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ABSTRACT

This paper establishes that the compressive receiver is a practical interceptor of high perfor-
mance. Given a signal of a particular duration, a compressive receiver can estimate simultaneously
all frequency components within a set wide band. This processing is similar to a parallel bank
of narrowband filters, which is the optimal detector of frequency-hopped signals. Furthermore,
hop frequency is estimated to yield performance equal to the parallel filter configuration. We
assume interference to be stationary, colored Gaussian noise and present a model of the compres-
sive receiver that contains all its salient features. Locally optimal detection is achieved by taking
the compressive receiver output as an observation and applying likelihood ratio theory at small
signal-to-noise ratios. For small signals, this approach guarantees the largest probability of correct
detection for a given probability of false alarm and thus provides a reference, to which simplified
or ad hoc schemes can be compared. Since the locally optimal detector has an unwieldy structure,
a simplified suboptimal detector structure is developed that consists of simple filter followed by a
sampler and a square-envelope detector. Several candidates for the filter’s response are presented.
The performance of the locally optimal detector based on compressive receiver observations is com-
pared to the optimal filter-bank detector based on direct observations, thus showing the exact loss
incurred when a compressive receiver is used. The performance of various simplified schemes based
on compressive receiver observations is analyzed and compared with that of the locally optimal

detector.
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1. INTRODUCTION

The goal of the intercept receiver is to detect deceptive electromagnetic sot.lrces and extract
waveform features for use in the exploitation or jamming of such sources. With the advent of
frequency-hopped and other spread-spectrum signals, the search bandwidth that assures a rea-
sonable probability of intercept has increased greatly, followed by a corresponding increase in the
complexity of the intercept problem. Wideband interceptors are unacceptable and high-performing
channelized interceptors virtually unimplementable. The compressive receiver, which simultane-
ously estimates frequency components over a set wide band, has promise as an interceptor with

both the simplicity of a wideband device and the performance of the channelized device.

The literature contains a multitude of intercept methods for frequency-hopped waveforms (see
[1], [2], [3], and [4]). There are also some analyses of the detection performance of the compressive
receiver (see [5] and [6]). However, very little has been written on the application of the compres-
sive receiver to the interception of spread-spectrum signals ([7] is an exception) and even less on
the interception of frequency-hopped waveforms. Here we develop fully a locally optimal and a

simplified suboptimal method for the detection of frequency-hopped waveforms.

We model the compressive-receiver input as consisting of either stationary Gaussian noise of
known autocorrelation, or of noise plus a hopped signal of known hop epoch, unknown phase, and
energy above a minimum detectable level. Approximate transfer relationships for signal and noise
are developed separately and used to translate the detection problem to an equivalent one on the
compressive-receiver output. Likelihood function theory is applied to the equivalent problem and
yields a locally optimal detector (i.e. optimal for small signal-to-noise ratio). The locally optimal
detector has an unwieldy structure that counters the leading motivation for using a compressive
receiver: that of simplicity coupled with high performance. Therefore a suboptimal version, the
simple-filter detector is developed that uses a time-invariant filter in place of the time-varying
filter of the first. Asymptotic statistics of the detector’s output are derived and used to quantify

performance.

2. NOISE AND SIGNAL



Precise statistical models of the compressive-receiver input and of the receiver itself are in order.
However, to statistically model the compressive receiver output we need transfer relationships for

both the noise and the signal.
2.1. INPUT SIGNAL MODEL

Military and other secure communications use spread-spectrum signaling involving some variety
of modulation, whose purpose is to add ambiguity or “randomness” to the waveform as a measure
against unintended detection or interception. The usual procedure for randomizing the waveform
is pseudo-random variation of transmission times (time hopping or TII), phases (direct sequence or
DS), or frequencies (frequency hopping or FII). This paper concentrates solely on the interception

of FH waveforms that have the form

. .
s(t) =) =i(t) (1)

i=1

where

z;(1) equals V25" sin{wy;t + 6;) for iTy <t < (i + 1)Th;
{wk}le is a family of known frequencies within the spread-spectrum bandwidth;

{k:} are integer-valued, independent, uniformly distributed, random variables ranging inclu-

sively between 1 and K;

{6:} are continuous, independent, uniformly distributed, random variables ranging between 0

and 27 that represent carrier phase;

S’ is a real constant denoting the average signal energy;
Th is a real constant denoting the epoch, or time duration, of each hop;
Ny is a positive integer denoting the number of hops during message transmission.

This general model of frequency-hopped waveforms includes a large number of modulations, such as

frequency shift keying (FSK) and minimum shift keying (MSK). Some important modulations not



included are those whose carrier phase is correlated from hop to hop as, for example, continuous

phase FSK (CPFSK). Even for these cases, these results apply but may not be optimal.

The signal model is for a composite hypothesis problem. Specifically, given the observation
y(t), the problem is one of choosing between Iy, which is the hypothesis that an FH waveform is
not present, and I1.s, which is the hypothesis that an FH waveform is present with SNR «" greater

than some minimum SNR 7. The model is precisely

Iy : y(t) n(t) @

Oy y(t) s(t) + n(t) v <9

where the frequency-hopped waveform s(t) is given by (1) and n(¢) is stationary colored Gaussian
noise with variance o7 and autocorrelation function ¢?R;(t). The hypothesized SNR 7' is related

to the other model parameters by 7' = §'T},/o?, while similarly the minimum SNR v = $T,/o?.

Significantly, the signal model allows for colored noise and is, therefore, quite general. Note

that the model assumes that all signal parameters, except for amplitude and hop frequency, are

known.
2.2 Receiver Model

Figure 1 blocks out the compressive-receiver model. The compressive receiver mixes the input

signal y;(t) with a linearly frequency-modulated signal
a(t) = cos(wot — Bt?) 0<t<L T, (3)

that scans downward in frequency from wg to wo — 28T,. Here Ty is the scan time. The scanned
waveform is input to a pulse compression filter, hence the name compressive receiver. The filter
has impulse response

h(t) = cos(wot + ft*) w(t) 0<tLT, (4)

where w(t) is a weighting function used to minimize energy spillover between signals of different

frequencies. The output of the compressive receiver now follows as

Te )
U(t) = ‘/0 a(t — 7)yi(t — T)h(7) dT T.<t<T, (5)



= zo(t) + no(t) (6)

where

1>

Tc
zo(1) /0 alt — )zt — T)h(r)dr  T.<t<T, (7)

no(t) 2 /(;Tc a(t —m)ni(t — m)h(r)dr T, <t<T,. (8)

2.3. OUTPUT DUE TO SIGNAL

Using (3), (4), and the commuted version of (8) the output of the compressive receiver can be

expressed as
t
z,(t) = / z(7) cos(woT — A72) cos [wo(t -T)+6(t - 7')2] w(t — 1) dr (9)
t—Te
whenever T, < t < T,. Trigonometric manipulation leads to
1 ¢
z,(t) = 3 cos(wot + ﬁtz)/ z(7) cos(20tr)w(t — 7) dr
t—-Te
t
+ %sin(wot + Bt?) / z(7)sin(20tr)w(t — 1) d7 + €. (10)
t—T.

