within the study area. Five levels of the

wavelet transformation were generated from the original 204862048 image at 1-m

spatial resolution. The results were five levels of WT sub-bands corresponding to

2m, 4m, 8m, 16m, and 32m, respectively. Higher levels were ignored, since

resolutions of more than 32m were considered not to have any relevance to the

capturing of the scene feature(s)-texture details.

Figure 7(a) shows the histogram plots of the different WT levels. Level 1 exhibits

the highest frequency within the first 50-DN values, followed by levels 5, 2, 3, and 4.

Levels 3 and 4 exhibit closely related (coinciding) histogram information. One of the

most striking observations here is that level 5, which might theoretically be

considered to have the least significance, does have a higher DN frequency than

levels 2, 3, and 4. This implies that for this particular scene, some interesting textural

information component(s) is resident in level 5. To further confirm this observation,

the standardized energy is plotted for the five levels and presented in figure 7(b).

The energy plots show that level 1 has the highest amount of energy, followed by

level 5 and finally levels 2, 3, and 4 in successive order. Levels 3 and 4 have the same

energy, and if this graph is viewed between levels 1 and 4 only, an exponential shape

is observed, with a saturation starting somewhere after level 3. It may thus be

misleading not to compute level 5 based on the threshold observed in the first four

levels. Critically, level 5 should be computed, as it represents the maximum possible

resolution or size of individual features within the scene, which are camphor trees.

The significance of the contribution of the WT levels is further investigated by

classification of these bands in combination with the spectral information. The

classification results from independent WT bands in combination with the spectral

data and different levels combinations were also tested. The best results for these

combinations are presented. The same approach was applied to the GLCM results.

4.2 Classification results

The accuracy of the classification results was tested using the overall accuracy (OA)

and kappa index methods derived from the evaluation of the confusion matrix or

contingency table. In this matrix or table, classification is given as rows, and

verification (ground data or reference data) is given as columns for each sample

point. The difference between the overall accuracy measure and the kappa index is

that the kappa index measures the relationship between beyond chance agreement

and expected disagreement, and uses all elements in the matrix, not just the diagonal

elements.

The first results of the classification involved the QB02 spectral bands only. For

the eight training classes, the overall accuracy (OA) and kappa index results were

58.69% and 0.4851, respectively. This implies that just about 50% of the entire scene

3436 Y. O. Ouma et al.



D
o
w

n
lo

a
d
e
d
 B

y
: 
[C

h
ib

a
 U

n
iv

e
rs

it
y
] 
A

t:
 1

4
:1

1
 3

0
 M

a
y
 2

0
0
8
 

(a)

(b)

Figure 7. (a) Histogram and (b) standardized energy plots for the five WT levels. Note that
the histogram in (a) represents the frequency of occurrences in a continuous format for each
level, while the energy plots in (b) reflect the distribution of energy along the frequency axis
over scale and orientation.
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was properly classified into their correct classes. Of course, this is a low accuracy,

implying that the thematic information derived from such data may not be very

useful in the detection of all the vegetation types. In the next subsections, the results

for spectral and texture integrated classifications are presented.

4.2.1 Classification of spectral bands and the GLCM texture. The optimal GLCM

textures presented in table 2 were combined with the spectral bands and classified

using MLC. The results for the following eight-GLCM texture window sizes

(11611; 12612; 13613; 15615; 19619; 21621; 23623; 25625) are presented in

figure 8. For all tested optimal windows and GLCM texture types, the mean GLCM

measure consistently emerged as the best texture type with respect to the overall

accuracy reports. The OA results indicated that the mean texture was consistently,

by at least 3%, better than the rest of the texture measures for the selected window

sizes. The eight texture measures and eight window sizes resulted in a huge database

of textures to choose from. The first step to reduce the dimensionality of this

database was to select the consistent and most accurate texture type(s). However, as

depicted in figure 8, the differences in OA between the window sizes are very

marginal from one texture measure to the other. Thus, a window size with the best

overall Producer Accuracy (PA) and User Accuracy (UA) for the classes was used to

make the final selection decision.

The outliers observed in figure 8 are from the 12612 window and correspond to

homogeneity, entropy, and angular second moment texture types. These GLCM

measures recorded very low OAs for this window, implying that the averaging

concept adopted in table 1 did not apply for some of the texture types. The results

for the original windows used in the averaging concurred well in the other remaining

textures types/windows.

