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Analysis of Contention Tree Algorithms

Augustus J. E. M. JansseBenior Member, IEEEBNnd Marc J. M. de Jong

Abstract—The Capetanakis—Tsybakov—Mikhailov contention B provide the details of our mathematical analysis. A brief ac-
tree algorithm provides an efficient scheme for multiaccessing a count of this work was presented in [5].
broadcast-communication channel. This paper studies statistical
properties of multiple-access contention tree algorithms with
ternary feedback for arbitrary degree of node. The particular Il. THE CONTENTION TREE ALGORITHM

quantities under investigation are the number of levels required Let us now describe the multiple-access contention tree al-
for a random contender to have successful access, as well as the

number of levels and the number of contention frames required gorithm as_ first reported by Capetanakis [3] and b_y Tsybakov
to provide access for all contenders. Through classical Fourier and Mikhailov [4], [25]. A large number of transmitters (sta-
analysis approximations to both the average and the variance tions, terminals, sources, etc.) share a single, slotted broadcast

are calculated as a function of the number of contenders:. Itis  channel. The transmitters that contend for channel access are
demonstrated that in the fimit of large n these guantities do not 46 1 acquire ternary feedback on what happened during a con-
converge to a fixed mode, but contain an oscillating term as well. . . .
tention slot, i.e., whether zero transmitters @amptyslot), one
Index Terms—Broadcast communication, collision resolution, transmitter (ssuccesl transmission), or more than one trans-
contention tree algorithms, random multiple access. mitter (acollision) has been broadcasting during the particular
slot. The ternary feedback can either be detected by the stations
|. INTRODUCTION themselves or by a central controller and is not required to be

. . L immediate, i.e., there may be a certain delay between the trans-

HE allocation of a single broadcast-communication chan-. - . . .

. ... mission during the contention slot and the reception of the feed-

nel among a large number of independent transmitters

) . ack. Furthermore, the tree has nodal degree> 2, and as

usually requires more advanced medium-access protocols t all sequence (see belaw)consecutive contention slots are
time-division multiple access (TDMA). The reason is that q

TDMA provides a notoriously low performance with respec(ierlJpecj Into a contention frame.

oo : . The contention tree algorithm utilizes the ternary feedback as
to channel utilization, unless all transmitters are contmuou'ﬁje{”owS Let us assume that there areontending transmitters
transmitting, and with respect to access delay, unless the i 9

Aumber of Users is low at the start of a new tree algorithm, i.e.fransmitters want to
Introduced in the ea.rl 1970s as a solution to the roblebroadcast a data packet. During the first contention frame, i.e.,
y . P the frame at the root of the tree, each of theansmitters picks
sketched above, the ALOHA protocol yields an elegant schemte )
R . atrandom a number (s&y betweerl andm—uwith equal prob-
to provide immediate random access to the channel [1]. The cari

L . abiliies—and transmits its packet during thkéh contention
cept of random access implies that two or more transmitters m . .
t. If after completion of the contention frame the ternary

be active a}t .the same time, proh|p|t|ng error-free recemlon'1:¢1eedback becomes available, each transmitter knows whether
such a collision occurs, thg transmitters try again later, each o#epacket has been successfully broadcast or not. If not, a new
fﬁg: Arar:((i)i)onggll tc)g?:(s)?:et;r?/zr Ho(z\givﬁrt’rfziﬁ:::errqoiﬁe g:\::cgntention frame is assigned to all transmitters that caused the
increasez bevond a certain Ie\)//erll ' PaNbiision during the particular slot. Therefore, if there were col-

; y ; . lisions in all contention slotsyp. new contention frames would
Basically, there are two strategies to improve the performa Cgcome available. This leads to the formation of a tree with

of random multiple-access protocols: carrier-sense multiple ac al degreen. The expansion of the tree stops at either empty

cess [2] and collision-resolution algorithms [3], [4], [25]. This r successful slots. Upon completion of the tree algorithm, all

paper studies statistical properties of the basic collision-reso hen contenders have successfully broadcast their data. There-

tion algorithm: the contention tree algorithm. The outline is 8Ster a new tree alaorithm may start again. To exem lify the
follows: Section Il overviews the development and explains the "~ ’ 9 y gain. P

operation of the contention tree algorithm. In Sections llI ar‘fcrlc:a rét(fag;[;;)n_trclage ?!)%?;':}ZZ‘;SF;% di d_ep;cstlso ; %Zﬁ'g;goatgglon

