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Abstract: Competing risks data arise when study subjects may experience several

different types of failure. It is common that the cause of failure is missing due to

various reasons. Analysis of competing risks data with missing cause of failure has

received considerable attention recently (Goetghebeur and Ryan (1995), Lu and

Tsiatis (2001), Gao and Tsiatis (2005), among others). In this article, we study

the semiparametric additive hazards model for analysis of competing risk data with

missing cause of failure. Different estimating equation approaches using the inverse

probability weighted and double robust techniques are proposed for estimating the

regression parameters of interest. The resulting estimators have closed forms and

their theoretical properties are established for inference. Simultaneous confidence

bands of survival curves are constructed using a resampling technique. Simulations

and an example show that the proposed approach is appropriate for practical use.

Key words and phrases: Additive hazards model, Competing risks data, Double

robust, Estimating equation, Inverse probability weight, Missing cause of failure.

1. Introduction

Competing risks data arise in medical and public health studies when sub-

jects may experience several different types of failure. The data typically include,

for each subject, the failure time, possibly censored, the cause of failure when an

failure is observed, and some covariates. In the literature, cause-specific hazards

have been widely used to assess the covariate effects on the failure times of main

interest (Prentice and Kalbfleisch (1978) and Cox and Oakes (1984)). In most

applications, the causes of observed failures are assumed to be known.

In practice, however, the cause of failure for some subjects may be missing

or uncertain. For example, documentation containing the information needed for

attributing the cause of failure may be lost or not collected, or the cause of disease

for some patients may be difficult to determine (Andersen, Goetghebeur and Ryan

(1996)). Analysis using only the failures with known causes, i.e., the complete-

case analysis, may lead to substantial bias. A number of statistical methods have

been proposed for analysis of competing risks data with missing cause of failure,
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e.g., Dinse (1982, 1986), Racine-Poon and Hoel (1984) and Goetghebeur and Ryan

(1990). More recently, semiparametric survival models have been used to study

the effects of covariates for such data. In particular, Goetghebeur and Ryan

(1995) and Lu and Tsiatis (2001) studied the proportional hazards model, and

Gao and Tsiatis (2005) considered linear transformation models. In addition,

Craiu and Duchesne (2004) and Craiu and Reiser (2006) investigated the com-

peting risks model with masked causes of failure.

For survival data, the additive hazards model is another useful framework

for describing the association between risk factors and failure time. Compared

with the proportional hazards model (Cox (1972)), the covariate effects in the

additive hazards model are assumed to be additive instead of multiplicative to

the baseline hazard function. In this article, we study competing risks data with

missing cause of failure under the additive hazards model. Estimating equation

approaches based on the inverse probability weighted (IPW) and double robust

(DR) techniques are proposed for estimating the regression parameters. The

resulting estimators have closed forms and are easy to compute. Their theoretical

properties are derived for inference. The weak convergence properties of the

estimated baseline cumulative hazard function and the corresponding survival

function are established. A resampling technique is proposed for constructing

simultaneous confidence bands for the survival curve of a given subject.

The remainder of the article is organized as follows. The next section briefly

reviews the method proposed by Lin and Ying (1994) for conventional right-

censored survival data under the additive hazards model. The IPW and DR

estimating equations are developed and the asymptotic properties of the corre-

sponding estimators are established in Section 3. Construction of simultaneous

confidence bands of survival curve is also discussed here. Section 4 is devoted

to numerical studies. Some conclusions and discussions are given in Section 5.

Major technical derivations are contained in the Appendix.

2. Notation and Model Specification

Consider a study involving n independent subjects. Without loss of gener-

ality, we assume that each study subject might experience two types of failure:

types 1 and 2. For subject i, let Zi(·) be a p-dimensional vector of possibly

time-varying covariates, and let Ti1 and Ti2 denote the potential failure times

from types 1 and 2, respectively, i = 1, . . . , n. Here, instead of observing Ti1

and Ti2, we observe the minimum of Ti1, Ti2 and the censoring time Ci, i.e.

Ti = min(Ti1, Ti2, Ci). Define ∆i = 1 if Ti = Ti1, ∆i = 2 if Ti = Ti2, and 0

otherwise. Throughout the paper, we assume that Zi(·) is an external covariate

process (Kalbfleish and Prentice (2002)) and that given Zi(·), Ci is independent

of Ti1 and Ti2. If there were no missing causes of failure, the observed data
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would consist of {Ti,∆i, Zi(t) : 0 < t ≤ Ti}, i = 1, . . . , n. Suppose that our

interest focuses on assessing the association between the first type of failure and

the covariates. The cause-specific hazard function λ∗1(t|Z) of type 1 failure for a

subject with covariate Z is given by

λ∗1(t|Z) = lim
h→0

h−1P (t ≤ T < t+ h,∆ = 1|T ≥ t, Z). (1)

