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Kriging is a popular analysis approach for computer experiments for the purpose of creating a cheap-
to-compute “meta-model” as a surrogate to a computationally expensive engineering simulation model.
The maximum likelihood approach is used to estimate the parameters in the kriging model. However, the
likelihood function near the optimum may be flat in some situations, which leads to maximum likelihood
estimates for the parameters in the covariance matrix that have very large variance. To overcome this
difficulty, a penalized likelihood approach is proposed for the kriging model. Both theoretical analysis
and empirical experience using real world data suggest that the proposed method is particularly important
in the context of a computationally intensive simulation model where the number of simulation runs must
be kept small because collection of a large sample set is prohibitive. The proposed approach is applied to
the reduction of piston slap, an unwanted engine noise due to piston secondary motion. Issues related to
practical implementation of the proposed approach are discussed.
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1. INTRODUCTION

This research was motivated by ever-decreasing product de-
velopment time, where decisions must be made quickly in the
early design phase. Although sophisticated engineering com-
puter simulations have become ubiquitous tools for investi-
gating complicated physical phenomena, their effectiveness in
supporting timely design decisions in quick-pace product de-
velopment is often hindered due to their excessive requirements
for model preparation, computation, and output postprocessing.
The computational requirement increases dramatically when
the simulation models are used for probabilistic design opti-
mization, for which a “double-loop” procedure is usually re-
quired (Wu and Wang 1998; Du and Chen 2002; Kalagnanam
and Diwekar 1997), as illustrated in Figure 1.

The outer loop is the optimization itself, and the inner loops
are probability calculations for the design objective and design
constraint. The most challenging issue for implementing prob-
abilistic design is associated with the intensive computational
demand of this double-loop procedure. To deal with this is-
sue, meta-modeling, the “model of the model” (Kleijnen 1987),
to replace an expensive simulation approach becomes a popu-
lar choice in many engineering applications (e.g., Booker et al.
1999; Hoffman, Sudjianto, Du, and Stout 2003; Du, Sudjianto,
and Chen 2004). Although probabilistic design optimization is
beyond the scope of this article, it provides a strong motivation
for the approach presented herein, where the ability to construct
an accurate meta-model from a small sample size is crucial. For
example, it takes 24 hours for every run of computer experi-
ments for the piston slap noise example in Section 4. In such
situations, collecting a large sample may be very difficult, and
the newly proposed approaches are recommended.

The accuracy of meta-models in representing the original
model is influenced both by the experimental designs used (see,
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e.g., Ye, Li, and Sudjianto 2000) and by the meta-modeling ap-
proach itself (Jin, Chen, and Simpson 2000). The design and
analysis of computer experiments for meta-modeling has re-
cently received much interest in both the engineering and statis-
tical communities (Welch et al. 1992; Jin et al. 2000; Simpson
et al. 2002). Because the output obtained from a computer ex-
periment is deterministic, it imposes a challenge in analyz-
ing such data. Many complex methods to analyze outputs of
computer models have been proposed in the statistical litera-
ture. Koehler and Owen (1996) and Sacks, Welch, Mitchell,
and Wynn (1990) provided a detailed reviews on how to scat-
ter computer design points over the experimental domain ef-
fectively and how to analyze the deterministic output. Santner,
Williams, and Notz (2003) provided a systematic introduc-
tion on space-filling designs for computer experiments and
a thorough description of prediction methodology for computer
experiments. Sacks et al. (1990) advocated modeling the deter-
ministic output as a realization of a stochastic process, and used
Gaussian stochastic kriging methods to predict the determinis-
tic outputs. In implementing Gaussian kriging models, one may
introduce some parameters in the covariance matrix and use
the maximum likelihood approach to construct estimates for the
parameters.

Although the Gaussian kriging method is useful and popular
in practice (e.g., Booker et al. 1999; Jin et al. 2000; Kodiyalam,
Yang, Gu, and Tho 2001; Meckesheimer, Barton, Simpson, and
Booker 2002; Simpson et al. 2002), it does have some limita-
tions. From our experience, one of the serious problems with
the Gaussian kriging models is that the maximum likelihood
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Figure 1. Double-Loop Procedure in Probabilistic Design.

estimates (MLEs) for the parameters in the covariance matrix
may have very large variance, because the likelihood function
near the optimum is flat. We demonstrate this problem in the
following simple example.