IV, we investigate the nymber of Igvels and the number of COlhat the formation of the tree is a stochastic process, because
tention frames, respectively, required to complete the tree alqﬁ)—

. ; ; . . each frame each contender picks a slot at random. The con-
rithm. We present conclusions in Section V. Appendices A and . : P g o
tention tree depicted in Fig. 1 is just one realization out of an

infinite number of possible trees far = 13 andm = 3. The
Manuscript received April 12, 1998, revised February 25, 2000. development of the algorithm is thus the result of an interplay
A. J. E. M. Janssen is with Philips Research Laboratories, WY 81, 5656 AA . .
Eindhoven, The Netherlands (e-mail: A.J.E.M.Janssen@philips.com). etween the exponentlal growth of the contention tree and the
M. J. M. de Jong was with Philips Research Laboratories, Eindhoven, Tr@hdom choices made by the contenders.
Netherlands. He is now with McKinsey & Company, Heemstede, The Nether- Capetanakis [3] has shown that in the case of Poisson
lands (e-mail: Marc_de_Jong@mckinsey.com). . .
Communicated by R. Cruz, Associate Editor for Communication Network§/€Nnerated data packets the maximum throughput of the binary
Publisher Item Identifier S 0018-9448(00)06984-4. (m = 2) contention tree algorithm equals 0.347 packets/slot.
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contention tree algorithm. In particular, we study as a function
/ \ of the number of contenders and the number of slots in a

4
contention frame (or nodal degrem) the following statistical
quantities.
I

Inthe present paper, we investigate statistical properties of the
» The number of leveld,, required for a random contender
to have successful contention. This number is of impor-

tance to calculate the mean access delay in systems with

—

[ol2lol [1lol1] [1l111] {2/ 1l0] [ol1]1] a large round-trip delay. In Fig. #;5 is either2, 3, or 4,
depending on the contender. The average ecﬁ%als
l / » The number of leveld,, required to complete the tree.
This number is of importance to calculate the duration of
(1] 1] of [1] o] 1] the algorithm in systems with a large round-trip delay. In
Flg 1,D; = 4.

Fig. 1. Anexample contention tree with = 3 slots per contentionframeand ~ * The number of contention framés, required to complete

n = 13 contending transmitters involved. The numbers in each contention slot  the tree algorithm. In Fig. 10,3 = 11. This quantity
denote the number of packets being transmitted. If this number is larget than . L

(a collision) a new frame is assigned to the contenders involved. If this number determines hOW. much of the channel ca_pgcny IS ”ee‘{'ed
is 0 (an empty slot) ofl (a successful transmission) the tree expansion stops. for the tree algorithm. In the case of a negligible round-trip

delay, it determines the duration of the algorithm, as well.

Capetanakis also demonstrated that if the number of contentiors far as we know, the quantities, and D,, have not been
slots in the root frame is allowed to be variable, but all othetudied in detail before. The quantity, has been thoroughly in-
frames still contain two slots, the maximum throughput equatestigated from the moment of its introduction [3], [4], [6]-[9],
0.430 packets/slot. The most efficient contention tree algorithit®]-[22], [25], [26], [30]. The reason for reinvestigatitg, is
demonstrated so far leads to a maximum capacity of 0.48Wt the techniques taken at hand to calculate various statistical
packets/slot, again in the case of Poisson generated data pagketgerties ok, andD,, can be readily applied to the quantity
[6]-[10], [26]. L,,. This allows us to confirm and state precisely various results

A variant of the contention tree algorithm, the contentiofnd conjectures presented earlier [8], [20], [21].
stack algorithm, has been introduced by Tsybakov and Viveden-he aim of our calculations is to analyze both the expecta-
skaya [11]-[13], [27], [28]. In the stack algorithm, a transmittelion valuesd,,, Dy, and L,, as well as the variancesr (dy.),
does not need to wait until the tree is completed, but is allowd&ar (Dr), andvar (L,,). Through classical Fourier analysis we
to contend in the first available contention frame. An advanta;?@‘_’e found analytical expressions for these quantities in the
is that this eliminates the requirement that all transmitters cofifit of large ». In a nutshell, the results can be summarized

tinuously monitor the status of the channel. as follows:

In the above described algorithms the contention process is d, ~ log,, (n — 1) 1)
being executed with the data packets themselves, in other words, _
a successful contention implies that the data is transmitted as Dy =2 log,, n @)
well. Alternatively, one can make use of the contention tree al- L, ~ n ©)
gorithm to make reservations or requests for data transmission. log m