Figure 8. Overall classification accuracy results for GLCM-texture measures versus window
size. Note that the significantly very low values for the 12612 window, are not shown in the
graph but are stated and explained accordingly in the text.
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Ranking all the textures with respect to their OA and kappa indices, the mean

texture measure gave the overall best results followed by homogeneity (70.51%),

dissimilarity (70.05%), contrast (68.30%), correlation (65.51%), entropy (64.89%),

variance (63.00%), and lastly second angular moment (61.53%). Homogeneity and

dissimilarity had remarkably close results for this window size, as did correlation

and entropy. Even with the optimal band, the most difficult class to classify was the

older planted pine trees. Thus, in the selection of the optimal windows, the PA and

UA for this particular class was closely considered such that these two measures (PA

and UA) were not only the highest possible but also balanced out.

From figure 9, the kappa index results for spectral bands, and the spectral bands

combined with GLCM-mean texture classification, are presented for all the optimal

windows. It is observed that from the 21621 window onwards, the kappa index is as

good as being constant (i.e. a maximum difference of 0.0033). Because of the

observed constancy, we rely on the PAs and UAs to select the best window size.

These results show that the 21621 window is probably the most optimal single

window choice for the scene.

Following the above observations, the window choice for the mean GLCM was

the 21621 window size with an OA of 73.70% and kappa index of 0.6618. This

optimal band was named GLCM21-Mean, meaning that the optimal texture

window size corresponds to 21621, and Mean is the optimal GLCM texture

measure. In overall, the differences between the best texture (mean) and the least

informative texture (second angular moment) for the 21621 window size was

12.27%. Despite the fact that the 25625 window had a marginally higher kappa (by

0.0032) than the 21621 window, the former had a poorer PA and UA than the

latter. For example, for the old pine trees, the PA was only 2.38% from the 25625

window size as compared with 42% for the 21621 window size.

Comparing the spectral-only and spectral-GLCM texture integrated classification

results in figure 9, a significant increase is observed between the spectral-only and

upon combination with 11611-mean texture window of about 11.38%. This is

followed by a progressively gradual increase in the OA or kappa, as the window size

increases. Between the 11611 window and the optimal 21621 window, an increase

Figure 9. Spectral bands and GLCM-mean texture measure versus window size classifica-
tion accuracy results.
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in classification accuracy of 3.63% is observed. An overall accuracy increase of

15.01% is recorded between the spectral and the optimal GLCM21-Mean texture.

4.2.2 Classification of spectral bands and the WT-texture. The results for the

classification of the spectral bands alone and their integration with the WT derived

textures are presented in figure 10. From figure 10, it can be seen that the results for

levels 1, 2, and 3 are marginally lower than those for spectral-only classification.

This shows that the information contained in these levels may not be suitable for

capturing the macro-texture information that is needed for the vegetation-type

discrimination. However, as the levels increase to 4 and 5, the classification accuracy

improves from 58.89% (spectral-only) to 59.32% and 61.42%, respectively. This

implies that the significance of macro-texture is slightly noticeable from level 4 by a

mere 0.5% and at level 5 by about 2.5%.

When different WT levels are combined into the integrated classification process:

(L1 +L2), (L1 +L2 +L3), (L1 +L2 +L3 +L4), and (L1 +L2 +L3 +L4 +L5); where Li

refers to level i, the results as shown in figure 10 are obtained. An increase in OA is

noticed only when the first four and five levels are combined; otherwise, for the first

two and three levels, the accuracy of the classification is reduced. From these

observations, it can justifiably be concluded that levels 1, 2, and 3 are not significant

in the macro-texture discrimination of the features in this particular scene. Even on

combination with the levels 4 and 5, the lower levels did not produce results that

were better than the levels 4 and 5 when considered independently. As independent

WT bands, level 5 gave the best results followed by level 4. This means that at a

resolution of 32m, the macro-texture of the scene features is better captured than at

the lower resolutions.