Consider the one-dimensional function

y = sin(x). (1)

Let the sample databe x =0, 2,4, ..., 10. We use the following
Gaussian kriging model to fit the data:

y(x) = p~+z(x),
where z(x) is a Gaussian process with mean 0 and covariance
cov{z(s), z(1)} = o> exp{—0|s — 1]*}. 2)

For a given 6, the MLE for x and ¢ can be easily computed.
We can further compute the profile likelihood function £(6),
which equals the maximum of the likelihood function over
w and o for any given §. The corresponding logarithm of
the profile likelihood (log-likelihood, for short) function £(6)
versus 6 is depicted in Figure 2(a), from which we can see
that the likelihood function achieves its maximum at 6 = 3
and becomes almost flat for 6 > 1. The prediction based on
the Gaussian kriging model is displayed in Figure 2(b), which
shows that the prediction becomes very erratic when x is not
equal to the sample data.

As a natural alternative approach, one may use the restricted
maximum likelihood (REML) (Patterson and Thompson 1971)
method to estimate the parameters involving a covariance ma-
trix. (REML is also called “residual” or “modified” maximum
likelihood in the literature.) Let y = (y1, ..., yn) consist of all
responses, and let C(6) be the N x N correlation matrix whose
(i, j)th element is exp{—0|x; — xj|2}. The logarithm of the re-
stricted likelihood function for this example is

(n—1) 2

glog(Zn) — logo
1 1 T el
- ElogIC(G)I - ElogllNC () 1]
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Figure 2. Kriging and Penalized Kriging. (a) and (g) The
log-likelihood functions for kriging with sample size N = 6 and 21.
(b) and (h) Prediction via kriging with sample size N = 6 and 21. (c) The
log-restricted likelihood function for kriging with N = 6. (d) The predic-
tion via kriging with N = 6 using the REML method. (e) The penalized
log-likelihood function for kriging with N = 6. (f) The prediction via penal-
ized kriging with N = 6. In (b), (d), (f), and (h), the solid line represents
prediction, the dashed line represents the true curve, and the dots rep-
resent prediction at the sample datum points.

where 1y is an N-dimensional vector with all elements equal
to 1. The corresponding logarithm of the profile restricted like-
lihood function versus 0 is depicted in Figure 2(c), from which
we can see that the shape of the profile restricted likelihood
function in this example is the same as that of Figure 2(a). The
profile restricted likelihood function achieves its maximum at
6 = 3 and becomes almost flat for 6 > 1. The prediction based
on the REML is displayed in Figure 2(d). The prediction is the
same as that of Figure 2(b), because 0 = 3, the same as that
obtained by ordinary likelihood approach. As shown in this ex-
ample, the prediction based on REML also becomes very erratic
when x is not equal to the sample data.

To avoid such erratic behavior, we consider a penalized like-
lihood approach, which we describe in detail in Section 2. A pe-
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nalized log-likelihood function with the SCAD penalty (see
Sec. 3 for a definition of SCAD) is depicted in Figure 2(e),
and its corresponding prediction is displayed in Figure 2(f).
Figure 2(e) clearly shows that the penalized likelihood function
reaches its maximum at 6 = .091 and is not flat around the op-
timum. The shape of the penalized log-likelihood function im-
plies that the resulting estimate for 8 has smaller variance (see
Sec. 2.2 for more discussion). Figure 2(f) demonstrates that
the predicted and the true curve are almost identical. Although
REML may be viewed as a kind of penalized likelihood, the
motivation of REML is different from that of our penalized like-
lihood. For example, the goal of our penalized likelihood is to
reduce variance of the resulting estimate of 6 at the expense
of introducing a small bias (see Sec. 2.2 for theoretic analy-
sis); however, the goal of REML is to produce an unbiased es-
timate by paying a price of increasing variance of the resulting
estimate. This can be easily seen from the REML estimate of
variance of random error (¢'2) for the ordinary multiple linear
regression model with independent and identically distributed
random error.

To demonstrate the effect of sample data on the likelihood
function and to properly predict at unsampled points, we con-
sider a slightly larger sample, x =0, .5, 1, ..., 10. The corre-
sponding likelihood function and the prediction are shown in
Figure 2(g). The likelihood function achieves its maximum at
6 = .051. Comparing Figures 2(e) and 2(g), we see that the
locations of the MLE and the penalized MLE are very close.
Furthermore, Figure 2(h) confirms that the corresponding pre-
diction yielded by the penalized kriging method with N = 6
comparable to the prediction obtained by maximum likelihood
with N =21.

In this article we propose a new approach via penalized likeli-
hood to fit a Gaussian kriging model to the outputs of computer
experiments. We further discuss the choice of penalty functions.
Using a simple approximation to the penalty function, the pro-
posed method can be easily carried out with the Fisher scor-
ing algorithm. Furthermore, we propose a method for choosing
the regularization parameter involved in the penalty function.
We summarize the proposed approach as an easy-to-follow al-
gorithm. We demonstrate the benefit of our proposed method
using an engineering example of the design of power conver-
sion to minimize piston slap noise.