As generally the length of a reservation packet is smaller th@yhere the logarithm base is given bylog,,, n = log n/log m
the length of a data packet, the reservation contention tree alg@dlog n = In n. More precise results are presented in Sections
rithm may lead to even larger channel utilization [14], [15], [29]4 and IV, with the mathematical details given in Appendices A
This mechanism is currently being proposed in several netwoikd B. From comparison with the exact results it follows that
standards [16], [17]. the expressions obtained are already quite accurate for rather
Apart from the channel utilization, the access delay, i.e., tilsenall values of.. Furthermore, we demonstrate that the aver-
time it takes before the data packet has successfully been traages and variances obtained do not converge for langethe
mitted, is also an important performance parameter. In ordaws (1)—(3), but contain oscillating terms as well, reflecting the
to minimize the access delay, one must take into account tfiscrete-level nature of the contention tree. We learned through
round-trip delay between the transmission of a packet and tiwe kindness of a referee that the oscillatory behavidr,pivas
reception of the feedback [3], [18]. If the round-trip delay isioted without proof by B. Hajek in 1980 and N. D. Vveden-
negligibly small, it is most advantageous to perform a serigkaya in 1984.
search, in which each branch is fully completed before returningThis paper considers the statistical properties of the con-
to the root. However, in communication channels with a largention tree algorithm only. However, our results can be
round-trip delay, such as metropolitan cable networks and satmbined with arbitrary traffic models in order to make predic-
lite networks, it may be advantageous to perform a parallel tréens on the performance of various cases. In many situations,
search, in which all the contention frames at a certain level g8—(3) suffice to make back-of-the-envelope estimates on the
executed before proceeding to the next level [3]. performance.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 03,2010 at 10:22:06 EST from IEEE Xplore. Restrictions apply.
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I1l. THE NUMBER OF TREE LEVELS

The probability distribution of the number of levels re-
quired for a random transmitter to have successful contentior &

whenn transmitters contend in a tree algorithm with con- o
tention slots per frame reads '__%
61 dy n=1 ;s%

Paldn) = ' 4

(i) {an_l(md) —an_1(mh),  n>2 @

with the Kronecker delta functiofy 4 = 1if d = 1 andé; 4 =

0 otherwise. The function,,(}) is given by
an(M) 2(1—1/M)n (5) T T T T T T T T T

if M > 1, a,(M) = 0 otherwise. Equations (4) and (5) can be
understood as follows, where we borrow an argument from [21],
[23]: We consider an infinite, complete tree of nodal degree
The number of slots in level amounts ten?. In the first level,
each of then contenders picks at random one of theslots.
This process is repeated for each subsequent level. As a resu
the n contenders in level are independently and identically,
randomly distributed with equal probabilities over thé slots.
Therefore, the probability that a slot in lewéloccupied by a
random contender is not occupied by any ofithel other con- d, D
tenders equals,,_;(m?). The difference betweea,,_;(m?) ()
anda,_(m*~!) equals the probability that the random cong, , ) propaniiiy distributior?, (d|n) for d.,, the number of levels
tender requires precisedylevels to be the single occupant of gequired for a random contender to have successful transmission and
contention slot. The fact that in the implementation of the cof®)Pn(D|n) for D,,, the number of levels required to complete the tree
tention tree algorithm the tree is not expanded upon an em@é?}i”i‘rgs Tcgf]t';ﬁ?é'g Sbh;ﬂigu?a:rssagfo’fg?e? ;)”n‘iéggo“r?fhgnsehade" bars
or successful slot, does not change this argument. ' '

Similarly, we have for the probability distribution of the
number of leveld),, required to complete the tree

=5,25)

#p(Dln

a function ofn andm. In Appendix A, we derive accurate an-
alytical approximations for these values in the limit of large