The final WT texture combination considered the integration of levels 4 and 5

(16m and 32m), since they independently improved the classification results. This

combination is referred to in this study as WT (L4 +L5). The OA for all the levels

combined and levels 4 and 5 combined, and integrated with the spectral

information, showed no significant difference at all, as illustrated in figure 10. In

conclusion, to reduce the computational costs and time, and based on the fact that

the accuracy improvement contributions of the first three levels were insignificant,

Figure 10. Spectral bands and WT texture classification accuracy results.
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the last two levels (L4 +L5) were chosen as the most optimal WT textures, i.e.

optimal macro-textures, for the scene classification. With this combination, the OA

was increased by 4.86% only, which is approximately three times less than with the

GLCM21-Mean improvement of 15.01%, over the spectral-only classification

(58.69%).

4.2.3 Spectral bands, GLCM, and WT texture classification. The bands with the

highest OA (or kappa index) as determined in the previous subsections were

combined in the next classification step to determine the influence of the proposed

micro- and macro-texture combinations in vegetation-type classification.

A summary of the OA and kappa indices for the following band combinations is

presented in table 3: spectral-only (Spec); Spec combined with GLCM21-Mean

texture; Spec combined with WT-levels 4 and 5; Spec combined with GLCM21-

Mean and WT-level 4; Spec combined with GLCM21-Mean and WT-level 5; and

finally Spec combined with GLCM21-Mean and WT-levels 4 and 5.

For the GLCM texture combination with the spectral data, the results show an

increase of 15.01% in the OA with a significant kappa increase by 0.1766.

Translating this into the respective class PA and UA results presented in figures 11

and 12, it is observed that both the PA and UA increased significantly, i.e. by more

than 10% for most of the classes except for the clouds, which increased only

marginally (0.53% of PA and 3.03% for UA). As expected, clouds do not exhibit any

spectral or textural confusion with the rest of the ‘training samples’ and are the most

homogenous surface. Hence, equal and high PA and UA scores are expected, as

observed in figures 11 and 12. The most remarkable PA/UA increment was that of

the old pine tree plantations (OTP). With the spectral bands alone, the PA and UA

for the OTP were as low as 30.15% and 28.08%, respectively. However, on

integrating the spectral with the GLCM21-Mean, the PA and UA measures

increased to 42.36% and 42.53%, respectively.

When WT-levels 4 and 5 are combined with the spectral data, the overall

classification accuracy increased only marginally by 4.86%. This is approximately

three times less than with the impact of the GLCM21-Mean texture. In fact, the PA

for some classes, i.e. soil, decreased by about 10%, as compared with spectral-only,

while for other classes like young planted pine trees, the PA and UA remained

unchanged (figure 13). Only in the case of grass is the UA more than doubled.

Overall, the impact of the WT is not as significant as that of the GCLM21-Mean

texture for this particular scene. The probable explanation for this observation is

that the structural setting or orientations of features within this scene, which are

Table 3. Comparison of the classification accuracy results for the different band
combinations.

Band

Accuracy measure

Overall accuracy (%) Kappa index

Spectral-only (four bands) (Spec) 58.69 0.4851
Spec +GLCM21-Mean 73.70 0.6617
Spec +WT (L4+L5) 63.55 0.5435
Spec +GLCM21-Mean +WT (L4) 74.96 0.6768
Spec +GLCM21-Mean +WT (L5) 76.26 0.6933
Spec +GLCM21-Mean +WT (L4 +L5)
(‘proposed method’)

77.93 0.7131

Differentiation of forest and non-forest vegetation 3441
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predominantly vegetation, are weak or not easily captured, i.e. not as sensitive to

macro-texture as they are to micro-texture.

The next set of data compared is the combination of WT-L4 with GLCM21-

Mean and spectral data (results shown in figure 14). Compared with the spectral

bands only, the OA is increased by 16.27% (table 3), which translates into a kappa

increment of about 0.1917. This implies that the combination of the GLCM21-

Mean with the level 4 WT had more impact in the classification accuracy than using

Figure 12. PA and UA results for combined spectral and GLCM21-Mean band
classification.

Figure 11. PA and UA result for spectral bands classification.
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the GLCM21-Mean or even L4 textures combined with spectral bands. The PA and

UA for the scene classes also increased by differing amounts. Some of the results

were closer to the spectral and GLCM21-Mean combination, i.e. for the young and

old pine trees, logged areas, and grass, while better results were obtained for the rest

of the classes.

Figure 13. PA and UA results for combined spectral and WT-levels 4 and 5 band
classification.