2. PENALIZED LIKELIHOOD GAUSSIAN
KRIGING MODELS

Suppose that x;, i = 1,..., N, are design points over a
d-dimensional experimental domain A, and that y; = y(x;) are
sampled from the model

y(Xi) = p+z(x)),

where z(X;) is a Gaussian process with mean 0 and covariance
between x; and x;,

d
’”(Xi,Xj):UzeXP:_Zek|xik—xjk|q}» 0<g=2,
k=1

where 6; > 0. Although one may estimate ¢ in practice, we take
q = 2 throughout the article, because the computer model is
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known to be smooth. Lety = (01, ..., 64, )T and define R(y)
to be the N x N matrix with the (i, j)th element r(x;, X;). Thus
the density of y = (y1,...,yn)7 is

fiy) = Qo)™ R(y)71?
1
x exp{—i(y — v "R )y - 1Nm}, 3)

where 1y is an N-dimensional vector with all elements equal-
ing 1. After dropping a constant, the log-likelihood function of
the collected data equals

£Qu, y)
1

1
=—3logIR(y)| - (v~ v R )y — Iyw).  (4)

2.1 Penalized Likelihood and Kriging

The penalized likelihood of the collected data is defined as

1 1
O, y) = =7 log R(»)| = 5(y - Iv) R () (y — 1)

d
~NY ). (5)

k=1

where p; () is a given nonnegative penalty function with a reg-
ularization parameter A. Maximizing the penalized likelihood
yields penalized likelihood estimates i and y for p and p.
The penalized likelihood may be written in an equivalent form
of constrained likelihood. For instance, if we take the penalty
function to be the L; penalty, namely p; (y) = Ay, then max-
imizing the penalized likelihood (5) is equivalent to maxi-
mizing the likelihood function £(u, ) subject to a constraint
ZJ‘-J:] ¥j < s, where s is a regularization parameter playing
the same role as that of A. (See Tibshirani 1996 for detailed
discussion on constrained least squares with the L; penalty.)
Penalized likelihood is closely related to variable selection cri-
teria, such as the Akaike information criterion (Akaike 1974),
the Bayes information criterion (Schwarz 1978), and more re-
cent work (Fan and Li 2001). Furthermore, many smoothing
methods, including smoothing splines (Wahba 1990) and pe-
nalized splines (Ruppert 2002), can be derived from a penal-
ized likelihood. The penalized likelihood also admits Bayesian
interpretations where the penalty term corresponds to a prior
on y. Bayesian interpolation has a long history. Kimdeldorf
and Wahba (1970) and Wahba (1978) established a connec-
tion between Bayesian interpolation and smoothing splines. It
is well known that smoothing splines are the solution of penal-
ized least squares with a quadratic penalty or penalized like-
lihood with a quadratic penalty for the regression coefficients
when random error is normally distributed. Our penalized like-
lihood approach is differs from smoothing splines in that we pe-
nalize the parameters involved in the correlation matrix rather
than the regression coefficients for the mean function. Bayesian
interpolation was introduced to model computer experiments by
Currin, Mitchell, Morris, and Ylvisaker (1991) who they pro-
vided a Bayesian formulation for Gaussian kriging models. For
any x, denote

b(x) = (F(x, X1), ..., 7(X, Xn)), (6)
TECHNOMETRICS, MAY 2005, VOL. 47, NO. 2
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where
d
(X, X;) =6zexp{—29k|xk —xik|‘7}. 7

The predicted response can be calculated by the best linear un-
biased predictor,

$(x) = A +bEOR Py — Iy, 8)
with estimated variance

vary(x)} = 6% — bR (7)bT (). ©)

2.2 Theoretical Aspects

We solve the following equations to find the solution of pe-
nalized likelihood:

9 0,02
ow.0.0% _ (10)
au
900,07
7T )y, 11
Py (1)
and
2
0W0.97) _ o forj=1.....d. (12)
36
From (10) and (11), we have
f=13C""(0)y/1,C (0)1y (13)
and
1 AT (~—1 N
=N(y—1w) C(O)(y—1vp), (14)

where C(0) = 0’2R(y). Thus, for given initial values for
w and o', we can use the Newton—Raphson or Fisher scoring al-
gorithm to solve (12) for @ (see Sec. 3.2 for implementation of
the Fisher scoring algorithm). Furthermore, we iteratively up-
date the values of u and o2 using (13) and (14), and solve (12)
for @ until the algorithm converges. Thus, when we solve (12)
for @, the values of © and o2 are fixed.