The additive hazards model assumes that

λ∗1(t|Z) = λ1(t) + β′Z(t), (2)

where λ1(t) is the completely unspecified baseline hazard function and β a p-

dimensional regression parameter vector. Lin and Ying (1994) proposed the fol-

lowing estimating equation for β:

n
∑

i=1

∫

∞

0
{Zi(t) − Z̄(t)}{dNi(t) − Yi(t)β

′Zi(t)dt} = 0, (3)

where Ni(t) = I(∆i = 1)I(Ti ≤ t) and Yi(t) = I(Ti ≥ t) are the usual counting

and at-risk processes. The resulting estimator for β can be written as

β̂ =
[

n
∑

i=1

∫

∞

0
Yi(t){Zi(t) − Z̄(t)}⊗2dt

]−1[
n

∑

i=1

∫

∞

0
{Zi(t) − Z̄(t)}dNi(t)

]

,

where Z̄(t) =
∑n

j=1 Zj(t)Yj(t)/
∑n

j=1 Yj(t). It was also shown that β̂ is consistent

and asymptotically normal.

As discussed before, the cause of failure may not be observed for every sub-

ject, i.e., ∆i is not always observed. If this is the case, equations (3) cannot be

used directly for parameter estimation. Let Ri denote the missing indicator for

the cause of failure, i.e., Ri = 1 if the cause of failure for subject i is observed,

and 0 otherwise. Here we define Ri = 1 when ∆i = 0, i.e., the failure time of

subject i is censored. Then the observed data consist of {Ri, Ti, I(∆i = 0),

RiI(∆i = 1), RiI(∆i = 2), Gi, Zi(t) : 0 < t ≤ Ti}, i = 1, . . . , n, where the Gi’s

are some auxiliary covariates collected for every subject.

3. Estimating Equations and Theoretical Results

In this article, we assume that the cause of failure is missing at random

(MAR) (Rubin (1976)). That is, given ∆i > 0 and Xi = (Ti, Zi, Gi), the prob-

ability that the cause of failure for subject i is missing depends only on the

observed quantities Xi, but not on the unobserved ∆i. In other words,

P (Ri = 1|∆i,∆i > 0,Xi) = P (Ri = 1|∆i > 0,Xi) ≡ π(Xi). (4)
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The MAR assumption has been widely used for handling missing data problems

in the statistical literature. The collection of auxiliary covariates Gi’s is to ensure

the validity of such assumption. When there are only two possible failure causes,

the MAR assumption is equivalent to the symmetry assumption discussed in the

literature (Craiu and Duchesne (2004)).

3.1. Inverse probability weighted estimating equations

Following the inverse selection probability idea of Horvitz and Thompson

(1952), we consider two estimating equations for β and Λ1:

n
∑

i=1

Ri

π∗(Xi,∆i, γ̂)
{dNi(t) − Yi(t)β

′Zi(t)dt − Yi(t)dΛ1(t)} = 0, t > 0, (5)

n
∑

i=1

∫

∞

0

Ri

π∗(Xi,∆i, γ̂)
Zi(t){dNi(t) − Yi(t)β

′Zi(t)dt − Yi(t)dΛ1(t)} = 0, (6)

where π∗(Xi,∆i, γ) = I(∆i > 0)π(Xi, γ) + I(∆i = 0) with π(Xi, γ) being a

parametric model posited for the missing cause probability π(Xi). For example,

since Ri is binary, logistic regression can be used for π(Xi, γ). An estimator γ̂

may be obtained by maximizing the likelihood based on uncensored data, i.e., γ̂

maximizes
n

∏

i=1

{π(Xi, γ)}RiI(∆i>0){1 − π(Xi, γ)}(1−Ri)I(∆i>0).

If the parametric model π(Xi, γ) is correctly specified, γ̂ consistently estimates

γ0, the true value of γ. As before, the resulting IPW estimator for β has the

closed form

β̂IPW =
[

n
∑

i=1

∫

∞

0

Ri

π∗(Xi,∆i, γ̂)
Yi(t){Zi(t) − Z̄∗(t, γ̂)}⊗2dt

]−1

×
[

n
∑

i=1

∫

∞

0

Ri

π∗(Xi,∆i, γ̂)
{Zi(t) − Z̄∗(t, γ̂)}dNi(t)

]

,

where Z̄∗(t, γ) =
∑n

j=1[Rj/(π
∗(Xj ,∆j , γ))]Zj(t)Yj(t)/

∑n
j=1[Rj/(π

∗(Xj ,∆j, γ))]

Yj(t).