Figure 14. PA and UA results for combined spectral, GLCM21-Mean and WT-level 4 band
classification.
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When the spectral WT-level 4 is replaced with level 5, the OA increased by 17.57%

(table 3). This implies that the level-5 texture is more related or suitable for the scene

macro-texture than with level 4. This is approximately 2.56% better than GLCM21-

Mean texture alone with spectral data. With respect to the classes and compared

with the band combinations already considered above, this particular combination

gave the highest PAs and UAs (figure 15). For example, for tea, logged areas, grass,

soil, and clouds, the PAs were higher than 91%. Even for old pine tree plantations,

the PA was 49.50%.

In figure 16, the overall results for all the optimal textures and spectral data are

combined. This is represented as the ‘proposed method’ results in table 3. The results

are termed ‘proposed method’ results, since part of the objective of this study was to

determine the suitable micro–macro texture combination for vegetation species

mapping. These results are also termed accordingly, since the rest of the results are

only comparative intermediary results, and the proposed method yielded the highest

classification accuracy (OA577.93% and kappa coefficient50.7131). This is

approximately a 20% increment in the scene classification accuracy as compared

with spectral-band-only classification results. It is worth noting that even a

combination of all the WT bands with the GLCM21-Mean still gave a lower OA

(77.46%) and in some cases lower PAs and UAs in comparison with the results of the

‘proposed method’ bands.

Compared with the previous results, all the PAs and UAs were slightly increased

for all the classes except for clouds where there was no change (figure 16). All the

classes are mapped with a PA of above 93.5%, except for camphor trees with a PA of

70.66%, younger pine trees with a PA of 72.35%, and older pine trees with a PA of

49.35%. The UAs were significantly high (above 95%) for camphor trees, logged

areas, and clouds.

The PAs and UAs are summarised in figure 17(a) and 17(b), respectively.

Figure 17 also presents a clearer format for deciding which band combination is

most reliable for mapping a particular class type. Clouds, used here more or less as a

benchmark to observe the characteristics of truly homogeneous surface, show that

Figure 15. PA and UA results for combined spectral, GLCM21-Mean and WT-level 5 band
classification.
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PA and UA should have similar values in any band combination considered.

Comparing the PA and UA plots, apart from the clouds, the last band combination

(spectral, GLCM texture, and WT) gave the best results not only with respect to the

overall classification accuracy but also for the PA and UA for most of the classes.

The UA results in figure 17(b) show a difference between two groups of classes:

those above 80% like camphor trees, logged areas, and clouds, and the rest of the

classes lying between 15 and 60%. This is quite different from the PA results

(figure 17(a)), which are more or less widely spread for all the classes. It is not

possible to explain why this difference is observed.

In figure 18, some of the results from different band combinations are presented

for visual or empirical comparison. Figure 18(a) shows the spectral-only classifica-

tion results, and figures 18(b) and 18(c) are the results of the spectral combined with

GLCM21-Mean, and GLCM21-Mean together with the WT-levels 4 and 5 textures,

respectively. The results of spectral-only classification presented in figure 18(a)

retained the ‘salt-and-pepper’ like pixel appearance, even after the 363 or 565

majority filter smoothing kernel was applied to try and smooth the classification

results for visualization purposes. From all the results, soils and clouds were well

mapped in all the classification results. The problem is with the rest of the vegetated

classes, as they all possess green matter, and thus their differentiation is critical. In

the spectral-only classification results (figure 18(a)), it is empirically observed that

apart from the excessive ‘salt-and-pepper’ appearance, older pine trees were

confused or replaced with grass in most cases, and the logged areas are not

homogenously mapped as directly visible in the original imagery.

When the GLCM is introduced in the classification process figure 18(b), the

previously dominant ‘salt-and-pepper’ appearance is greatly reduced, especially in

the highly homogeneous land cover areas like camphor trees, tea, young pine trees,

and logged areas. This is an interesting phenomenon and reflects the contribution of

the GLCM mean texture measure with corresponding window size of 21621.