Because our focus in this article is on estimation of 6;,
j=1,...,d, for simplicity of presentation, we fix 4 and o2,
and regard €(u, 01, ...,6q, 02) as a function 0 = (6, ..., Od)T
and denote it by £(6), suppressing 1 and o2. Let 6 denote the
true value of €, and let 9MLE denote the MLE of 0, that is,

éMLE =argmax£(0).

]
The consistency and asymptotic normality of OmLE has been es-
tablished by Mardia and Marshall (1984); Sweeting (1980) pro-
vided more general settings. In this section we assume that the
regularity conditions presented by Sweeting (1980) and Mardia
and Marshall (1984) are valid.

We first present some geometric interpretations to explain
conditions where the ordinary likelihood method does not work
well and the penalized likelihood method is needed. Under
some regularity conditions, it follows that

£(0) = €(00) +£'(80) (6 — 00)

1
+50 - 00)7¢"(80)(8 — 80) +op(110 — 60117,
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where £'(0) = 3£(0)/00 and £”(0) = 32£(0)/960 307. When
0 is one-dimensional, if £(0) becomes flat for # around 6 as
shown in Figure 2(a), then £'(0) ~ 0 and £’ (o) ~ 0. This indi-
cates that the variance of Oy g is very large as it approximately
equals the inverse of —E{€”(0¢)} (see more discussion later).
For multidiIAnensional 0, when £”(0¢) is nearly singular, the
variance of @y g becomes very large. In such situations, the pe-
nalized likelihood estimator may perform better than the MLE.
Like €(0), let Q(@) denote the penalized likelihood function
with fixed 4 and o. Under certain regularity conditions,

00) = 0(00) + {£'(00) — NP1(00)}(0 — 60)
1
+50 - 00)"{£"(80) — NP1(80)}(8 — 89)
+op (|10 — 0o]1),
where  P1(0) = (p}(010),...,P,0a0))T and Pr(8) =

dlag{p (610), . ..,pj{(@do)}. Note that P,(0) is a diagonal ma-
trix and plays the same role as that of the ridge matrix in ridge
regression, which is used to deal with the problem of collinear-
ity. Thus when £”(0¢) is near singular and the likelihood func-
tion becomes flat around 6y, the penalized likelihood function
produces a more stable solution for . (Here “stable” means
that the resulting estimate has small variance.)

We next study the asymptotic properties of the penahzed
likelihood estimate . Because the asymptotic normahty of 6
requires the same regularity conditions as those for 0MLE, we
start with the asymptotic properties of Omie. As was shown
by Mardia and Marshall (1984), under certain regularity condi-
tions, we have

VN@MLE — 80) —> N0, 171 (80)).

D, .
where “—” represents convergence in distribution and
100) = —N"'E{€"(00))} is the Fisher information matrix. Thus

when I(f() is near singular, # has a large covariance matrix.
This is the case illustrated in Figure 2(a). Hence the behavior of
the resulting prediction becomes erratic. Under certain regular-
ity conditions, we can show, using techniques related to those
of Fan and Li (2001), that

VN{I(6o) + P2(00)}[9 — 00+ {I00) +P2(00)}'P1(80)]

LN, 1(80)).

Thus the asymptotic bias of 9 is P1(0y), and the asymptotic
variance of 0 is

1
100 + P2(00)} ' 1(80){1(8¢) + P2(80)}

The penalized likelihood approach can significantly reduce the
variance of @ when 1(89) is near singular—but at the expense of
introducing bias P (fp). Root-n consistency of ] requires that
max; |p} (6j0)] = O(N~'/2). Furthermore, if max;|p} (6j0)| =
o(N~1/2) and max; |p} (6j0)] = o(N~1/?), then

VN@ - 00) 2 N@©,171(80)).

which is the same as that of 9MLE. This is a desirable property,
because it is well known that the MLE is the most efficient es-
timate. The result also implies that the penalized likelihood es-
timate may perform better than the MLE only when the sample
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size is small. This result has an important practical implications,
because computer experiments can be very time-consuming.
For example, it takes 24 hours for every run of computer ex-
periments for piston slap noise example analyzed in Section 4.
In such situations, collecting a large sample may be very diffi-
cult, and penalized likelihood approaches are recommended.

3. PENALTY FUNCTION AND ALGORITHM FOR
PARAMETER ESTIMATION

In this section we propose the smoothly clipped absolute de-
viation (SCAD) penalty as the appropriate choice of penalty
function p, (-) and the choice of regularization parameter A
needed for the penalized likelihood in (5). A practical algo-
rithm using the Fisher scoring approach is used to estimate the
model parameters u, o, and 6. The performance comparison of
these penalty functions is discussed in Section 4, in which an
engineering example is used to illustrate the advantage of the
proposed method.