3.2. Double robust estimating equations

The validity of the inverse probability weighted estimator β̂IPW depends on

the correct specification of the parametric model π(Xi, γ). If it is misspecified,

β̂IPW may be biased. In addition, since the calculation of β̂IPW only uses the

complete-case data, it may lose efficiency. To improve the robustness as well
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as the efficiency of β̂IPW , we construct estimating equations based on the dou-

ble robust technique developed by Robins, Rotnitzky and Zhao (1994). Define

h(Qi) = P (∆i = 1|∆i > 0, Ri = 0,Xi), where Qi = (Ti, Zi). Under the assump-

tion of missing at random, we have

h(Qi) = P (∆i = 1|∆i > 0, Ri = 0,Xi) = P (∆i = 1|∆i > 0, Ri = 1,Xi)

= P (∆i = 1|∆i > 0,Xi) = P (∆i = 1|∆i > 0, Qi).

In addition, h(Q) can be determined by the ratio of the cause-specific hazard
functions of T1 and T2, namely,

h(Q)

1 − h(Q)
=
λ∗1(T |Z)

λ∗2(T |Z)
, (7)

where λ∗2(T |Z) is the cause-specific hazard function for type 2 failure (see Dewanji

(1992) and Lu and Tsiatis (2001)). Here, instead of directly estimating h based

on (7) which involves the estimation of the two nonparametric cause-specific haz-

ard functions λ∗1(t|Z) and λ∗2(t|Z), we posit a parametric model h(Q, θ) for h(Q).

For example, logistic regression can be used for h(Q, θ) for convenience, though

other parametric models can also be accommodated easily. Due to the MAR as-
sumption, the parameters θ can be estimated by maximizing the complete-case

data likelihood
n

∏

i=1

{h(Qi, θ)}RiI(∆i=1){1 − h(Qi, θ)}RiI(∆i=2).

Let θ̂ denote the corresponding maximizer. It is known that when h(Q, θ) is

correctly specified, θ̂ consistently estimates θ0, the true value of θ. The double

robust estimating equations can then be constructed as

n
∑

i=1

{ Ri

π(Xi, γ̂)
dNi(t) −

Ri − π(Xi, γ̂)

π(Xi, γ̂)
h(Qi, θ̂)dN

∗

i (t)

−Yi(t)β
′Zi(t)dt − Yi(t)dΛ1(t)

}

= 0, t > 0, (8)

n
∑

i=1

∫

∞

0
Zi(t)

{ Ri

π(Xi, γ̂)
dNi(t) −

Ri − π(Xi, γ̂)

π(Xi, γ̂)
h(Qi, θ̂)dN

∗

i (t)

−Yi(t)β
′Zi(t)dt − Yi(t)dΛ1(t)

}

= 0, (9)

where N∗
i (t) = I(∆i > 0)I(Ti ≤ t). From (8) and (9), we also have the closed-

form DR estimator of β,

β̂DR =
[

n
∑

i=1

∫

∞

0
Yi(t){Zi(t) − Z̄(t)}⊗2dt

]−1
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×
[

n
∑

i=1

∫

∞

0
{Zi(t)−Z̄(t)}

{ Ri

π(Xi, γ̂)
dNi(t)−

Ri−π(Xi, γ̂)

π(Xi, γ̂)
h(Qi, θ̂)dN

∗

i (t)
}]

.

Remark 1. Let γ∗ and θ∗ denote the limits of γ̂ and θ̂, respectively. When

either the parametric model π(Xi, γ) or h(Qi, θ) is correctly specified, we have,

for any t > 0,

E
[ Ri

π(Xi, γ∗)
Ni(t)−

Ri−π(Xi, γ
∗)

π(Xi, γ∗)
h(Qi, θ

∗)N∗

i (t)−
∫ t

0
Yi(s){β′0Zi(s)ds+dΛ01(s)}

]

= 0, (10)

where β0 and Λ01 denote the true values of β and Λ1, respectively.

The proof of (10) can be derive from the representation

Ri

π(Xi, γ∗)
Ni(t)−

Ri−π(Xi, γ
∗)

π(Xi, γ∗)
h(Qi, θ

∗)N∗

i (t)−
∫ t

0
Yi(s){β′0Zi(s)ds+dΛ01(s)}

=Mi(t) −
Ri − π(Xi, γ

∗)

π(Xi, γ∗)
{I(∆i = 1) − h(Qi, θ

∗)}N∗

i (t),

where Mi(t) = Ni(t) −
∫ t
0 Yi(s){β′0Zi(s)ds + dΛ01(s)} is a martingale process

(Fleming and Harrington (1991)) with E{Mi(t)} = 0. For the second term, if

the parametric model π(Xi, γ) is correctly specified (γ∗ = γ0), conditioning on

(Xi,∆i,∆i > 0), we have

E(Ri|Xi,∆i > 0) − π(Xi, γ
∗)

π(Xi, γ∗)
{I(∆i = 1) − h(Qi, θ

∗)}N∗

i (t) = 0.

On the other hand, if the parametric model h(Qi, θ) is correctly specified (θ∗ =

θ0), conditioning on (Xi, Ri,∆i > 0), we have

{P (∆i = 1|Qi,∆i > 0) − h(Qi, θ
∗)}Ri − π(Xi, γ

∗)

π(Xi, γ∗)
N∗

i (t) = 0.