Combining the GLCM results with the spectral and WT-levels 4 and 5 (figure 18(c))

Figure 16. PA and UA results for combined spectral, GLCM21-Mean, and WT-levels 4 and
5 band classification.
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Figure 17. (a) Comparison of PA of the eight classes from the selected band combinations.
(b) Comparison of UAs of the eight classes for the selected band combinations.
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appears to further improve the discrimination for some classes like camphor trees,

logged areas, and grass. However, the introduction of the WT texture appears to

reduce the discrimination of some parts of tea and planted pine trees slightly,

especially around the edges. This observation can however be argued to be discrete

or occurs in isolated incidences and is overridden not only by the increased PAs and

UAs of these classes but also by the improved overall accuracy of the classification

results.

5. Discussions and conclusions

What human interpreters cannot possibly or adequately do with respect to

vegetation types differentiation, apart from being slower than digital processors,

is to successfully isolate sparsely located vegetation types within a scene. This is

Figure 18. Classification results for: (a) spectral bands only; (b) spectral and GLCM21-
Mean texture bands; and (c) spectral, GLCM21-Mean texture, and WT-levels 4 and 5 bands.
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where automated processing methods are required, and one of the main cues apart

from the spectral information is the texture. Depending on the scene and the task,

different texture measures are necessary for capturing the true texture patterns. For

example, for texture measure definition in forest applications, the type and density

of vegetation may influence the texture measure. While, in urban applications, this

may involve the analysis of heterogeneity and symmetry of the urban features, one

also ought to appreciate here that we cannot always obtain or acquire other cues to

image interpretation like height, etc. It is therefore imperative to maximize the

possible available cue sources before investing other data sources, which may also be

quite expensive.

For the human visual-perception system, six combined textural features may be

most responsible for this judgement: coarseness, contrast, directionality, shape/line-

likeness, regularity and roughness. Not all of them can be or have been adequately

formularized or reprinted in the digital computing system. Coarseness has a direct

relationship to scale and repetition rates, and is a fundamental texture feature. An

image will contain textures at several scales; coarseness aims to identify the largest

size at which a texture exists, even where a smaller micro-texture exists. Contrast

aims to capture the dynamic range of grey levels in an image, together with the

polarization of the distribution of black and white. Directionality is a global

property over a region, hence macro-texture. The feature directionality texture

described does not aim to differentiate between different orientations or patterns but

measures the total degree of directionality. This functional reasoning works well in

the complicated human visual-based pattern recognition and may change or adapt

itself with changes in the scene the characteristics.

There is a wide range of texture-analysis techniques that are used with different

criteria for feature extraction: statistical methods (grey-level co-occurrence matrix,

semivariogram analysis); filter techniques (wavelet decomposition filters, Gabor

filters), etc. The combination of parameters that optimize a method for a specific

texture application should be decided upon when these techniques are used. The

combination of parameters and the texture method used is expected to be crucial in

the success and efficiency of these techniques for a particular application. In this

study, we analysed a combinational approach towards micro- and macro-texture

application in the classification of vegetation cover from high-resolution remote-

sensing images for different types of vegetation.

As reported in Coburn and Roberts (2004), the standard approach to texture

analysis is to process a single band of spectral information with a fixed processing

window. The results of such an analysis may be profoundly misleading, based on the

fact that landscapes and landscape features inherently exist in different scales. This

suggests that a single window size or texture may not always yield the desired results.

For this reason, in this study, the combinational approach to texture analysis for

vegetation species or types classification has been investigated. The results of this

study indicate that a combination of micro-texture and macro-texture yields better

results. The degree of improvement, however, depends on the texture window size

and texture measure for the GLCM textures, and on the level and sum of the

wavelet textures.

Nevertheless, the fundamental question that remains elusive is whether the

presented approach was able to capture the six fundamental human visual-

perception textural features. The answer to this question forms a basis for one of the

crucial future areas of further research.

3448 Y. O. Ouma et al.
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5.1 On the optimal window size determination

The results indicate that without some kind of optimization like the semivariance

window size modelling, it might not be possible to directly select an optimal window

for the case of GLCM textures (micro-textures). However, for macro-textures, the

window size may be referred to as the spatial resolution(s) at which the classification

rate(s) are maximum, with respect to overall accuracies and the class producers and

user accuracies. This observation is supported by the fact that a single window may

not always represent the real-world landscape features or components. For example,

the same tree species might exist at different growth stages. This may result in

different leaf textures based on the age-biophysical characteristics.