Application of Lemma 2 shows that

le] < (11)

where P, is the positive variation of the window w(t) on ¢ € [0,T.] and where P, is the positive
variation of the input z(t) on ¢ € [0,T,]. The definition of positive variation appears as Definition

1 in Appendix B.

The error bound has special meaning when X (¢) is a sine wave of angular frequency w. In this

case, P =~ wTl./n < 28T.T./n and hence

(12)
which is very small for typical values of wq, T, T, and 8.

2.4. OUTPUT DUE TO NOISE



As shown in Appendix A (84 and 88), the normalized autocorrelation (divided by o?) of the

compressive-receiver output is
1 [T
Ro(t, d) :5/_TC Ri(us — d){

/lzTc_lul' cos [(wo — 26t + fug)(u1 — d) cos [(wo + Suz)uy]

ull

w<U2-2|-U1)w<U2;U1) dug}du1+e. (13)

The error term ¢ is bounded as

f < $P2BT. (14)

where
1 1 2 2

= 15
3T, | 2wy — 2T, T wo — 2015 w0 — B, - (15)

with. P, being the positive variation of w(t) defined by Definition 1 in Appendix B.

B

Under typical operating constraints, the error bound c?m be simplified further. The term
28(T, - T..) represents the total frequency spanned by the compressive filter, which is very large
(typically on the order of megahertz). Additionally, the frequency wp is usually in the tens to
hundreds of megahertz range, hence wp > 108. These two facts, along with the fact that the scan
time is typically twice the compression time (i.e. T, = 2T), imply thaf B < 1/pT.. Under these
assumptions, the error is bounded as

4 <55 (16)

Of interest are special cases of the autocorrelation. When the input noise is white, meaning?

that 0? R;(t) = 6(t)No/2, then the output noise is stationary and has autocorrelation

Ro(d) = % /':‘T"'d' cos [|d|(wo + Bua)] w ( up + "”) w ( uz = "”) duy (17)

2 2
whenever |d| < T,, otherwise R,(d) = 0. If the window function w is rectangular, then

1 sin []d|(T:
8 pld|

3Since the variance of a white noise process is undefined, arbitrarily let ¢2 = No where No is the single-sided

Ro(d) = =D o (1] + AT (18)

spectral density of the white noise process. This choice make the signal-to-noise ratio, v, consistent with other

definitions in the literature.



whenever |d} < T, otherwise R,(d) = 0. Regressing to the case of general stationary noise but now

considering only rectangular windows,

T
Ro(t,d) = % / Ri(uy — d)g(us, 1, d) dus (19)
-Te .
where

sin [(Bd — 2Bu; )(Te — |us])]
(Bd — 2Buy)

X cos [wod + 26t(u; — d) — 2wouy + (Bd — 20u1)T¢]

sin [Bd(T; — |u1])]
+ E

g(ulytyd) =

cos [wod + 28t(uy — d) + BdT]. (20)

3. LOCALLY OPTIMAL DETECTOR

We aim at developing a locally optimal detector of frequency-hopped waveforms based on a
compressive receiver output. Capitalizing on the fact thatz the optimal detector of frequency-
hopped waveforms integrates coherently over a single hop period [4], we conjecture that an optimally
configured compressive receiver should integrate over a period commensurate with the hop epoch
Th. But we also want to avoid interhop interference, thus we choose T, = T} and assume that the
compressive receiver is synchronized to frequency hops. This is not a realistic assumption in the
pure detection problem but one that leads to an optimal detector, whose performance degrades

gracefully upon relaxing this assumption.

Because the interfering noise is typically of much larger bandwidth than the hop rate, the
correlation between hops is negligible and so the optimal multihop detection statistic is some kind
of combination of single-hop detection statistics. We thus confine ourselves to the problem of using
the compressive receiver to optimally detect, given an observation period of T}, a sine wave of

unknown amplitude and phase and whose frequency is one of the known hop frequencies.
Based on the above assumptions, the detection problem is now
Hy: :L','(t) = n,-(t)

versus , (21)
oy zi(t) = V2Ssin(wgt + 0) + n(t) '



for v < 4" and T, < t < T,. The parameters 8, 7, 7/, wg, and n;(t) are as defined in Section 2.1.

Using the results in Sections 9.3 and 2.4 the detection problem based on the output of the

compressive receiver becomes

Ho: zo(t) = no(t)
versus (22)
H: zo(t) = V25 cosb y.(t,wr) + V25 sind y,(t,wi) + no(t)

for vy < 7" and T, £ t < T, where n,(t) is stationary, colored Gaussian noise with autocorrelation

function R,(t) as defined by (13) and
¢
Ye(t, wi) = %cos(wot + ﬂt2)/ cos(wiT) cos(20tT)w(t — T) dr
t—Te

t
+ %sin(wot + ﬂtz)/ cos(wgT) sin(20tr)w(t — 1) dr .
t—-T,

(23)
A 1 2 t .
ys(twg) = 3 cos(wot + ft )/ sin(wgT) cos(26tr)w(t — 7) dr
t—-T,
1, SN A .
+ §sm(w0t + Gt )/ sin(wg7) sin(26tT)w(t — 1) dT.
t—Te
(24)
From [8], the conditional log-likelihood function for this problem becomes
In Alz,(t)/wk,8,7] =
2 T, 2 . T,
1/0?}’1 cosl9/TC Zo(T)ge(T,wi) dT + 1/?‘-3—}—;&119/;‘6 To(T)gs(T,wi) dr —
7 [T
2ﬁ/; [cos 0 y.(T,wk) + sin 0 ys(7,wi)] [cos 8 gc(T,wk) + sin 8 gs(T,wk)] dr
(25)
where the functions g.(t,wx) and g,(t,ws) are respectively defined by the integral equations
T, T+t
/ R, [T,T - t] gc(r,wk) dr = yc(t,wk) (26)
Ts t )
[ R[] s dr = it (27)



for T, <t < T,. Since we are interested in a locally optimal test (i.e. small v), we neglect the last

term of (25) and say

InAfzo(t)/wk,0,7] =~

2'7 T’ 27 . 9 Ta d
?‘?ﬁcose/n To(T)ge(T,wi) dT + 7T, sin —/Tc zo(7)gs(T,wy) dr.