Therefore (10) holds.

3.3. Theoretical results

For simplicity, we only develop the asymptotic properties for β̂DR. The large

sample results for β̂IPW can be similarly derived and are omitted here. Define

M∗

i (t, β, γ, θ,Λ1) =
Ri

π(Xi, γ)
Ni(t) −

Ri − π(Xi, γ)

π(Xi, γ)
h(Qi, θ)N

∗

i (t)

−
∫ t

0
Yi(s){β′Zi(s)ds + dΛ1(s)},
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φi =

∫

∞

0
{Zi(t) − z̄(t)}dM∗

i (t, β0, γ
∗, θ∗,Λ01) −BγI

−1
γ Sγi −BθI

−1
θ Sθi,

andA = E[
∫

∞

0 Y1(t){Z1(t)−z̄(t)}⊗2dt], where z̄(t) = s(1)(t)/s(0)(t) with s(k)(t) =

E[{Z1(t)}kY1(t)], k = 0, 1, Iγ and Sγi are, respectively, the Fisher information

matrix and score function derived from the parametric model π(Xi, γ), and Iθ
and Sθi are similarly defined for the parametric model h(Qi, θ). The formulations

of Bγ , Iγ , Sγi, Bθ, Iθ and Sθi are given in the Appendix. The following theorem

establish the theoretical properties of β̂DR.

Theorem 1. Under the regularity conditions given in the Appendix,

n
1

2 (β̂DR − β0) = A−1
(

n−
1

2

n
∑

i=1

φi

)

+op(1).

Based on Theorem 1, when either the parametric model π(X, γ) or h(Q, θ)

is correctly specified, n1/2(β̂DR − β0) is asymptotically a sum of independent

random vectors with zero mean. Thus, by the Central Limit Theorem, it con-

verges in distribution to a normal random vector with zero mean and variance-

covariance matrix A−1E(φ1φ
′
1)(A

−1)′. In addition, the variance-covariance ma-

trix can be consistently estimated by Â−1(n−1
∑n

i=1 φ̂iφ̂
′

i)(Â
−1)′ where Â =

(1/n)
∑n

i=1

∫

∞

0 Yi(t){Zi(t) − Z̄(t)}⊗2dt and

φ̂i =

∫

∞

0
{Zi(t) − Z̄(t)}dM∗

i (t, β̂DR, γ̂, θ̂, Λ̂1) − B̂γ Î
−1
γ Ŝγi − B̂θ Î

−1
θ Ŝθi.

Here B̂γ , Îγ , Ŝγi, B̂θ, Îθ and Ŝθi are obtained by substituting (β̂DR, γ̂, θ̂) for

(β0, γ
∗, θ∗) and replacing the expectation E by its empirical counterpart, and

Λ̂1(t) = Λ̂1(t, β̂DR) is the Nelson-Aalen estimator for Λ01(t), where

Λ̂1(t, β) =

∫ t

0

∑n
i=1{ Ri

π(Xi,γ̂)dNi(s)−Ri−π(Xi,γ̂)
π(Xi,γ̂) h(Qi, θ̂)dN

∗
i (s)−β′Zi(s)Yi(s)ds}

∑n
i=1 Yi(s)

.

Furthermore, define

ψi(t) =

∫ t

0

dM∗
i (u, β0, γ

∗, θ∗,Λ01)

s(0)(u)
− ξ′(t)A−1φi −C ′

γ(t)I−1
γ Sγi − C ′

θ(t)I
−1
θ Sθi,

where ξ(t) =
∫ t
0 z̄(u)du, π̇γ(·, γ) = ∂π(·, γ)/∂γ, ḣθ(·, θ) = ∂h(·, θ)/∂θ and

Cγ(t) = E

[
∫ t

0

R1π̇γ(X1, γ
∗)

π2(X1, γ∗)s(0)(u)
{dN1(u) − h(Q1, θ

∗)dN∗

1 (u)}
]

,

Cθ(t) = E

{
∫ t

0

R1 − π(X1, γ
∗)

π(X1, γ∗)s(0)(u)
ḣθ(Q1, θ

∗)dN∗

1 (u)

}

.
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The following theorem establishes the asymptotic properties for the baseline cu-

mulative hazard estimator Λ̂1(t).

Theorem 2. Under the conditions of Theorem 1,

V (t) ≡ n
1

2{Λ̂1(t) − Λ01(t)} = n−
1

2

n
∑

i=1

ψi(t) + op(1).