81, D, n=1 In short, our derivation fodi,, proceeds as follows. First, we ex-
Pp(Dln) = {b (mP) — b (mP=1) n>92 ®) pand the functiom,,(m?) in a series with terms—* f;.(n/m?).
whereb,, (m"”) denotens the prob;bility th;xt all cogtenders in Secondly, we note that
n T —1
level D occupy different slots fu(n/mP) — fr(n/mP™) ~0
A except whenn? ~ n, so that the summation in (8) and (9) can
bp(M) = —— 7) be replaced by a summation frorre to co. Finally, we utilize
(M —n)IM"™ classical Fourier analysis to approximate the summation up to

if M > n,b,(M) = 0 otherwise. Fig. 2 provides a histogranthe aimed accuracy. This approach can be directly applied to
of Py(d|n) andPp(D|n) for n = 5, 25, andm = 3. Indeed, it D, as well. As expected, we find a logarithmic dependence on

takes a few levels more to have successful transmission for7alfor bothd,, andD,,. However, around this “DC value” there

contenders than for a random contender. is a Fourier series of oscillations. Fot < 20 only the first
Given the probability distributiorP,(d|n) one can readily oscillation is significant, the others being exponentially small.
calculate the average Let us now quote our results. From (64), (65), and (76) we
> have
d, = dPu(d|n) (8) .
; d, = dp +6d, +O(n~?). (11)

the second moment The first term on the right-hand side (RHS) denotes the “DC

d2 =" d*Pu(dln) (9) value,” which is given by
d=1 ~ ) 1 ¥ 1
and the variance L, dn = log,,, (n = 1) + <§ * log m) + 2nlogm (12)
var(d,) = d2 — d,, . (10)  with Euler’s constany ~ 0.5772. We find an approximate loga-
Similarly, D,,, D2, andvar (D,,) can be evaluated. rithmic dependence @f, as a function of:, as is not unexpected

The moments and variance @f and D,, as a function of for the tree algorithm. Multiplying the number of contenders by
n andm can be computed up to arbitrary precision. Howeve® factor ofm, leads to an increase of one required level. Around
much more insight in the tree algorithm can be obtained if t{Bis “DC value” there are oscillations given by
general behavior af,,, var (d,,), D,,, andvar (D,,) is known as 8d,, = 11 sin[27 log,, (n — 1) — ¢1] (13)

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on March 03,2010 at 10:22:06 EST from IEEE Xplore. Restrictions apply.
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TABLE |
THE PARAMETERS REQUIRED TO CALCULATE THE AVERAGE AND THE

VARIANCE OF THE NUMBER OF LEVELS d,, AND D,, FORVARIOUS m OF
CONTENTION SLOTS PERFRAME. THE OSCILLATIONS IN THE AVERAGESd,,
AND 6D,, HAVE AMPLITUDE 1 AND PHASE ¢, SEE(13) AND (16). THE
LARGE-n LIMIT OF THE “DC VALUE” OF THE VARIANCES 9g4,, AND ¥g4,, IS
GIVEN BY ¥4, p, SEE(22). THE OSCILLATIONS AROUND THIS VALUE 6vg,,
AND 6vD,, CAN BE DESCRIBED BY k3 AND ¢, SEE(21) =]

m K1 Ll Ko d2 | Uap
21 1.573-10°% -0.873 | 1.463-10~° 2.798 | 3.5071

3(2394-107% -1.258 | 1.244.1073 2.503 | 1.4462

51 3.423-1073 2.177 | 1.099-10"2 -0.246 | 0.7184 1K
0]1813-107% 0.765 | 3.731-10~2 -1.543 | 0.3936

[ Y S e e =)

1

0 2 4
log(n-1)
Fig. 4. Same as Fig. 3(a), but now on a logarithmic scale.
0.001 |- ‘ ‘
. o (}o&% T
<] o0 °°
5] & °
o
B
=]
2 5
- %
oy 0.000
0 1 1 ] L HI:':
@
T
8 L_ —— m:g
>~ =
v—vgzﬁ -0.001 |~ | | -
e—o m=10 0 50 100 150
6 n
= [
= 4 Fig. 5. The oscillations inl,,, the average number of levels required for a
_____ random contender to have a successful transmission, as a function of the number
- of contenders: for m = 3 contention slots per frame. The symbols denote
2 d,, — d,, according to (8) and (12) and the line denatds according to (13).
-4
00 £ 5 iz % 55 mathematical terms, the exponential increase of the period of
n the oscillations with. reflects the nature of the tree expansion,
®) while the oscillations themselves are a consequence of the dis-

o creteness of the number of levels in the contention tree.
Fig. 3. (a) The averagé, of the number of levels required for a random  Simijlarly to d,,, we find for the approximation ab,, using
contender to have successful transmission and (b) the avBragéthe number 8) instead of (76

of levels required to complete the tree algorithm as a function of the number(gf ) Insteéad o ( )

contenders:. The symbols denote the exact valigeandD,, calculated from D_n — Dn +6D,, + (9(7172) (14)
(4), (8), and (6), the lines the approximatidn+ 6d., andD., + 6 D,, according B " .
to (12), (13), and (15), (16), respectively. where the “DC value” is given by
~ 1 ~vy—log2 1
D, =2log - - . 15
" ogmn—i—<2+ log m 3n log m (15)

wherer; and ¢, are defined according to (65). The values of , )
%, and ¢, are listed in Table | for several values of. The It takes approximately twice as much levels to have successful

magnitude of the oscillation increases with transmission for all contenders than for a random contender.