Averaging this approximate likelihood ratio over 8 and wy yields

(28)

T,
/ 2o(7)Gr(7) J (29)
Te

K -
O

k=1
where I is the modified Bessel function of the first kind and zero order and the complex-valued

function Gi(t) is defined as
Gr(t) 2 ge(t,wr) + i golt, wi). (30)

Consider again the small y case and note that Ip(z) ~ 1 + z2/4, for small z. Conjure (29) into a

locally optimal statistic

K 2

1
= U?Th Z

k=1

T
/T " (r)Gu(r) dr (31)

where the scale factor 1/¢7T} is added for convenience in future analyses. .F igure 2 blocks out
(31). To complete the detector, I' is compared against a threshold v, whose value determines the
probability of false alarm Pg. (Section 5 shows the exact relationship between v and Pr.) The
statistic ¥ being locally optimal will, for small signal-to-noise ratios, yield the greatest possi’ble

probability of detection; hence it is locally the most powerful test.
4. SIMPLE-FILTER DETECTORS

The locally optimal detector of the previous section efficiently detects frequency-hopping wave-
forms. As will be shown, it rivals the optimal detector that directly observes the original time
waveform. Unfortunately, it also rivals the optimal detector in implementation complexity and
thus undermines the attractive simplicity of the compressive receiver. In this section, we construct

detectors that maintain the simplicity of implementation for a small performance cost.



The simple-filter detector is depicted in Figure 3. It consists of a complex filter, with impulse

response I1(1), whose squared output is sampled at times
t=T,+(k-1)AT fork=1,---,K (32)

then summed and scaled by 1/0?T}) to produce the test statistic I. It is easily shown that

. 2
f= a,?l:rh é /T T zo(T) I [Ty + (k = VAT = 7] dr (33)
which by defining
Gr() 2 I [Ty —t+ (k= 1)AT)]  for T, <t < Ty (34)
yields the alternate expression
. 1 K|, ~ 2
I'= UTH,; / z,(T)Gi(r) dr (35)

Rewriting the test statistic in this form, a form analogous to that of the locally optimal test statistic,

allows us to develop a performance measure that applies to both detector types.

The above detector structure has two unknowns, the filter response /(t) and the sampling time
AT. The best choices for H(t) and AT have not been determined but four candidate pairs are
investigated. They are the time-multiplexed detector, the time-averaged detector, the time-typical

detector, and the truncated detector.
4.1 TIME-MULTIPLEXED DETECTOR

The fact that the Gks and the output of the compressive receiver are almost nonzero only around
the times corresponding to a particular hop frequency suggests that all the branches of the locally
optimal detector can be approximately reformed (or time-multiplexed) as the sampled output of a

single filter.

The filter response of the time-multiplexed detector is constructed from the pseudo-signals G(t)

by the equation
K

H() =) Gj[T.—t+(j - DAT]. (36)

i=1

10



Note that above equation transforms (34) to
N K .
Gi(t) =Y Gjl(j — kAT + 1] (37)
J=1
which, for AT > T,—T, implies Gk(t) = G(t), since the G s are zero outside the range T, <t < Ts.
Hence the time-multiplexed detector is equivalent to locally optimal detector for this choice of AT

In general, the duty cycle of the detector can be lowered by enlarging AT to get performance as

close to that of the locally optimal detector as desired.
4.2 TIME-AVERAGED DETECTOR

Experience shows that, up to a phase factor, the Gs are approximately time shifted versions
of each other. This suggests a procedure for producing H(t). First to correct for phase differences,
normalize each G with the value of Gy corresponding in time to the kth hop frequency. Next
average the normalized Gx. We assume here that the hop frequencies are equally spaced with
spacing, in time, as (we — wy)/28. This spacing corresponds to the shift between the Gys and will

also be the value chosen for AT.

Using the above we write the filter response for the time averaged detector as

K G;[T, — 4 2]
T 6

(38)

where K — N(t) corresponds to the number of Ggs in the sum, whose arguments are outside the

interval [T, T,] and therefore to zero. The function N(t) is given by

K

; — W

N(t) = ZI{TC’T!] {T, —t+ Wy 23 1] (39)
Jj=1 .

with Iir, 7,] being the characteristic function of the interval [T¢, T. s)-

4.3 TIME-TYPICAL DETECTOR

The above observation that the Gis are approximately time shifted also inspires the time-typical
detector. Instead of using an average of the Gys, we use a “typical” G} that has been time extended

to prevent the resultant filter from omitting observations during its integration. Specifically, define

11



H(t)=Gp(T, -t + KAT/2), where

T.+T1 i
/ R, [T; ,T — t] Gr(r)dr = Y[\—/Q(t)
c-Tl

where

Yi(t) = ye(t, we) + 195(t, we)

and the extended time, Ty = (T, — T.)/2. As shown above, AT = (w; — w1)/20.

4.4 TRUNCATED DETECTOR

Here we choose again AT = (w; ~ w;)/26 and define

wp — ws t<w1+w2

]I(t):Yl(T,—t), 48 Kig—1X 3

(42)

This corresponds to a detector that applies direct correlation, as opposed to a pseudo-correlation,

in a time-truncated region about the hop frequency. It uses the fact that each function Yi(t) is

a time shifted version of each other which allows it to use a representative function Y;(t) in the

correlation. The time truncation prevents cross correlation between the Gis.

5. DETECTOR PERFORMANCE ANALYSIS

In both the locally optimal detector and the simple-filter detector, the test statistic is the sum

of squares of a large number of weakly correlated random variables. Namely, for the locally optimal

detector,
2K
_ 2
=>4
Jj=1
where
a 1 /T’
.= zo(TYh;{(T) dT
68 g o)
and where /;(t) is defined as
h2m—1(t) = gc(t, wm)

ham(t) = gs(2, W)

with 1 < m < K. Similarly, for the simple-filter detector, the test is

=1

(43)

(44)

(45)

(46)

(47)



where

. A 1 Ta —
A / zo(r)h;(r) dr (48)
ol /Te
and, for 1 <m < K,
—~ A -~
Fomet () 2 3u(t,wm) (49)
hom(®) 2 Galtwm). (50)

Here, §c(t,wm) 2R [@'m(t)] and §,(t,wm) g [@'m(t)] In the analysis to follow, the hat notation
will be dropped, since the results apply to each detector in the same way. In other words, to get

the result for the simple-filter detector, add hats to the appropriate variables.