By Theorem 2, when either the parametric model π(X, γ) or h(Q, θ) is cor-

rectly specified, V (t) converges weakly to a zero-mean Gaussian process. The

asymptotic covariance function of V (·) at (s, t) is then E{ψ1(s)ψ1(t)}, which can

be consistently estimated by n−1
∑n

i=1 ψ̂i(s)ψ̂i(t), where

ψ̂i(t) =

∫ t

0

dM∗

i (u, β̂DR, γ̂, θ̂, Λ̂1)
∑n

i=1 Yi(u)/n
− ξ̂′(t)Â−1φ̂i − Ĉ ′

γ(t)Î−1
γ Ŝγi − Ĉ ′

θ(t)Î
−1
θ Ŝθi.

Here ξ̂(t), Ĉγ(t), Ĉθ(t) are obtained by substituting (γ̂, θ̂) for (γ∗, θ∗) and replac-

ing the expectation E by its empirical counterpart.

For a subject with the covariate vector z0(t), the cumulative hazard function

can be estimated by Λ̂1(t; z0) = Λ̂1(t, β̂DR) +
∫ t
0 β̂

′

DRz0(u)du, and the survival

function by Ŝ1(t; z0) = exp{−Λ̂1(t; z0)}. Define Λ01(t, z0) = Λ01(t)+
∫ t
0 β0z0(u)du

and S01(t, z0) = exp{−Λ01(t, z0)}.
Theorem 3. Under the conditions of Theorem 1,

Vz0
(t) ≡ n1/2{Λ̂1(t; z0) − Λ01(t; z0)} = n−1/2

n
∑

i=1

ψz0

i (t) + op(1),

where ψz0

i (t) = ψi(t) + {
∫ t
0 z0(u)du}A−1φi.

The proof of Theorem 3 is omitted since it is similar to that of Theorem 2.

When either the parametric model π(X, γ) or h(Q, θ) is correctly specified, Vz0
(t)

converges weakly to a zero-mean Gaussian process and the asymptotic covariance

function of Vz0
(·) at (s, t) can be consistently estimated by n−1

∑n
i=1 ψ̂

z0

i (s)ψ̂z0

i (t),

where ψ̂z0

i (t) = ψ̂i(t) + {
∫ t
0 z0(u)du}Â−1φ̂i. By the functional delta method, the

normalized survival process n1/2{Ŝ1(t; z0)−S01(t; z0)} converges weakly to a zero-

mean Gaussian process, and the covariance function at (s, t) can be consistently

estimated by

Ŝ1(s; z0)Ŝ1(t; z0)
{ 1

n

n
∑

i=1

ψ̂z0

i (s)ψ̂z0

i (t)
}

.

A point-wise confidence interval for the survival function S01(t; z0) can be

easily constructed using the above result. But construction of simultaneous
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confidence bands for all t involves functionals of the limiting distribution of

Vz0
(t), which does not have an independent increment structure. We use a

resampling technique of Lin, Fleming and Wei (1994) to approximate the dis-

tribution of Vz0
(t). A similar method was also used by Yin and Cai (2004)

to construct simultaneous confidence bands of survival curves for multivari-

ate survival data under the additive hazards model. To be specific, define

V̂z0
(t) = (1/

√
n)

∑n
i=1 ψ̂

z0

i (t)Wi, where Wi, i = 1, . . . , n, are n i.i.d. random vari-

ables from the standard normal distribution and are independent of the observed

data.

Theorem 4. Conditional on the observed data, V̂z0
(t) converges weakly to the

same zero-mean Gaussian process as that of Vz0
(t) when either the parametric

model π(X, γ) or h(Q, θ) is correctly specified.

The proof of Theorem 4 easily follows the conditional multiplier central limit

theorem in van der Vaart and Wellner (1996, Thm. 2.9.6) and the steps given

in Appendix 3 of Yin and Cai (2004). The simultaneous confidence band for

S01(t; z0) can then be easily constructed based on the perturbed process V̂z0
(t)

along the lines of Yin and Cai (2004).

4. Numerical Studies

4.1. Simulation studies

The properties of our proposed estimators are assessed in a series of simula-

tion studies under practical settings. The additive hazards model (2) is used to

generate failure time T1 due to the cause of interest. Two independent covariates

Z1 and Z2 are considered, with Z1 following a uniform distribution on (0, 1) and

Z2 a Bernoulli distribution with success probability 0.5. The regression parame-

ter β = (β1, β2)
′ = (1,−1)′ and the baseline hazard function λ1(t) ≡ 1.3. Failure

time T2 from the other cause is generated from a Gompertz distribution with

hazard function λ2(t|Z) = exp(a+ bt), where a = −1 and b = 1. Censoring time

C is generated from a uniform distribution on (0, c), where c is chosen to yield

a desired censoring level, P (∆ = 0) is either 15% or 40%. In the above setting,

when the censoring level is 15%, we have, on average, approximately 55% type

1 failures, while when the censoring level is 40%, approximately 42% failures are

of type 1.