Fig. 3(a) compares the approximat@,n—kédn with the exact The oscHIat_lonSDn aroundD,, has the same amplitude &%,
valued,,. We note that our large-approximation is remarkably at—approximately—a doubled frequency
accurate. Already, fon = 5 the deviation is below 1%. Fig. 4 6D, = ry sin[2x log,, (n*/2) — ¢1]. (16)
displays the same data but now verBus(n — 1). Indeed, one Fig. 3(b) plotsD,, as a function of.
notices the logarithmic behavior, but there is a deviation from The variance ofi,, and D,, follows from (66) and (67), in
this behavior as can be clearly observed. This is due tdthe combination with (77) and (79), respectively,

term in (12) and the oscillation (13). var (dy) = 9a, + 6vg, + O(n"2) 17)
The oscillation ind,, can be studied in more detail in Fig. 5, " " " 5
which compares!,, — d,, with 6d,,. Note, that form = 3 the var (Dy) =0p, +8up, +O(n™7). (18)

oscillation is at least three orders of magnitude smaller than thgain, we have found a “DC value” of magnitude
“DC value,” and is therefore barely visible in Figs. 3(a) and 4. . 1 w2 1
The approximation becomes excellent whancreases. In non- Ve,

(19)

T2 610g2m_n10g2m
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rather oscillates weakly around some value [8], [21]. Below, we
reinvestigate this issue and obtain exact expressions for the “DC
value” as well as the magnitude and the phase of the oscillation.

Equation (23) allows easy calculation of the valuesLgt
However, for further analysis it is more convenient to start from
the expression by Kaplan and Gulko [21]

L,=1+ Z cn(m?) (24)
p=1

var(d,), var(D,)

where the functior,, (M) is given by
g - - -+ cn(M)=M[1—(1-1/M)"]—n(l-1/M)""*. (25)

n The terme,, (m?) in the summation of (24) equals the expected
number of contention slots with collisions in leyeland thus

Fig. 6. The variancesar (d,) and var(D,) as a function ofn for  the expected number of contention frames in the next level.

m = 10. Symbols denote the exact value calculated from (4)—(10), lines the . . s
approximation according to (19)—(21). For claritar (D,,) has been offset In Appendix B, we analyze and approximate the infinite se-

by a value of).2. ries (24) in a similar fashion as used for the evaluatios,cnd
D,,. The result can be written as
1 2 4 T F -1
Op. = = n 7r‘2 B . (20) ) L,=L,+6L,+0O(n"") (26)
o 6log®m  3nlog” m whereL,, denotes the “DC value,” given by
and an oscillation around this value according to R n 1
§04,, D, = —rz sin(2mz — o) (21) " logm  m—1 7)

wherez=log,,, (n—1) for §v4, andz=log,, (n?/2) for §up,. Note thatL,, increases linearly with. Indeed, this result con-
The parameters; and¢, are defined in (67), see also Table l.firms and generalizes the conjecture by Massey [8] and the re-

We find thatvar (d,,) ~ var (D,,). This is not unexpected, sults by Mathys and Flajolet [20] that the constant of propor-
sinceD,, is in fact the largest value of the values ofd,,, for tionality equalsl/ log m. The fluctuation around this linear be-
each realization of the tree algorithm. For largeve have havior can be approximated with excellent accuracy by

lim o, = lim op, =0qp = 1 ”72 (22)  O6Ln=nA;cos(2rlog,, n+61)+Aysin (27 log,, n+62) (28)
e ST 12" 6log” m where the parameters are given by
Values are displayed in Table |. The variances (d,,) and
var (D,,) are plotted in Fig. 6 formn = 10 (the oscillations are AL :2\/ 2n2/logm (29)
less prominent for smallen). Note, the difference in the period (472 + log? m) sinh (272 / logm)

of the oscillation.