The results from this study indicate that the most homogeneous and smooth

surfaces (clouds and soil) possessed the highest optimal GLCM texture window

sizes, compared with the rest of the classes that were relatively heterogeneous, and

do possess rougher canopy structures. This observation implies that the smoothness

or roughness of the ‘canopy’ indeed influences its texture measure window size.

However, for practical application purposes, it may be most desirable to determine

the window size that yields the maximum information with respect to classification

accuracy and with correct edge/shape representation of the original features. The

possibility of determining the effectiveness of a common window for the scene

features is illustrated in this study. We do not rule out the fact that for any other

scene(s), it is possible to combine different texture windows and obtain better

results.

5.2 Optimal texture measure

The choice of the appropriate texture measure for a given task or scene is essential

for any feature(s) discrimination-based application. It is illustrated in this study

that with a large GLCM texture database (eight texture measures, each with up to

20 windows), the first step is to reduce this dimensionality by determining the

optimal window sizes through semivariogram fitting followed by an assessment of

the classification accuracies for the test texture measures over statistically derived

optimal windows. The results of this phase yielded a single texture measure, mean,

for further analysis. This approach is relevant to GLCM, but for the WT textures,

the relevant levels are combined with the spectral bands and the accuracies

compared. By doing so, a set of bands will emerge that are suitable for the

classification of the scene features. The fact that the mean gave the best GLCM

texture measure results shows that this texture measure captured the fundamental

vegetation micro-texture properties like coarseness, contrast, and roughness. For

the WT textures, the results show that the level-energy measure alone may be

misleading if used in deciding on the suitable level(s) for incorporation into the

classification process. This is because the features possess textural information

that is relevant to their respective nominal scales or patch sizes. Rather, the

classification error rates ought to be investigated for independent and combined

level selection.

5.3 Influence of scale in vegetation classification

While, for the GLCM textures, the influence of scale may not be directly inferred,

the influence of scale is quite important from the wavelet texture analysis. With

respect to GLCM scale representation, we argue that the optimal windows may be
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used as pointers towards the texture scales at which the respective features can be

mapped. This should however not be interpreted literally to imply that the spatial

resolution for mapping camphor for example trees is 12612, but rather to depict the

scale or window size for mapping the co-occurrence texture patterns for the

camphor trees.

The wavelet texture, on the other hand, gives a direct interpretation of the scale

range within which the scene features can be best mapped. From the results, it is

observed that the optimal WT textures scale lies somewhere between 16m and 32m,

which corresponds to levels 4 and 5, respectively. First, comparing this scale range

and that of the optimal GLCM texture, we have some clue. That is, the average scale

for the wavelet texture is roughly around 24m, while the optimal GLCM texture

window size is 21621 (21m). Comparing the difference between these windows

(3m) and assessing the scene feature spatial characteristics, we can say with

confidence that the scale and window size are very closely related.

Second, apart from the clouds and soils, the sizes of the rest of the features within

this scene are quantifiable, either in terms of patch size, e.g. for grass, or in terms of

spatial size for camphor trees. An empirical derivation of this scale–space

relationship may not be direct unless an approach like that presented in this study

is adopted. Third, as supported by the results of this study, an optimal scale may not

be resident in a single level, but rather in the combination of two or more levels.

Fourth, it is observed that the macro-texture information is not captured at the

leaves or branches level but rather over the entire canopy or patch, as indicated by

the optimal scale sizes, i.e. 16–32m. It can be said that the scale–space response

depends on the characteristics of the feature of interest. Vegetation exhibits fairly

weaker directional structural patterns, hence a low response to wavelet textures in

comparison with GLCM textures. Built-regular urban environments with well-

structured directional patterns are likely to exhibit very strong wavelet textures.

However, their response to GLCM textures may not be that obvious.

5.4 Classification results

The main difficulty with respect to GLCM and WT texture integration is that while

the former measure is localized and point-based, the latter measure more or less

picks the global image characteristics. Arguably, localized texture will combine or

integrate well with the spectral information irrespective of the window size, but the

global texture or macro-texture appears to slightly over-aggregate some of the

classes past some scale or level. For example, at level 5, the tea class appears to

attain the stationarity or crisp boundary delineation problem, whereby part of the

edges are misclassified, yet the classification accuracies are overestimated, and a

distortion in the overall size is observed. This effect is described by Csillag and

Kabos (1996) as the dilation of the feature boundaries to encompass the ground

data and was also noted later by Coburn and Roberts (2004).