The missing cause indicator R for a failure is generated from a logistic

model: π(X) = P (R = 1|∆ > 0,X) = exp(γ′X)/{1 + exp(γ′X)}, where

X = (1, T, Z1, Z2)
′, γ = (−2.5, 2, 2, 2)′ and T = min(T1, T2, C). Then, under

the 15% censoring level, nearly 44% of the failures have missing causes, i.e.,

Ri = 0, while 50% of the failures have missing causes under the 40% censoring

level.
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Here three different methods are used for estimating the regression param-

eter β. The first method directly applies Lin and Ying (1994)’s equation (3)

to complete-case data. Denote the resulting estimator by β̂CC . In the sec-

ond and third methods we consider the inverse probability weighted estimator

β̂IPW and the double robust estimator β̂DR discussed in Sections 3.1 and 3.2,

respectively. To derive the inverse probability weighted and the double robust

estimators, we posit two different parametric models for π(X): one is the true

logistic model π(X, γ) = exp(γ′X)/{1 + exp(γ′X)}; the other is the misspec-

ified constant model π0, where π0 is a constant between 0 and 1. Further-

more, in the settings we consider above, the true model for h(X) is given by

h(X)/(1 − h(X)) = (1.3 + Z1 − Z2)/exp(−1 + T ). Since the cause-specific haz-

ard functions for the two types of failure are usually unknown in practice, instead

of estimating h(X) directly from the data, we posit two different parametric mod-

els for h(X): one is the logistic model h(X, θ) = exp(θ′X)/{1 + exp(θ′X)}, and

the other is the constant model h0 ∈ (0, 1). Both of them are thus misspecified.

500 runs with sample size n = 200 are used under each scenario. All simulations

are done with R codes. Simulation results of the above three estimators are sum-

marized in Table 1 and Table 2, where Table 1 presents the results for the 15%

censoring level and Table 2 does so for the 40% censoring level.

Results from Tables 1 and 2 indicate that the complete-case estimators show

large bias in all the settings, and the inverse probability weighted estimators

are essentially unbiased only when the parametric model for π(X) is correctly

specified. But when π(X) is misspecified, they also show large bias. The double

Table 1. Simulation results for the 15% censoring level.

Parameters β1 = 1 β2 = −1

Estimates Bias SD SE CP Bias SD SE CP

CC 0.131 0.416 0.391 94.8 0.575 0.285 0.274 41.6

IPW1 -0.005 0.657 0.610 94.2 -0.011 0.396 0.399 95.6
IPW2 0.179 0.447 0.484 96.4 0.525 0.306 0.286 51.4

DR1 0.002 0.539 0.513 94.4 -0.016 0.331 0.321 94.8

DR2 0.007 0.523 0.485 93.4 -0.014 0.328 0.309 93.0

DR3 0.133 0.447 0.425 93.8 0.147 0.268 0.256 89.4
DR4 0.069 0.466 0.438 93.6 0.018 0.314 0.293 93.2

† SD, sample standard deviation; SE, mean of estimated standard errors; CP, em-

pirical coverage probability of 95% Wald-type confidence interval; CC, the complete-

case estimator; IPW1 and IPW2, the inverse probability weighted estimators when

using the logistic model and the constant model for π(X), respectively; DR1, DR2,

DR3 and DR4, the double robust estimators when using the logistic model and the

constant model, the logistic model and the logistic model, the constant model and

the constant model, the constant model and the logistic model for π(X) and h(X),

respectively.



ANALYSIS OF COMPETING RISKS DATA WITH MISSING CAUSE OF FAILURE 229

Table 2. Simulation results for the 40% censoring level.

Parameters β1 = 1 β2 = −1

Estimates Bias SD SE CP Bias SD SE CP

CC 0.162 0.415 0.417 95.6 0.763 0.276 0.264 20.4

IPW1 0.100 0.689 0.715 96.4 0.009 0.428 0.471 95.6
IPW2 0.444 0.534 0.573 91.6 0.659 0.363 0.332 46.8

DR1 0.040 0.585 0.592 96.2 -0.027 0.389 0.365 95.2

DR2 0.051 0.586 0.580 94.8 -0.021 0.394 0.357 93.8

DR3 0.121 0.513 0.511 94.2 0.064 0.333 0.308 93.0
DR4 0.099 0.523 0.526 95.4 ‘0.005 0.377 0.342 93.8

† The notations are those in Table 1.

robust estimators are essentially unbiased when π(X) is correctly specified and

they are more efficient than the corresponding inverse probability weighted es-

timators. Still, when π(X) is misspecified, since in our simulations the two

parametric models proposed for h(X) are both misspecified, the double robust

estimators are biased. However, the biases are relatively small compared to those

of the complete-case and the inverse probability weighted estimators, especially

when using the logistic models for h(X). Furthermore, the estimated standard

errors (SE) are quite close to the sample standard errors (SD) under each case,

and the 95% confidence intervals have reasonable empirical coverage probabilities

when the estimators are essentially unbiased.