3.1 Selection of a Penalty Function

Because model selection is used for various purposes, many
authors have considered the issue of selecting penalty func-
tions. In the context of linear regression, penalized least squares
with L, penalty, p, (16]) = 51|0)2, leads to a ridge regression,
whereas the penalized least squares with L; penalty, defined
by ps(10]) = A|0], corresponds to LASSO (Tibshirani 1996).
Fan and Li (2001) proposed a new penalty function, the SCAD
penalty. The first derivative of SCAD is defined by

(ar —0)4

P,®) =x{l<9 <N+ s

10 > k)} (15)
for some a > 2, 8 > 0, with p; (0) = 0. This penalty function in-
volves two unknown parameters A and a. As suggested by Fan
and Li (2001), we set a = 3.7 throughout the article. As demon-
strated by Fan and Li (2001), the performance cannot be signif-
icantly improved with a selected by data-driven methods, such
as cross-validation. Furthermore, the data-driven method can
be very computationally extensive, because one needs to search
for an optimal pair (A, a) over a two-dimensional grid of points.
The shapes of the three penalty functions (L{, Ly, and SCAD)
are shown in Figure 3.

As discussed in Section 2.2, if max; |} (j0)| = o(N~'/?) and
max; |p} (6j0)| = o(N~1/?), then

VN® = 80) 2> N©0.1-1(8,)). (16)

which is the same as that of éMLE. For the L, penalty,
P}, (6) = 10 and p// (8) = A. Thus, when A = o(N~!/2) for the L,
penalty, then, under certain regularity conditions, (16) holds.
For the L; penalty, p}(#) = A and p}(#) = 0. Hence (16)
requires that A = o(N~!/2). As to the SCAD penalty, when
A — 0, max; |p;(9/-0)| — 0 and max; |p3{(6/0)| — 0 for any
given 0jo > 0. This implies that if A = o(1) for the SCAD
penalty, then (16) holds.
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Figure 3. Penalty Functions With A 1.5, 1, and 1 for the SCAD (—),
Ly (- =), and Ly (- - ) Penalties.

3.2 Fisher Scoring Algorithm

Welch et al. (1992) used a stepwise algorithm with the down-
hill simplex method of maximizing the likelihood function
in (4) to sequentially estimate the Gaussian kriging parame-
ters. Here we use a computationally more efficient gradient-
based optimization technique to estimate the parameters. The
expressions of the gradient and Hessian matrix of the penal-
ized likelihood function in (5) are given in the Appendix.
Using the first-order and second-order derivative information,
one may directly use the Newton—Raphson algorithm to op-
timize the penalized likelihood. In this article we use the
Fisher scoring algorithm to find the solution of the penal-
ized likelihood because of its simplicity and stability. Notice
that E{3%¢(u,y)/dndy} =0 [see the App. for the expres-
sion of 8%€(u, )/du dy]. Therefore, the updates of /i and
are obtained by solving separate equations. For a given value
(u®,§® 520y at the kth step, the new value (11, 8, o2) is up-
dated by

p D = (1Le (e®)y) i (6P)y a7

and
2D =Ny - yu®) T O (v - wn®),  (18)
where C(#) = o ~'R(p), and
90+ = 9® 4 115, (p @) + ):(o(k))}_laQ(M(k[ y®) /00,
where Ip(y) = —E{0%0(u,0,0%)/0000} and X(0) =
diag{p} (01, ...,p}(0a)}, ad x d diagonal matrix.

3.3 Choice of Regularization Parameter

Because Gaussian kriging gives us an exact fit at the sam-
ple point x, the residual at each sample point is exactly equal
to 0. Therefore, generalized cross-validation (GCV) cannot be
used to choose the regularization parameter A. In this article we
use cross-validation (CV) to select the regularization parame-
ter. We implement V-fold CV, and for a given A, compute the

TECHNOMETRICS, MAY 2005, VOL. 47, NO. 2
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V-fold CV score in the following way:

1. Spilt the data D = {(x;,y;):i=1,...,N} into V subsets
Dy, ..., Dy.

2. Forv=1,...,V,let DY) =D —D,, and use data D~
to form a predictor " (x).

3. Compute the CV score,

cvy=3y ¥ -3l
V. (xi,y)€Dy

For a given set of A values S= {11, ..., Ax}, we choose

A= argmin CV (1).
rrE€S

In the literature, leave-one-out CV corresponds to N-fold CV.
3.4 Computing Algorithm for the Proposed Procedure

We summarize the foregoing procedures in the following al-
gorithm:

1. Choose a grid point set S for A, say, (A1,...,Ak), and
leti=1.

2. With %;, use the Fisher score algorithm to estimate
wandy.

b

Compute the CV score CV(};). Leti =i+ 1.