Because the test statistic is the sum of a large number of weakly correlated random variables,
there is reason to believe, despite the correlation, that the statistic has approximately Gaussian
distribution. We proceed under this assumption, which we justify later. To specify the asymp-
totic distribution of I', we need its mean and variance under the signal-present and signal-absent

hypotheses. For this purpose, define z;(t), for 1 < j < 2K, as
z2m—-1(t) = yc(tvwm) (51)
sz(t) = ys(tawm) (52)

with m ranging between 1 and K, while 2;(t), for 1 < j < 2K, is defined as

T,
Zam-1(t) = /T R, [t ; T,t - T] ge(T,wm) dT : (53)
T, .
Z2m(t) = / R, [t_—';_rat - T] g.;(T, wm) dr (54)

with m also ranging between 1 and K. For the same reason as above, we define the time cross-

correlations
= —-1 T (7)) dr (55)
Em,n Th —/c zm( ) l’ﬂ( )
3 = —-—-1 ‘3 h,(7) dr 56
£m,n T, /C zm( ) n( ) ( )

13



for 1 <m,n < K. (For the locally optimal detector case, note that & x = &;5.) Assume now that

the signal is at frequency w;. Then

Ck = V29 cos @ Ey_1 k + V27 sin 8 &y + Mk (57)

where the random variable 6 is uniformly distributed on [0,27] and the 7;s are zero-mean Gaussian

with covariances £(n;mx) = £ k. From (121) in Appendix C,

o 2 &) = V(i + k) + Erke (58)

When averaged over [ and summed over k, the mean of T is

/ 2K 2K 2K
'——ZZ€k1+Z€kk (59)
k=11=1

Use (57) and (125) to construct the covariance between the jth and kth terms of T, when the signal

is at frequency w;. The result is

n2 /
Vien = 2(7")? €acnj o Eaucr i b + G ) &1 Eiap ar ) &1, Ex
,),/ 2 ,7 2
-0 3115 Eore — o) &1 g + 47 o1 085k
+ 4Y'6u €k + 2 Ef,k (60)

which, upon averaging over / and summing over j and k, becomes

( /)2 2K 2K K

Z > > (2 Ea1,5 &atj Eairk otk — = 521 vk — E%l,j £§I—l,k>

7=1k=11=1

1 2K 2K 2K 2K 2K

+ ;—{ZZZ( fz,,fzk+4fl.3§1k€]k)+2ZZ§?,¢ (61)

i=lk=1I=1 J=1k=1
Of course, for the signal-not-present case, the mean and variance are simply (59) and (61) with the

signal-to-noise ratio 7/ = 0.

Since the test statistic I' has an approximately Gaussian distribution, the threshold v and

probability of detection Pp for a given probability of false alarm are
v=Vo® (1= Pr)+ My (62)

14



and

’ VVo® (1 = Pp) — My + M
PF:I-—@( 0 ( r) el O) (63)
4 / E,.yl
where ®(z) is the distribution function of the standard Gaussian.
Now we justify the use of the Central Limit Theorem (CLT). First let
fip - Gk
2 (64)
| 5_21(,1 ‘5—21\',2K ]
which is the covariance matrix of the (;s, and
r 1
&1, cos0 4 €91 5in 8
Eq 2 : (65)

€21-1,2K cos 8 + a1 25 sin 8
which are 1/4/27’ times the means of the (;s, under the condition that the signal has phase ¢
and frequency w;. We note that, since X' is nonnegative definite and symmetric, there exists a

square-root matrix X% such that £7 X% = ¥. Consider also the diagonalization of X = TTAT

where i i
A 0 0
0 AN --- 0
A= (66)
i 0 0 -+ Ay |

is the matrix of eigenvalues of X and T is an orthogonal matrix of eigenvectors. We use the above

diagonalization and X7 to rewrite the test statistic as

= (G+\/2_‘7Me,1)TA(G+\/5’_7—'Me,I) (67)

where

G=|: (68)

g2

15



with {g;} independent, zero mean, unity variance, and Gaussian and where

my.el
My, = : =TT X3 Ey,. (69)
Mn,g,l
The test statistic I' is now the sum of squares of independent Gaussian variables. Through appli-
cation of the Berry-Esseén Theorem (see [9]), I’ conditioned on # and ! is approximately Gaussian
distributed with an error no more than 4¢/o, where

487’772?'0’, +7

— max); 70

C TN, "
2K

o? = Z/\?(87'1n?,3,,+2). (71)
1=1

If this error bound is small (a fact that must be established numerically) then the CLT applies
uniformly to the conditional distribution of I'. If, in addition, the overall mean 3{,, and variance
V., remain essentially constant with respect to [ and 8, then the CLT applies to the unconditional

distribution of T' as well. This fact must be also established numerically.

The above analysis using the asymptotic distribution of I' is supplemented with upper- and

lower-bounding distributions. Specifically,

L= Quc [VET e [y | <Prl0 <ol < 1= Qu [VETomm 5= ()

where Amax, Amin are respectively the maximum and minimum eigenvalues of the covariance X and

where eax, €min are respectively the maximum and minimum over all eigenvalues of the matrices
B 2ATxA, 1<I<K (73)

with

11 Eaupn

A2 (74)
ba—12rc Ea2k
and, finally, where Q,, is the generalized Marcum @-function defined as
oo m—1
Qm(a,f) a / z (_:_c_) e“%(’2+"2)1m_1(aa:) dz. (75)
8 o

16



Of interest is that the upper bound equals the lower bound only when the channel outputs
are statistically independent and the sum of the square magnitude of the signal component across
the channels is independent of signal phase. In a sense, the bounds give an indication of how well
the detector fits the independent channel assumption, since the upper bound corresponds to the
detector distribution under the channel and phase independence assumptions, but with an increased
noise level, while the lower bound has the same interpretation, but with a decreased noise level.
These bounds, when averaged, approximate the detector distribution, the usefulness of which will

be studied and compared with the asymptotic distribution in the next section.
6. PERFORMANCE COMPARISONS

This section graphically compares the performance of the locally optimal detector based on the
compressive-receiver output, to that of the optimal detector based on receiver input. Also evaluated

is the performance of the simple-filter detector with various filter responses defined above.