4.2. Example of a breast cancer study

We studied a dataset from clinical trial E1178 (Cummings et al. (1993)),

which compared two years of tamoxifen therapy to placebo in 167 breast can-

cer patients with age greater than or equal to 65, and positive axillary nodes.

Endpoints of interest include recurrence of breast cancer and death without re-

currence, which are two competing risks events. In this dataset, the causes of

failures are all known. To illustrate our method, we artificially deleted some fail-

ure causes according to three missing mechanisms: missing completely at random

(MCAR), missing at random (MAR) and not missing at random (NMAR). For

the MCAR, the causes of failures were randomly selected for missing with proba-

bility 0.4; for the MAR, the non-missing probability was chosen as π = exp(1.0−
0.2∗T +0.5∗trt)/(1+exp(1.0−0.2∗T +0.5∗trt)), where T denotes the observed

failure or censoring time and trt denotes the treatment indicator (1 = tamoxifen

therapy; 0 = placebo); for the NMAR, π = exp(1.0−0.2∗T+0.5∗trt+0.25∗I(∆ =

1))/(1 + exp(1.0 − 0.2 ∗ T + 0.5 ∗ trt + 0.25 ∗ I(∆ = 1))), where the failure cause

∆ = 1 corresponds to the recurrence of breast cancer and ∆ = 2 corresponds

to the death without recurrence. In the MAR, the missing probability is about

45%, while in the NMAR, it is about 40%.
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We apply the proposed estimating equation approach for the additive hazards
model to the above datasets with two covariates: treatment assignment (trt)
and number of positive nodes after log transformation (lnode). Our interest
focused on the type 1 failure. For comparison, three methods were studied: (i)
Lin and Ying (1994)’s method for the original dataset without missing; (ii) the
complete-case method for the derived datasets with missing; (iii) the proposed
double robust method. For the DR method, two logistic regressions were fitted,
respectively, for the missing probability π and the conditional expectation h
with T , trt and lnode included as covariates. We also present the corresponding
results fitted using the proportional hazards model. For the first two cases, the
maximum partial likelihood estimators were used; while for the third one, the
double robust method of Gao and Tsiatis (2005) was applied. The results are
summarized as follows:

AH PH

Missing Method trt lnode trt lnode

NONE LY/Cox -0.066 (0.021) 0.039 (0.011) -0.67 (0.20) 0.38 (0.11)

MCAR CC -0.071 (0.022) 0.044 (0.013) -0.87 (0.25) 0.54 (0.15)

MCAR DR -0.066 (0.026) 0.040 (0.014) -0.66 (0.21) 0.39 (0.11)
MAR CC -0.134 (0.036) 0.054 (0.015) -1.16 (0.27) 0.56 (0.15)

MAR DR -0.085 (0.031) 0.051 (0.016) -0.86 (0.23) 0.49 (0.11)

NMAR CC -0.136 (0.037) 0.053 (0.015) -1.20 (0.26) 0.39 (0.14)

NMAR DR -0.076 (0.031) 0.052 (0.017) -0.75 (0.22) 0.39 (0.10)

Here AH stands for the additive hazards model, PH stands for the proportional
hazards model and LY/Cox stands for Lin and Ying (1994)’s method for the AH
model and Cox’s partial likelihood method for the PH model. The numbers
given in parentheses are the estimated standard errors. From the results, we
can see that treatment and number of positive nodes are significant under both
the AH and PH models. Both CC and DR methods work fine in the MCAR
case compared to the corresponding estimators without missing in the cause of
failure. But for both the MAR and NMAR cases, the CC method has a large bias,
especially for the estimates of treatment effect, while the DR method corrected
such bias sufficiently. In addition, the parameter estimates under the additive
hazards model are much smaller than those fitted using the proportional hazards
model. However, as discussed by Lin and Ying (1994), this is not surprising
since the additive hazards model pertain to the hazard difference whereas the
proportional hazards model pertain to the hazard ratio.

5. Concluding Remarks

We have proposed inverse probability weighted and double robust estimators
for competing risks data with missing cause of failure under the additive hazards
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model. The proposed estimators for the regression parameters have closed forms

and are very easy to compute. The theoretical properties of them are also es-

tablished for inference. The resulting asymptotic variance-covariance matrix can

be consistently estimated by the usual plug-in method. The simultaneous confi-

dence bands of survival curves are also constructed via a resampling technique.

The proposed estimating equation methods for competing risks data with miss-

ing cause of failure can be extended to incorporate missing covariates along the

lines of Robins, Rotnitzky and Zhao (1994) for regression problems with missing

covariates.

In the context of competing risks data, it is common that the cause of failure

may be group masked, i.e., the cause of failure is only known to belong to a certain

subset of all possible failures (Craiu and Duchesne (2004) and Craiu and Reiser

(2006)). For masked failure causes, a second-stage analysis is usually conducted,

in which the true cause can be uniquely determined for a random sample of the

masked failures. The generalization of the proposed double robust methods to

handle competing risks data with masked failure causes needs further investiga-

tion.
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Appendix

In the following, we first give the formulations of Bγ , Iγ , Sγi, Bθ, Iθ and Sθi.