Repeat steps 2 and 3 until all K grid points are exhausted.
5. The final estimator for i and p is the one with the low-
est CV score.

&

Remark. In step 2, initial values for i and y are needed.
In our implementation, we set u® =73 and 02©@ = N~ x
Zf\; 1 i — )7)2. Furthermore, we take the initial value for 6
be 0/0;, where o; represents the sample standard deviation
of the jth component of input vector and 6 is the max-
imizer of Q(u©,6(0y,...,04),0%?), viewed as a func-
tion of 6. Thus 6 is easily obtained by plotting 6 versus
on©,0(01,...,0q),029), because as it is a scalar variable.

4. APPLICATION: PISTON SLAP NOISE

Automobile customer satisfaction is highly dependent on the
level of satisfaction that a customer has with the vehicle’s en-
gine. The noise, vibration, and harshness (NVH) characteristics
of an automobile and its engine are the critical elements of cus-
tomer dissatisfaction. Piston slap is an unwanted engine noise
resulting from piston secondary motion. De Luca and Gerges
(1996) gave a comprehensive review of the piston slap mech-
anism and experimental piston slap analysis, including noise
source analysis and parameters influencing piston slap. Since
then, with the advent of faster, more powerful computers, much
of piston slap study has shifted from experimental analysis to
analytical analysis for both the power cylinder design phase and
piston noise troubleshooting. Thus it is desirable to have an an-
alytical model to describe the relationship between the piston
slap noise and its covariates, such as piston skirt length, profile,
and ovality.

We first give a brief description of this study; a detailed and
thorough description was given by Hoffman et al. (2003). Piston
slap as an unwanted engine noise is a result of piston secondary
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motion, that is, the departure of the piston from the nominal mo-
tion prescribed by the slider crank mechanism. The secondary
motion is caused by a combination of transient forces and mo-
ments acting on the piston during engine operation and the pres-
ence of clearances between the piston and the cylinder liner.
This combination results in both a lateral movement of the pis-
ton within the cylinder and a rotation of the piston about the
piston pin, and it causes the piston to impact the cylinder wall
at regular intervals. These impacts may result in the objection-
able engine noise known as piston slap.

For this study, the power cylinder system is modeled using
the multibody dynamics code ADAMS/Flex, which also in-
cludes a finite-element model. The piston, wrist pin, and con-
necting rod are modeled as flexible bodies, where flexibility is
introduced via a model superposition. Boundary conditions for
the flexible bodies are included via a Craig-Bampton compo-
nent mode synthesis. The crankshaft is modeled as a rigid body
rotating with a constant angular velocity. In addition, variation
in clearance due to cylinder bore distortion and piston skirt pro-
file and ovality is included in the analysis.

We take the piston slap noise to be the output variable, and
set clearance between the piston and the cylinder liner (x1),
location of peak pressure (xp), skirt length (x3), skirt pro-
file (x4), skirt ovality (xs), and pin offset (xg) as the input
variables. Because each computer experiment requires inten-
sive computational resources, we used a uniform design (Fang
1980) to construct a design for the computer experiment with
12 runs. We used the centered-L, discrepancy uniformity cri-
terion (Fang, Lin, Winker, and Zhang 2000), optimized using
the stochastic evolutionary algorithm (Jin, Chen, and Sudjianto
2004). A review of uniform designs and their applications has
been given by Fang et al. (2000). The collected data are dis-
played in Table 1. The ultimate goal of the study is to per-
form probabilistic design optimization (Hoffman et al. 2003)
to desensitize the piston slap noise from the source of variabil-
ity (e.g., clearance variation), a process that we described in
Section 1. To accomplish this goal, the availability of a good
meta-model is a necessity. We used a Gaussian kriging model
to construct a meta-model as an approximation to the computa-
tionally intensive analytical model. In this discussion we focus
only on the development of the meta-model. (Interested read-
ers should consult Hoffman et al. 2003 and Du et al. 2004 for
the probabilistic design optimization study.) In the data analy-
sis that follows we use g = 2, because the response model is
smooth.