Because the interceptor typically receives signals from the sidelobes of the emitter, it must
observe several hops before a reliable detection can be made. Therefore, the detector described
above has been extended to multiple hops (as was done in [4]). The parameters chosen for making
comparisons are the following: T, = 50 us, T, = 100 pus, wg = 27 X 40 Mhz; the 100 hop frequencies
are evenly distributed between 2.33 Mhz and 4.33 Mhz; the hop rate is 10 Khops/sec; and the
detectors use a 1000 hop observation. The chosen noise is bandpass between 2 and 4 Mhz with

uniform spectral density No/2.

Bandpass noise, uniformly distributed over the analysis band of the compressive receiver, pro-
duces noise on the output of the compressive receiver that has autocorrelation corresponding very
closely to that due to white noise but reduced by a factor of two. This accounts for the accurate
use of one half of (18) throughout the literature for compressive receiver performance evaluations,
even though their model assumes white noise interference. We also use this approximation, which
is realistic because, if the noise was truly white, it could be filtered into bandpass noise without
loss of signal information; moreover, it can be shown numerically that one half of (18) corresponds

to the true autocorrelation, given by (19), to within .1 % for the parameters chosen here.
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Figure 4 shows how the locally optimal detector based on compressive receiver observations
compares with the optimal, filter-bank detector based on direct observations. The plot consists of
probability of detection curves over the SNR range - IOMB and for the probability of false alarms;
.1, .01, .001. As expected, for low SNRs, the locally optimal and the optimal compare favorably.
On the other hand, there is about a 1 dB difference between the performances in the 0 dB SNR
region. Two factors are responsible. One is that the compressive receiver detector integrates only
half as much data for each spectrum estimate as the filter-bank detector. At first, this suggests
there should be about a 3 dB performance difference but because the compressive receiver detector
observes a span of spectrum estimates, it indirectly uses more of the raw observations. The second
reason behind the performance difference is that the optimal, filter-bank detector used here was
constructed to be most powerful at 0 dB and hence performs better than any other detector at
this SNR, but, if one considers average performance over a range of SNIRs, then the discrepancies

between the two detectors lessen.

Figure 4 also compares the two analyses of the locally optimal, compressive receiver detector.
We conclude from the figure that the CLT analysis is optimistic by an amount that increases with
the false-alarm probability and with SNR. It is even optimistic to the point of producing detection
probability estimates above those of the upper- and lower-bounding distributions. The dependence
on the false alarm probability is due to inaccurate estimation of the tail of the density representing
the compressive receiver output. The detector output, being the sum of squares, must be positive
but the asymptotic density introduced by the CLT allows a false, nonzero probability for negative
detector output. Hence, the false alarm probability will be overestimated causing an unduly low
detector threshold and corresponding optimistic detection probability. The dependence on the SNR
stems from the fact that the CLT poorly models the detector output when one channel dominates,
as in the high SNR case. Even though the optimistic estimate produced by the CLT analysis is
above the upper and lower bounds, it is still useful because of its simplicity and because it provides
a comparison with the filter-bank detector, which was analyzed via the CLT and hence is similarly

optimistic.

Figure 5 compares the performance between the locally optimum, compressive-receiver detector
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and the simple-filter, compressive-receiver detector with each of the four filter responses described
above (time multiplexed, time averaged, time typical, and truncated). Again the plot consists of
probability of detection curves over the SNR range, -10 to 0 db, and for the probability of false
alarms .1, .01, .001. The sampling time for the simple-filter detector is AT = (T, - T¢.)/4, for
the time-multiplex response, and AT = (w; — wy)/20, for the other cases. The figure clearly
shows the superiority of the truncated filter response, whose performance is degraded by only 3 dB
over the locally optimum detector at 0 dB SNR. Interestingly, the truncated filter response makes
no use of the whitening Ggs of the locally optimum detector and yet has superior performance
over the other responses that do. Presumébly this phenomenon is due to the fact that the Gis
perform a deconvolution and hence are unstable due to the perturbations that have transformed
them into the simple-filter response. Since the truncated filter response makes no use of the noise
correlation, producing a filter response directly from some optimality consideration may indeed '

produce a detector with performance closer to the locally optimal.

8. CONCLUSIONS

Presented in this paper are two detectors of frequency-hopped waveforms based on the compres-
sive receiver. The first, the locally optimum detector, was developed by applying the likelihood-ratio
theory to the observed compressive-receiver output and yielded a locally optimal (low-SNR) de-
tector. The second, the simple-filter detector, was a simplified version that used a time-invaria,nt”

filter in place of the time-varying filter of the first. Performance of both detectors were analyzed

and compared.

The compressive receiver {ulfills its promise as a simple, yet high-performing interceptor. The
performance of the locally optimal detector shows that relatively little detectability is lost in the
compressive receiver processing (no more than 1 dB for the SNR range investigated). Most of the
discrepancy is due to the difference in coherent integration time (one-half for the parameters used).
Because of its complexity, the locally optimum detector is only useful as an upper performance
bound but, for a small performance cost (no more than 3 dB for the SNR range investigated), the

simplicity of the compressive-receiver approach is retained by the simple-filter detector. It is very
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likely that a filter response exists that recaptures some this performance loss but that possibility

was not pursued here.
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APPENDIX A

Derivation of Compressive-Receiver ‘Autocorrelation

The normalized autocorrelation of the compressive receiver output is defined to be
1 d d
o e (23

T.<t<T,

under the restrictions that

and

[—gl- < min(t - T, T, — ).

(76)

(77)

(78)

Substitute the expression for the output noise (8), interchange expectations and integration, and

use the definition of the normalized input correlation R;(1) = &[n;(t)ni(t + -r)]/o,-z' to get

€oS [wo (t + g - 7'1) - (t + g - Tl)z] cos [onl + ,37'12] w(71)

cos [wg (t - é - 7-2) -p (t - —g— — 1'2) 2] cos [(.n)()Tg + ﬁ‘rg} w(ry) dry dry.