Bγ = E

[
∫

∞

0
{Z1(t) − z̄(t)}

R1π̇
′
γ(X1, γ

∗)

π2(X1, γ∗)
{dN1(t) − h(Q1, θ

∗)dN∗

1 (t)}
]

,

Bθ = E

[
∫

∞

0
{Z1(t) − z̄(t)}R1 − π(X1, γ

∗)

π(X1, γ∗)
ḣ′θ(Q1, θ

∗)dN∗

1 (t)

]

,

Sγi =
I(∆i > 0){Ri − π(Xi, γ

∗)}π̇γ(Xi, γ
∗)

π(Xi, γ∗){1 − π(Xi, γ∗)}
,

Sθi =
RiI(∆i > 0){I(∆i = 1) − h(Qi, θ

∗)}ḣθ(Qi, θ
∗)

h(Qi, θ∗){1 − h(Qi, θ∗)}
,

Iγ = E

{

Sγ1S
′

γ1 − I(∆1 > 0)
R1 − π(X1, γ

∗)

π(X1, γ∗){1 − π(X1, γ∗)}
π̈γγ(X1, γ

∗)

}

,

Iθ = E

{

Sθ1S
′

θ1 −R1I(∆1 > 0)
I(∆1 = 1) − h(Q1, θ

∗)

h(Q1, θ∗){1 − h(Q1, θ∗)}
ḧθθ(Q1, θ

∗)

}

,
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where π̈γγ(·, γ) = ∂π̇γ(·, γ)/∂γ′ and ḧθθ(·, θ) = ∂ḣθ(·, θ)/∂θ′.
For some τ > 0, we assume the following set of regularity conditions through-

out the paper: P{Yi(t) = 1, t ∈ [0, τ ]} > 0; Λ01(τ) < ∞; the covariate vector

Zi(t) is bounded for t ∈ [0, τ ]; and A is positive definite.

1. Proof of Theorem 1. We know that for any given β, (8) has the following

solution for Λ1,

Λ̂1(t, β) =

∫ t

0

∑n
i=1{ Ri

π(Xi,γ̂)dNi(s)−Ri−π(Xi,γ̂)
π(Xi,γ̂) h(Qi, θ̂)dN

∗
i (s)−β′Zi(s)Yi(s)ds}

∑n
i=1 Yi(s)

.

Plugging Λ̂1(t, β) into (9), we have

n
∑

i=1

∫

∞

0
{Zi(t) − Z̄(t)}

{ Ri

π(Xi, γ̂)
dNi(t) −

Ri − π(Xi, γ̂)

π(Xi, γ̂)
h(Qi, θ̂)dN

∗

i (t)

−Yi(t)β
′Zi(t)dt

}

= 0. (11)

Let U(β, γ̂, θ̂) denote the left-hand side of (11). By the Taylor expansion of

U(β0, γ̂, θ̂) around γ∗ and θ∗ and some empirical process approximation tech-

niques (Yin and Cai (2004, Thm. 1), we can show that

U(β0, γ̂, θ̂) =

n
∑

i=1

[

∫

∞

0
{Zi(t)−z̄(t)}dM∗

i (t, β0, γ
∗, θ∗,Λ01)−BγI

−1
γ Sγi−BθI

−1
θ Sθi

]

+op(
√
n).

In addition,

1

n

∂U(β, γ̂, θ̂)

∂β
= − 1

n

n
∑

i=1

∫

∞

0
Yi(t){Zi(t) − Z̄(t)}⊗2dt = −A+ op(1).

Thus, Theorem 1 holds.

2. Proof of Theorem 2. We have

n
1

2 {Λ̂1(t) − Λ01(t)} =
1√
n

n
∑

i=1

∫ t

0

[ Ri

π(Xi,γ̂)dNi(s)−Ri−π(Xi,γ̂)
π(Xi,γ̂) h(Qi, θ̂)dN

∗

i (s)−Yi(s){β̂′DRZi(s)ds+dΛ01(s)}]
1
n

∑n
j=1 Yj(s)

=
1√
n

n
∑

i=1

∫ t

0

dM∗

i (u, β0, γ
∗, θ∗,Λ01)

s(0)(u)
− ξ′(t)

√
n(β̂DR − β0)
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−C ′

γ(t)
√
n(γ̂ − γ∗) − C ′

θ(t)
√
n(θ̂ − θ∗) + op(1)

=
1√
n

n
∑

i=1

{
∫ t

0

dM∗

i (u, β0, γ
∗, θ∗,Λ01)

s(0)(u)
−ξ′(t)A−1φi−C ′

γ(t)I−1
γ Sγi−C ′

θ(t)I
−1
θ Sθi

}

+op(1).

Theorem 2 then follows.
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