Table 1. Piston Slap Noise Data

Run # X1 X2 X3 Xy X5 Xg Noise (dB)
1 71 16.8 21.0 2 1 .98 56.75
2 15 15.6 21.8 1 2 1.30 57.65
3 29 14.4 25.0 2 1 1.14 53.97
4 85 14.4 21.8 2 3 .66 58.77
5 29 12.0 21.0 3 2 .82 56.34
6 57 12.0 23.4 1 3 .98 56.85
7 85 13.2 242 3 2 1.30 56.68
8 71 18.0 25.0 1 2 .82 58.45
9 43 18.0 22.6 3 3 1.14 55.50

10 15 16.8 242 2 3 .50 52.77

11 43 13.2 22.6 1 1 .50 57.36

12 57 15.6 234 3 1 .66 59.64
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4.1 Preliminary Analysis

To quickly gain a rough picture of the logarithm of profile
likelihood function (log-likelihood, for short), we set 6; =6 /o,
where o; represents the sample standard deviation of the
Jjthcomponent of x;, i =1, ..., N. Such a choice of 6; allows us
to plot the log-likelihood function £(6) against 8. Plots of the
log-likelihood function and the penalized log-likelihood func-
tions with the SCAD, L, and L, penalties, where A = .2275
[=.5\/log(N)/N] and N = 12, are depicted in Figure 4. The
plots suggest that the log-likelihood function reaches its maxi-
mum at 8 = 3 and is flat when the log-likelihood function near
its optimum is flat. In practice, the foregoing approach can be
used as a graphical diagnostic tool in determining whether the
penalized likelihood approach should be used.

This flat likelihood function creates the same problem ex-
hibited in the simple sinusoidal function example (1) discussed
in Section 1 when the sample size equals 6. In contrast, all of
the three penalized log-likelihood functions near their optimum
are not flat. The resulting penalized MLEs for 6 under the con-
straint 6; = 6/0; and o; > 0 are .0895, .0740, and .0985 for
the SCAD, L{, and L; penalties. Although the shapes of the
corresponding penalized likelihood functions look very differ-
ent, their resulting penalized MLEs for 6; under the constraint
oj=0/oj and 6; > 0 are very close. From the shape of the pe-
nalized log-likelihood functions, the resulting estimate of the
penalized likelihood with the SCAD penalty may be more ef-
ficient than the other two; see Section 2.2 for the relationship
between variance and £” (). This preliminary analysis not only
gives us a rough picture of the log-likelihood function and the
penalized likelihood function, but also provides us with a good
initial value for implementation of the Fisher scoring algorithm.
We further demonstrate in next section that the resulting penal-
ized likelihood estimate with the form o; = 6/0; also results in
a good prediction rule for the output variable.

(a) Log-likelihood Function {b) SCAD Penalized Log-likelihood
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Figure 4. The Log-Likelihood and Penalized Log-Likelihood When
N = 12. (a) The log-likelihood function. (b), (c), and (d) The penalized
log-likelihood functions with the SCAD, L4, and Lo penalty.
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4.2 Data Analysis via Penalized Gaussian Kriging

We applied the Fisher scoring algorithm with the initial value
obtained in the preceding section to the data. We used the leave-
one-out CV procedure to estimate the tuning parameter A. The
resulting estimate of A equals .11, .13, and .06 for the SCAD,
Ly, and L, penalties. The resulting estimates of ., o2, and 0;’s
are given in Table 2. The four estimates for u are very close,
but the four estimates for o> and 0;’s are quite different.

To assess the performance of the penalized Gaussian krig-
ing approach, we conducted another computer experiment with
100 runs. The median of absolute residuals (MAR) is defined as

MAR = median{|y(x;) — $(x))| :i=1, ..., 100}. (19)

Equation (19) is used to measure how well the prediction per-
forms. The MAR for the ordinary kriging method is 1.3375,
and MAR equals 1.0565, 1.4638, and 1.3114 for the penalized
kriging method with the SCAD, L1, and L, penalties. Figure 5
further plots the sorted absolute residuals from penalized krig-
ing versus the absolute residuals from kriging. From these plots,
we can see that the penalized kriging with the SCAD uniformly
improves the ordinary kriging model. The penalized kriging
with the L, penalty has almost the same performance as the
ordinary kriging model, whereas the penalized kriging with the
L penalty does not perform well in this case.

To understand the behavior of the penalized kriging method
when the sample size is moderate, we apply the penalized
kriging method for the new sample with 100 runs. Again, let
0; = 0/0j, and plot the log-likelihood against 6 in Figure 6.
The plots show that the shape of the log-likelihood function is
the same as that of the penalized log-likelihood function with
the SCAD penalty, which is in agreement with the theoretical
result discussed in Sections 2.1 and 3.1.

We further compute the MLEs for all of the parameters 6;.
Based on five-fold CV, the selected A equals .18, .105, and .18
for the SCAD, L, and L, penalties. The resulting estimates,
given in Table 3, are all very close, as expected.