To exploit the stationarity of the input noise, first transform the above integral with
Uy = Ty — T2
Uz = T+ T2
and then reduce the cosine components with multiple applications of the identity
cos(A) cos(B) = 1/2cos(A+ B) + 1/2cos(A - B)

to form

Ro(t,d) = %/_i Ri(uy — d)é{
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(79)

(80)

(81)

(82)



ug |

2Tc—]uy | _
/I 1 cos(; + wjug + ﬂ_,u%)w (u?' -; u1> w <u2 5 ul) dug } dug

(83)

where ;, w;, and fB; are given by Table 1. Use more trigonometry and apply Lemma 2 to terms

3--8 to rewrite the autocorrelation as
S(td) == / R(ul—d){

2Te—{u1 |
A cos [(wov— 28t + Buz)(ug — d)] cos [(wo + Buz)ui]

uy}

w(ur;ul)w(w;ul) duz}du1+e (84)

R — )| |
o < < Z—/TC (wj + 2B;]wl) s (85)

where P2 is the positive variation of w(t) defined by Definition 1 of Appendix B. Simplify the

with error term

error bound by minimizing each term w; + 2;|uy| with respect to u;, d, and t, while noting the

restrictions (77) and (78). The result is

|e|< P2B / |Ri(us — )] dus | (86)

where

1 1 9 9
- . 87
B = ot %m0 38T, T e — 28T, T wo = AL, (87)

The relation |R(t)] < 1 # further simplifies the bound as
Iy
le] < ngBTC. (38)

APPENDIX B

Bounds on Integrals of Linearly Frequency-Moduléted Sinusoids

The first bound (Lemma 1) is a tool used only to prove the second bound (Lemma 2) which is
used for derivations concerning the output of the compressive receiver: namely, the derivation of the

noise autocorrelation and the derivation of a simplified expression for the output signal component.
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Lemma 1 Under the restrictions that b > a, w > 0, 82> 0, and w+ 23a > 0,

b 2
2 < . 89
V/‘lcos(0+wt+,3t)dt_w+2ﬂa (89)
Proof
Define the function
tr _
T(8,w,p) = / sin(6 + wt + B12) dt (90)
0
where
—14+14+48(x-0
V B(m —0) ps0
ty = 26 (91)
T—0 5=0 :
w
§ = 6modmr. __ (92)

This is simply the integral of sin(@ + wt + Bt?) from t = 0 to its first zero crossing.

Preliminarily, three facts need to be proven: first, that Y(6,w,§) decreases with respect to g;

second, that it decreases with respect to w; and third, that with 8 = 0 it decreases with respect to

6.

Beginning with the first fact we will show that T(6,w, 8) decreases with respect to § by proving

its partial derivative to be negative. Employ the chain rule to get

§T(6,w,8)

53 /: t2 cos(d + wt + Bt?) dt. (93)

Let = = t/t, and observe that ft2 = 7 — § — wt,; then

1 - -

M = t?r/ 22 cos[f 4+ wtrz + (7 — 0 — wty)z?] dz. (94)
dg 0

To tightly bound the above integral, find its supremum by observing that from wt, > 0 follows

§+wtez+ (7 — 6 — wity)z? > 7z? on z € [0, 1], from which

1 . . 1
/ z% cos [6’ +wtpz + (7 —6 - wt,r):z:2] dz < / z? cos(rz?) dz (95)
0 0 .
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upon noting that the cosine argument is always within the region [0, 7], a region where the cosine

decreases. Substitution u = z? yields

1 1
/ z?cos(rz?)dz = 27! / us cos(mu) du (96)
0 0 :

IN

1
2'%/ cos(ru)du = 0 97)
0

after observing that u? cos(mu) < 2-3 cos(wu) on u € [0,1]. The function T(8,w, () is decreasing
with respect to § > 0, since (94), (95), and (97) imply that the partial derivative of Y(8,w, §) with

respect to § is negative.

The second preliminary fact that T(8,w, ) decreases with respect to w will be proven similarly

by applying the chain rule to compute

6T(6,w,B) _

tr .
/ t cos(f + wt + Bt?) dt. (98)
Sw 0

Again let z = t/t,, observe that 8t2 = r — § — wt,, and apply the same reasoning leading to (95);

then
§7(6,w,B)

1
< tf,/ z cos(rz?) dz = 0. (99)
bw 0

The partial derivative §T(6,w, )/6w < 0 implies the promised result.

The third preliminary fact that T(w, 8, 3) decreases with respect to 8 follows because 6 = r—wt,
implies

cosé-}- 1 -
——— 1(
- (100)

it -
T(f,w,0) = / sin(f + wt) dt =
0

The fact that § € [0,7), a region on which the cosine decreases, clearly demonstrates that T(4,w, §)

also decreases.

Now with the preliminary facts established, consider f: cos( + wt + Bt2)dt and let {n;}7, be,
in order, the zeros of the integrand on (a,b). In other words, a < 7;_; < 7; < b and, whenever
t € (a,b), cos(d + wt + Bt?) = 0, if and only if ¢ = 7; for some i (if there are no zeros then set

71 = b). Decompose the integral into subintegrals between the zeros and get

n

S (-1)e

1=0

b
/ cos(8 + wt + Bt?) dt (101)
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where

=T<0—1,w+2ﬂa,ﬂ> fori=0

2
€ =T (0,w+20n,0) for0<i<n (102)
< T(0,w+2067,,8) for i = n.

Since the e;s are an alternating sequence of elements whose magnitude, after the first element,

decreases,

b
/ cos(f + wt + Bt?) dt| < max(ep, e1). (103)

Use the fact that T(6,w, ) decreases with respect to § to maximize eg,e; by putting 8 = 0.

Next, maximize with respect to the other arguments to show

2

max(eg,e1) < T(0,w + 2fa,0) = T

(104)

The conclusion of the lemma now follows from (104) and (103).

Definition 1 Given the partition P = [a = tg < 1 -+ -tn_1,tn = b], the positive variation of z(t)
on [a,b] is

Pe = sup Y la(6) = a(te-)* + 2(a)* + 2(0)* (105)

i=1

where r+ has the value r, if r > 0, and the value zero, otherwise.

Definition 2 Given the partition P = [a = tg < 1y +-+tn_1,ln = b], the negative variation of z(t)
on [a,b] is

N, = i111)f i[m(t;) - :z:(t,-_l)]; +z(a)” 4+ z(b)~ (106)

1=]

where v~ has the value r, if r < 0, and the value zero, otherwise.

A function is said to be of bounded variation if both its positive and negative variations are

finite.
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Lemma 2 Under the restrictions that b > a, w > 0, w + 2Ba > 0, and that z(1) and y(t) are
piecewise conlinuous and of bounded variation on [a,b],

2P, P,

T (107)

/b cos(8 + wt + Bt1)z(t)y(t) dt <

where P, and P, are the positive variations of z(t) and y(t).