I'(1 —2n¢/log
e (30)
IV. THE NUMBER OF CONTENTION FRAMES 1+2mi/logm
Let us now address the number of contention frafmgse- 27 272 /logm
ired lete th i Igorithm witf A=y : 2 (31)
quired to complete the contention tree algorithm witlton- log? m \/ sinh (272 /log m)

tenders. This quantity has been studied extensively upon the in-

troduction of the contention tree algorithm itself [3], [4], [6]-[9], 02 = arg[l'(1 — 2mi/logm)]. (32)

[14], [19]-22], [25], [26], [29], [30]. We note that the exactNote thatd, = —¢,. In Table Il we display the numerical value

definition of L,, varies a bit from author to author. The differ-of these parameters for selected valuesofWe remark that,

ences are due to whether the root frame consists of ome orsimilarly to L, the quantity§L,, contains a part which rises

contention slots and to whether the number of contention slditsearly with n as well. However, for not too large values of

are counted instead of the number of contention frames. Wethe amplitude of the fluctuation; is at least an order of

will follow the definition as given in [21], which correspondsmagnitude smaller than the leading coefficiarilog m. The

to counting the number of contention frames. For the tree lxhiting behavior ofL,, /n for m = 2 is in complete agreement

Fig. 1 this impliesL;3 = 11. The expectation value df,, can with the numerical values found by Kaplan and Gulko [21].

be expressed recursively according to [8], [22] Fig. 7 compares the exact values Iof as calculated from
[ty (m— 1)+ __ (23) with our approximatiorL,, + 6L,, calculated from (27)

1+ Z <k> T — Ly | (23) and (28). Deviations are only observable for a small number of
k=2 contenders: < 2 and are smaller than 1%if > 3, 3,6, 7

for n > 3. The first two values aré; = 1, Ly = m/(m — 1). for the values ofn = 2, 3, 5, 10, respectively. Note further

It has been demonstrated in [8], [21] that increases propor- that the oscillating behavior is barely visible on this plot. The

tionally with n. It has been suggested by Massey [8] that farscillation is depicted in more detail by Fig. 8, which compares

a binary tree(m = 2) the constant of proportionality equalsthe exact value minus the “DC valué&,, — L, with the “AC

1/log 2. However, this suggestion was rebutted by the obsepproximation”sL,, for m = 3. Note, that the vertical scale
vation thatL,,/n does not really converge to a fixed value, buis three orders of magnitude smaller than in Fig. 7. Clearly, the

L_n — (1 _ ml—n)—l
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TABLE I variance, again using classical Fourier analysis. The result can
THE PARAMETERS REQUIRED FOR THECALCULATION OF THE AVERAGE AND be written as
THE VARIANCE OF THE NUMBER OF CONTENTION FRAMES L,, ENLISTED FOR

VARIOUS VALUES OF m, THE NUMBER OF CONTENTION SLOTS PERFRAME. var (L )
“ » : n ~
THE CONSTANT OF PROPORTIONALITY FOR THE“DC VALUE” OF L, lim ————— =0, +6vr(D) (33)
EQUALS 1/ log m, SEE (27). THE QUANTITIES A1, 2 AND 8, > DESCRIBE Jj—o0, n=lm? n

THE FLUCTUATION AROUND THIS VALUE, SEE (28)—(32). HE LAST Lo . .
COLUMN LISTS THENUMBER #;,, WHICH APPROXIMATESvar (L, )/n For  Wherel is fixed. The second terdv (1) oscillates as a function

LARGE 7, ACCORDING TO(33) AND (34) of I. We have only explicitly evaluated the “DC valug;, since
m | 1/logm N 0, 2 6 | o the exact magnitude of the oscillation, though computable, is
2| 1.4427 | 1.564-100° -0.588 6.463-10 ° 0.873 | 0.8459 | not relevant and very small. The result is
3| 09102 |2.358-107* -0.139 3.915-10~% 1.258 | 0.3622
51 0.6213 | 3.316- 10-2 2.786  2.609 - 10-2 -2.177 | 0.1919 2 >, 1 1 1 24
10 | 04343 | 1.702-10~2 -1.985 6.750-10~2 -0.765 | 0.1171 vL = logm Z:l L+ mr + 2logm  (logm)?’ (34)

The summation can be easily carried out numerically. The mag-
nitude ofy, agrees with the numerical values given in [8], [21].

In Table Il the numbet, is given for some values ofi. As ex-
pected, the variance decreases upon increasing number of con-
tention slots per frame.