Notably, the findings in this study are subject to the test site as well as the available

data, and may thus vary depending on the characteristics of the scene features under

investigation. The following observations were made with respect to individual class

differentiations in terms of their response to micro- and macro-textures:

1. The camphor trees responded very well to GLCM (micro-) texture with WT

(macro-texture). A better accuracy was observed when the two texture types

were combined, especially at WT-level 4.
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2. Tea exhibited good results with both micro- and macro-textures indepen-

dently. Level 4 and combination of levels 4 and 5 gave the best results overall.

3. Young pine trees were best discriminated using micro-texture. The impact of

macro-texture was insignificant, even on combination with micro-texture and

spectral data.

4. The old pines were the most difficult to discriminate. It was only possible to

discriminate the older pine trees from the younger ones when the WT textures

were introduced into the classification process. This means that the WT scale

aspect responded to the age–size differences between these two tree type

classes. Macro-texture was observed to have more significance than micro-

texture in this particular class.

5. Grass responded well to the combined WT-levels 4 and 5 (macro-textures)

than to micro-textures. However, the best results were obtained from both

textures combined.

6. In the logged areas, both the micro- and macro-textures had similar impacts.

A combination of the two significantly improved the overall discrimination

possibility.

7. For clouds and soil, macro-texture was observed to play no role at all. They

both exhibit a close-to-perfectly homogeneous surface. These surfaces can

only be represented with respect to some optimal patch size and are not

captured by wavelet textures.

From the above class results, it can be concluded that the most homogeneous

surfaces (clouds and soils), also possessing the largest optimal window sizes, were

the least influenced by the macro-texture. For the rest of the classes, mostly

vegetation, macro-texture had some impact, particularly for tea and grass

vegetation. It is conclusive that the size and density of vegetation leaf size/structural

arrangement may influence the texture (micro- or macro-) measure for its

discrimination from other vegetation types. The observed ‘salt-and-pepper’ in the

spectral-only classification results confirms that the spectral distribution among

different vegetation types depicted in figure 1 is indeed true. For the deciduous

camphor trees, for example, the lower spectral reflectance strength between the

interlocked tree-canopies is mapped as different classes from the trees, hence the

observed ‘salt-and-pepper’ in figure 18(a). The introduction of texture successively

captures this unresolved difference through the analysis of neighbourhood patterns

giving a better differentiation and aggregation of the vegetation types as shown in

figures 18(b) and 18(c).

It is generally observed that the lowest PA and UA are from spectral-only and

spectral plus WT (levels 4 and 5) combinations. This confirms two facts: (1) that

spectral information alone is not suitable for vegetation species isolation in this

scene using the QB02 channels, and (2) that for vegetation-type differentiation,

macro-texture should not be wholly relied upon, as vegetation does not exhibit

strong macro-texture properties (shape, direction, definite size). If a user is

interested in a particular class, then the selection of the highest PA and UA for

the class is a very significant statistic. For an entire scene mapping, however, some

slight compromise might have to be made for some class(s). Notably, each class

exhibits a unique response to the types of spectral and/or textural information used

in the extraction process. However, as reported in the results of this study, an

appropriate combination(s) of the micro- and macro-textures will result in better

results than if individual textures are used in combination with spectral information.

Differentiation of forest and non-forest vegetation 3451



D
o
w

n
lo

a
d
e
d
 B

y
: 
[C

h
ib

a
 U

n
iv

e
rs

it
y
] 
A

t:
 1

4
:1

1
 3

0
 M

a
y
 2

0
0
8
 

Finally, it is suggested that different classification approach(s) be compared against

the maximum-likelihood as this may also significantly improve the classification

output results as observed by Meyer et al. (1996) regarding vegetation-type

differentiation.

The results of this research conclusively indicate that to improve on the feature

recognition and extraction from satellite imagery through classification, a careful

selection and integration strategy of spectral, scale-based macro-texture and co-

occurrence (micro-) texture cues is inevitable. Our future work, apart from

comparing different classification approaches, would be to derive results for other

scenes/features so as to be able to obtain generalized models or theories. This is

supported by observations in Wilkinson (2005) pointing to the fact that satellite-

image classification accuracy has not improved in the past 15 years, and as a

consequence more robust approaches are required.
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