Since the function z(t) is of bounded variation, it is integrable implying that, for arbitrary
¢ > 0, there exists a step function z,(t) = Sruy #(ti—1)]jy;_,,+) With corresponding partition [a =
to < ty--+ty-1,ln = b] such that

/b |z(t) — z4(t)] dt < €. (108)

a
The step function represented above is the sum of nonoverlapping steps. We want to reconstruct
it as the sum of overlapping steps with the property that the accumulated absolute amplitudes
of the steps are minimal. We do this in an iterated fashion by ordering the step amplitudes
po=2(tiy) < +--pimr = 2(ti;_y), p; =0, pip1 = 2(ti;y, ) -+ < pn = 2(ti,) with the zero amplitude
included and defining the increments l; = [pj_1,p;]. Starting with the kth step, an increment
I; is considered “open” if I; € [0,Y% ;(;)] and “closed” otherwise. Whenever an increment ;
transitions from open to closed, define a step of amplitude rx; = £(I;) and of duration di ; ranging
from {; to the time when the increment was last opened. Proceeding in this manner, the step

function now has the form
n

x3(t) = Z Z rk,j‘[[lk,tk-—dk,j] (109)

3=0 k=0
upon setting ri ; = 0 for previously undefined values.

At each stage in the jteration, notice that the sum of the lengths of increments either opened
or closed is equal to the variation of the step function at that point, implying that 37 _,7k,; =
z(t;) — z(t;—1). Notice also that an increment opened by an increase/decrease in the step function
can be closed only by a future opposite decrease/increase, meaning every step is uniquely associated

with a point of increase. These facts mean that

3 i"k,j = Zn:[z(tf) — z(ti)]t + [z(t0)]* (110)
7=0 k=0 =1 .
< P, (111)
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where the last relation follows from the definition of positive variation. Properly define ¢; and 7; in

terms of ry ;, tk, and di ; to write

23(1) =D iy, (112)
=1

with 312, ¢ < P, and f: |z(t) — z,(t)|dt < €. A similar step function exists for y(t), namely,
ys(t) = Iiblf[u‘_l,ul] (113)
=1
with 30, b < P, and [ |y(t) — y,(t-)ldt <e.
With these two step functions in hand, éompute

/b sin(8 + wt + Bt*)z(t)y(t) dt = /b sin(f + wt + Bt)z,(t)ys(t) dt + e(t) (114)

where |e(t)] < e(Mg + Myy) + €2, My = sup, |z(t)| < oo, and My, = sup, |y(t)] < co. Putting
(112) and (113) into (114) yields
m n b
D> bka / sin(8 + wt + B3, nlnlux_yu] Gt (115)
k=1l1l=1 a
Applying Lemma 1 and maximizing the bound by replacing the starting time for each step with

the worst case a forms

2P, P,

]
/a cos(0 + wt + B)a(t)y(t) dt < —E — e(t) (116)

after noting that 3°%, ¢; < P; and Y jr, by < P,. Let € — 0, then |e(t)] — 0 and the lemma is

proved.

APPENDIX C
Moments between Squares of Correlated Gaussian Random Variables with

Random Phase Component
We have in this section two random variables

P = ocosf+fsinf+v (117)

Q = ~vcosf+6sinf+q (118)
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where the random variable 8 is uniformly distributed on the on [0,27] and the Gaussian random

2

variables v and 7 are zero-mean with covariances o2, Ty

and o2,. We want to compute the mean

and variance of P2, the mean and variance of P%, and the covariance between P2 and Q2.

Our calculations will be assisted by a formula of the general fourth moment between the

2 _

Gaussian random variables zo, z1, T9, and z3 with means m; = £(z;) and covariances o/, =

El(zi — mi)(zj — m;)]. The formula is
2 2 ) 2 2 2 2
E(To12273) = 041053 + 06,013 + 033072 + g1 Mam3 + 0G;MIM3
2 2 2 2
+ oggsmimg + o{ymoma + g13MoMmy + 033MgMy

+ mgmimama. (119)

We will now compute the mean of P? and Q2. Equation (117) implies
E[P?/8] = a® cos® § + B?sin® 6 + 20 cos @ sin § + o2 (120)

which, upon averaging over 6, becomes

2 2
P =2 4 A + a2, : (121)
2 2
Similarly,
21 _ 7, & 2 ’
£[Q%) = 5 + 5 +a}. (122)

Onward to the covariances. Equations (117), (118), and (119) imply that
E[P2QY/0) = 030,2’ + 20, + o2(ycos 6 + §sin 6)?
+ 4o? (acosf + Bsin)(7cosd + 6sinb) + o2(acosd + Bsin 6)°
| + (acosf + Bsin8)2(y cos§ + ésin 8)? (123)
which, upon averaging over 4, becomes
E[P?Q? = o202 +204, + 123-(72 +6%) + i’é’i(a’ + B%) + 207, (a7 + B6)
+ g(a272 + 5282) + é(vzlﬂ +4afyé + a?67). - (124)
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With (121), (122), and (124) we conclude that
1 . :

cov[P?, Q% = 20}, + 202 (ay + B8) + %(0272 + 82%6% = 426% — a%6%) + Eaﬂvé (125)
which specializes to

var[P?]

Il

1 1
208 +20%(* + B4 + g(a4 + 64+ Zazﬁz (126)

var(Q?]

1 1
208 + 202(v* + 8%) + g(7" + 6+ 27252. (127)

APPENDIX D
Derivation of Upper and Lower Boﬁnding Distributions for the Sum of Squares of

Correlated Gaussian Random Variables with Random Phase Component
Theorem 1 Define the n-dimensional vector PT 4 [p1,- -+, pn] to have components

p;éa;cosﬂ-}-b,-sinﬁ-{-w;, 1‘§i§n (128)

where each a; and b; is a constant, § is a uniformly distributed random variable on (0,2}, and

{w;}%, is a sequence of zero-mean Gaussian random variables with an invertible covariance matriz

Y. Then, with P defined as,

1-Q; [\/a:x,,/f ]SPr[PTPSk] <1-0; [ﬁ:\/;’“—] (120)

where Apax, Amin are respectively the mazimum and minimum eigenvalues of X' and where epay,

emin are respectively the mazimum and minimum eigenvalues of the matriz

B2 ATxA (130)
with
ap b
Ad | (131)
a, by,

and, finally, where Q,, is the generalized Marcum Q-function defined as

Qm(a,F) C /ﬁoo T (%) - 6"%(’2"’“2)],,1_1((1:1:) dz. (132)
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Proof: The proof consists of three parts. In the first part, the conditional probability Pr[PTP <
k/0] is expressed as an integral of a multidimensional Gaussian density over a spheroid centered
at the origin. Upon transformation with a decorrelating matrix, the region of integration becomes
ellipsoidal and the Gaussian density becomes independent, with each of its marginal densities having
unity variance. Then through eigenvalue analysis, the ellipsoidal region of integration is inscribed
and circumscribed with spheroids yielding corresponding bounds on the integral. The second part
of the proof shows that the integral of an independent Gaussian distribution over an arbitrary
spheroid depends only on the magnitude of the mean vector and decreases with respect to it. This
fact enables further bounding in the third part after computing the minimum and maximum of the
mean as a function of §. An aftereffect is the removal of # dependence in the bounds, thus allowing
their direct application to the unconditional probability Pr[PTP < k]. Néxt the bopnds, which are

still expressed as integrals, are evaluated in closed form via the generalized Marcum -function.