V. CONCLUSIONS

We have analyzed properties of the contention tree algorithm
for multiaccessing a broadcast-communication channel as a
function of the number of contenders and the number of

L | | | contention slots per frame:. The quantities under study are

0 5 10 15 20 25 the number of levelsi,, required for a random contender to

. . ber of on § ) ) have successful access, as well as the number of Idvgls
Contenders: for - 3. 3.3, 10 contention ot per ftame. The symbeisd the number of contention framés required to complete
denote the exact valug,, according to (23), the lines the approximationthe tree algorithm. These quantities are of importance for the
L., + 6L, according to (27) and (28). evaluation of the performance of the contention tree protocol
in communication channels with both low and high round-trip
delays.

We have presented the probability distributionigfandD,,,
which enables us to determine various statistical quantities, such
as the averagd,,, D,, and the variancear (d,,), var (D,,).
Through classical Fourier analysis we have derived accurate,
analytical approximations for these quantities. BétrandD,,
increase logarithmically witl. Around this increase there is
a small oscillation with exponentially increasing period which
reflects the discrete-level nature of the contention tree. The am-
plitude increases with. In addition, it is found thatar (d,,) =
var (D,,) apart from similar oscillations.

—002 - ! ! L L Starting from expressions given by Kaplan and Gulko [21],
0 =0 40 60 80 100 the averageL,, and variancevar (L,) have been evaluated

as well. This has allowed us to confirm the conjecture by

Fig. 8. The oscillations in the average number of contention fralmeas a Massey [B] and the results by Mathys and Flajolet [20] ibiat

function of the number of contendexsfor m = 3 contention slots per frame. INCreases Iinea_rly with With constant of proportionality equal
The symbols denot&,, — L., according to (23) and (27) and the line denote¢o 1/logm. This surmise was under debate because it had

4L, according to (28). been found numerically tha,, /» does not converge to a fixed
value, but rather oscillates. We have identified this oscillation

approximation becomes better upon increasintylore details as well.
upon the accuracy of (25)—(28) can be found in Appendix B.

Finally, we address the variance of the number of contention
frames. In[21] an expression is given fair (L,,) /» in the limit
of largen. Again, it was found from numerical evaluation that
this value does not converge to a fixed value, but oscillates within this appendix we derive the results given in Section Ill for
small amplitude around a “DC value.” In Appendix B, we derivéhe expectation value and the variance of the number of levels
from the expression in [21] an analytical approximation for thie the tree algorithm required for a random contender and for all

0.02

0.01

= 000

-0.01

APPENDIX A
DETAILS FOR SECTION Il
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the contenders. The results follow from the approximation and bo(m?) by exp(—n?/2m?) (45)
the (approxmatezoFouner analysis of the quantities and we extend the summation range ¢ all integers, at the ex-
- _ k » p—1 pense of errors of ordexp (—n). We thus arrive at the leading
dy = pz::l Plan—1(m") = an_y(m")] (35) approximation
DE =" p*bu(m?) — bp(m?™H)] 36) ju,a(n+1) = > p*lexp(—n/mP)—exp(—n/m"™)]
p=1 p=—o0
for k = 1, 2, as well as of the quantitiear (d,,) andvar (D,,), (46)
whenn — oc. The functionsz,, andb,, are defined in (5) and i X ) ) .
@). pe,p(n) = Y prlexp(—n?/2mP) —exp(—n?/2m? )]
p=—00
A. Approximation and Relevant Summation Ranges (47)

To obtain convenient expressions for mean and variancesgf the kth moment ofd, D, respectively. Observe that
d, D we expant,, b, as

an(M) —e M _ i (E)QG_N/JW ik, p(n) :uk:d(%TLQ—i_l) (48)
171 Znn Af 1,3 so that we can restrict ourselves in the remainder of this subsec-
+—= {g (M) -3 (M) } M tion to the evaluation ofiy,, 4.

" We introduce the notation = logm, » = log,,,(n — 1), i.e.,

M21 @37) n = e¢** + 1, and we define
2 1 2 2 2\ 2 2 > (=
bo(M) =e™/2M 4 - [;—M -3 <271W> ] e /M f(z) = exp(—e®*) — exp (—e“(”“)) . (49)
+i F <n—2>2_ 4 <”_2>3+3 <n—2)41 Then the following holds:
n? |2 \2M 3\ 2M 9\ 2M = ‘
| pra(n) = > pEf(z—p). (50)
) eIy M>n. (38) p="o0

Here the errors caused by truncating the series are of the samger; = 1, 2 we have
order as the first deleted term.