4.3 Sensitivity Analysis of Regularization Parameter

Now we examine the sensitivity of the regularization parame-
ter on the prediction results. We concentrate on the penalized
kriging method with the SCAD penalty. As reported in Sec-
tion 4.2, the resulting estimate of A for SCAD equals .1100.
To conduct sensitivity analysis, we reduce and increase the val-
ues of regularization parameter by 10%. In other words, we ex-
amine the performance of the SCAD penalized kriging with
A =.099 and A = .121. With these two values, we estimate

Table 2. Penalized MLEs

Parameter MLE SCAD Ly Lo

Q 56.7275  56.2547 56.5177 56.5321
62 3.4844 4.2345 3.6321 3.4854

04 1397 8.00E-04 1.67E-03 3.78E-03
6y 1.6300 1.86E-07 1.42E-04 2.43E-02
O3 2.4451 3.98E-02 5779 .2909
04 4.0914 5.61E-07 2.02E-04 3.26E-02
Os 4.0914 3.03E-06 1501 9.80E-02
06 12.2253 4.4979 1.48E-02 .2590
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Figure 5. Plots of Absolute Residuals for (a) SCAD, (b) L4, and (c) Lo.

u, o2, and the 6;’s based on the samples listed in Table 1.
The resulting estimates are displayed in Table 4. We also pre-
dict the extra 100 response values. The MARs equal 1.0490
for A =.099 and 1.0573 for A = .121. Note that the MAR for
A =.110 equals 1.0565. These MAR values are almost similar.
The plot of the absolute residuals for these three values of A, de-
picted in Figure 7, demonstrate that the absolute residuals are
very close for A =.099 and A = .110 and are almost identical
for A =.110 and A = .121. Figure 7 and the three MAR values
indicate that prediction on the extra 100 response values is not
sensitive to small changes in the regularization parameter for
the SCAD penalized kriging.
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Figure 6. Log-Likelihood and Penalized Log-Likelihood When
N = 100. (a) The log-likelihood function reaching its maximum at .0314.
(b), (c), and (d) Penalized log-likelihood functions with the SCAD, L4,
and Lo penalty. The locations of the maximum of the penalized likeli-
hood functions are .0314, .0285, and .0314 in (b), (c), and (d).
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Table 3. Penalized MLEs

Parameter MLE SCAD Ly Lo
64 4514E-4 3971E—4 .3943E-4 .5858E—4
6y 5634E-3 5192E-3 5204E-3 6519E-3
0 3150E-5 2602E-5 2618E-5 4261E-5
04 2880 2752 2765 .3003
Os .2939E—1 .2593E—1 .2590E—1 .3641E—1
Oe 1792 1515 1548 2162

5. CONCLUSION

In this article we have proposed SCAD penalized maximum
likelihood estimation to deal with problematic flat likelihood
functions in Gaussian kriging model parameter estimation.
Although REML may be viewed as a kind of penalized like-
lihood, the motivation of REML is different from that of our
penalized likelihood method. For example, the goal of our pe-
nalized likelihood method is to reduce the variance of the re-
sulting estimate of 6 at the expense of introducing a small bias;
however, the goal of REML is to produce an unbiased esti-
mate by paying the price of increased variance of the result-
ing estimate. This can be easily seen from the REML estimate
of the variance of random error (02) for the ordinary multi-
ple linear regression model with independent and identically
distributed random errors. We provided practical implementa-
tions of the proposed penalized likelihood method, including
the Fisher scoring algorithm as well as the choice and sensi-
tivity of the regularization parameter. We also presented com-
parisons with standard maximum likelihood estimation as well
as Ly and L, penalized likelihood using both toy and indus-
trial applications. The method is particularly recommended for
constructing a Gaussian kriging metamodel when regular maxi-
mum likelihood estimation results are unsatisfactory, a problem
commonly encountered when the sample size is small due to
computationally expensive engineering simulation models.
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Table 4. Penalized MLEs With the SCAD Penalty

Parameter A =.099 A=.110 r=.121
Q 56.2772 56.2547 56.2538
62 42745 4.2435 4.2951

04 8.28E-04 8.00E—04 7.91E-04
6y 3.54E-07 1.86E-07 1.70E-07
63 3.75E-2 3.98E-02 3.84E-02
64 1.02E-7 5.61E-07 7.16E-07
5 2.45E-10 3.03E-06 3.71E-08
Oe 43917 4.4979 4.4683
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Figure 7. Plot of the Absolute Residuals of the Penalized Kriging With
the SCAD Penalty for Three Different Values of .: A1 =.099, o = .110,

and L3 = .121. The corresponding estimates of parameters are listed in
Table 4.

APPENDIX: DERIVATIVES OF ¢(u, y)

By some straightforward calculations,
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and
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Ik 2

for k=1,...,d + 1, where e =y — 1yu and Rk(y) =
oRy(y)/0yk. Furthermore, we have
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where Ry () = 32R(¥)/0k 0ys.
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