Part i: By applying the expression for a multivariate Gaussian density, the conditional proba-

bility
Pr[PTP < k/6] = — - / e HP-ACTZT[P-AC] 4p (133)
or | X2 [P ng]
where
cosf
c=| " (134)
sin

The matrix =7 with the property T TE-i=3"is guaranteed to exist, since X' is an invertible
covariance matrix. Furthermore, for the same reason, there exists an orthogonal matrix T, such
that ¥ = TTAT, where A is a diagonal matrix of eigenvalues of 2. We can now define the

transformation X = TE“%P, from which follows

PHPTP < k/f] = —

~L{X-M,]"[X-M .
27 /[XTAng] € i Mal'l d dX (135)

where

M; =TX % AC. (136)

Now, since X' is an invertible covariance matrix, each entry of A (i.e. eigenvalues of X) is positive.
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Hence

Mmax XTX < k| [XTAX < k] € PainXTX < K] - (a)
from which
T
Pr[PTP < k/8] > — / e-5[X-Me"[X-Mj] yx (138)
2 [XTng/,\mu]
and
T
Pr{PTP < k] < — / ) e~ 5[ X-Mo] [X-My] 5 (139)
o [X ng/,\m;n] .
Part i1: We aim to show that, for a given r,
RA 2 HX-M][X-M] 4% (140)

o /[XTXSr] ¢

depends only on the magnitude of M and decreases as | M| gets larger.

There exists an orthogonal matrix U, such that UM = [|[M],0,---,0]7. The matrix U is simply
a change of orthonormal basis to one that includes M /|M] as its first member. Now ¥ = UX

transforms (140) to
1

B=o /{YTYg]

As promised for a given r, (141) depends only on the magnitude of M, hence the notation R(|M]).

e-3(u-IM) -1, gy (141)

We now show that R(]M|) decreases with respect to the magnitude of M by showing that, for
any positive increment A|M|, the corresponding difference A R(|M]) S R(|M|+ A|M]|) - R(|M})

is negative.

Make the respective substitutions 2y = y; — |[M|, z; = y;, for 2 < i < n, to B(]M]) and

z1 =y = |M| - AlM]|, z; = y;, for 2 < i < n, to R(|M]| + A|M]|). Then

_ 1 -1Z7Z _1_/ 1272z
AR(IM]) = '2?/66 R (142)
where the sets G and H are
G = [z (o + M+ AIM|)?+ > 2 < r] (143)
L1=2
I = [Z:(zl+|M|)2+Zz,-2_<_r}. (144)
1=2
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Cancel out the common points of G and H then

T
AR(M]) = — e-32"% 4z L e-32° 2 47, (145)
21 Jo~oH 2r JH~G

Let v; = —z1 — 2|M| - A|M|, v; = z;, for 2< i < m, in the second integral above; then H ~ G is

mapped to G ~ H and the integrals can be combined to yield

™

AR(MY = [ et TRt [1o e HAMISIMY - CMIeIMD)] a7
G~H

The coordinate z; is in G ~ II, if and only if

(21 + [MI)? + 281M](21 + [M]) + (AIMI + Y5 < v (147)
and
(21 + M)+ =z > | (148)
=2

Upon subtracting both relations, z; must satisfy

AlM|

7 < —|M| - 2

(149)

Using this relationship in (146) implies that AR(JM]|) < 0, meaning that R(|M|) decreases with

increasing magnitude of M.

Part iii: Further bound (138) and (139) by respectively maximizing and minimizing magnitude

of the mean over the random phase . From (136), the magnitude of the mean is
IMg|? = MyTMy = CTATE'AC (150)

following from the fact that T, being orthogonal, satisfies TTT = I. The matrix AT X' A, being

symmetric, ensures that it can be diagonalized making

€max 0 U cos @

| My)? = [cosb,sin O)UT (151)

0  emin sin 8
where U is an orthogonal matrix and epax and emin are the eigenvalues of ATZ-1A. Since U is
orthogonal, it rotates the plane by some angle ¢. This means that
cos @ cos(f — @)

= (152)
sin @ sin(6 — @) :
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and hence that

[Mj|? = emax c0s2(0 — ¢) + emin sin’( — ¢). , (153)

1
The eigenvalues epax and emin are nonnegative since AT -1 A has a square root, namely, X~ 7 A.

This fact, along with (153), implies

v €min < IM9| < v/ €max- (154)
Use (154) and (141) to deduce from (139) and (138) the bounds

PiPTP <k > _1._/ - oL T, - —vE) gy
T T 2w [YTY ki
(155)

1
Pi{PTP <k < —

/ e- s L vi-Fm=vEmn)® gy
= 2r [YTYSk/Ami,.]

(156)

The integrals in the above bounds are simplified by showing that they are the distribution
functions, evaluated respectively at k/Amax and k/Amin of the sum of n non-central x* random
variables with noncentrality emax, €min- An explicit expression for this distribution is given in [2]

and leads to the conclusion of the theorem:

1- Qs [\/e— I ] <Pr[PTP <k <1-Qz {\f“em;n,\/f;] . ()
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Figure 5: Performance of Locally Optimal Detector Compared with Time-Multiplexed Detector
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Table 1: Coefficients of (83)

Z w;j b;

2ot — 2012 — g—d2 + Bduy 23t 0

—2wot + 2612 + -g—d2 — Bduy + fud 2wg — 20t Jé]

B p

—(wo — 268t)(uy — &) + Ui wo + Bd — Puy 3

—2uwot + 208t% + gdz — (wo + Bd)uy + -g-uf wo — 28t — Buy g
B 2 g

(wo — 2Bt)(uy — d) + Eul wg — PBd + Buy 5

—2uwot + 20t% + g—dz + (wo — Bd)uy + -g-uf wg — 28t + Puy g
wod + 20t(uy — d) Bd 0

(wo — 20t)d + (—2wp + 20t)uy Bd — 20u, 0