Thereforeq,, (M) is either close t@ or close tol, unlessi/ pi1,a(n) = zg0(z) — g1(z) (51)
is confined to a regiofien, e~1n). It follows that in the series 2 a(n) = 2%g0(2) — 22g1(2) + ga(2). (52)
(35) only thosep contribute that satisfy
log n Here we have setfat = 0, 1, 2
~ =log,, n. (39)
log m °° N
Similarly, in the series (36) only thogecontribute that satisfy a(z) = > (z=p)*f(z-p) (53)
log 2 2 p=—00
~ M = 2log,, n — log,, 2. (40) _ . ) ,
log m which are one-periodic, bounded, smooth functions dfoting

The proof of (37) with truncation error assessment followat go(2) = 1 (asexp(—e®*) decreases fron to 0 asz in-
easily from the Taylor expansion big (1—-1/M) =log (1—t) creases from-oo to o), we get
aroundt = 0 and the inequality

(1-t)"<e ™, 0<t<l1 (41) ’“7‘;(”) =7- () , , (54)
so that thet-regime(0, 1] for which (37) has to be established oa(n) = pz,a(n) — 1y o(n) = 92(2) — 9i(2)  (59)
can be split up conveniently it9, n~*/?] and(n /%, 1]. The  for the leading approximations of mean and variance,a-
proof of (38) uses the approximation spectively. Hencey, 4(n) grows likelog,, (n — 1) with oscil-

1 1 - lations due to the termy (=), ando3(n) is a bounded function
log I'(z) = (2 — = ) logz — 2+ = log (2m) + O(z~* o \s) S0 d
og I'(2) <7 2) 087 =74y og (2m) + O(=™). of n, which is one-periodic in = log,,,(n — 1).
z— o0 (42) Let us now analyze the functiogg(z) a bit further. From the
together with the inequality Poisson ;ummation fqrmula and some elementary properties of
M! n(n — 1) the Fourier transform it follows that

S €Xp|— k oo
(M —n)IM» |: 2M (1 (k) miqz
for conveniently splitting up the range far in [n, 73/2) and gu(z) = <2m‘> Z o a)e (56)

(n3/2, o), and a lengthy but elementary computation.

}, M>n (43)

q=—o00

where F®) (1) = d*F(v)/dv* is the kth derivative of the

B. Fourier Analysis of Leading Approximations Fourier transform
We replace in (35) and (36) i
an(mP) by exp(—n/mP) (44) F(v) = /_Oo e f(z)dz, veR (57)
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of fin (49). The functior¥'(») can be expressed in terms of theand the RHS of (52) into

I'-function as ) 1.,
| z°g0(2) — 2291(2) — g2(2) — 5—-[2"Jo(2) — 2251(%) + J2(2)]
_ 9. 2n
)= S (1 - 2miv/a). (58) (70)
It thus follows upon some elementary but rather lengthy corhere
putations that 00
. k
T A N TR s S, i)=Y (z=p)"h(z~p) (71)
g(z) = <2 + a) o Z i (1 - 2wig/a)e il
g#0
(59) with
=liry (o h(z) = 2 exp(~c) - 22+ axp[ -] (72)
R AR foll h
4 Sincejo(z) = 0, it follows that
e 3 (1 2rig/a) e " I
70 .
i ! p,a(n) =2 = g1(2) + 5-51(2) (73)
X [7i—1/q — 2wifa)p(1 — 2wig/a)] (60) "
2 _ 2
with the digamma function oa(n) _92(21) 9:(2) .
"(z — — |jo(2) = 201 (2)j1(2) + —ji(2)| . (74
o= B o 3 [722) - 200 + 5386 78)
z
and Euler’s constant = (1) ~ 0.5772. Hence the corrected values differ®yn=!) from (54) and (55).

We now argue that the terms in the two series at the RHS ofON€ can make calculations fgr andj, in the same manner

(59) and (60) can be largely ignored. To this end we quote 8 Was done in Appendix A-B faj, andgs. It thus turns out
formulas, see [24] that the functionyj, (=), required for the average, and the func-

o Ty tion between the square brackets in (74)], required for the vari-
P+ iy = V€ R (62)  ance, both oscillate with periotiand small amplitude around
1‘ the valuesl/« and
b(z) =log 2+ O(27"), z— 00, R(z)>0. 63
e ler ol . ® W20 OD 1 R (et ad) ol
It thus follows that the two series in (59) and (60) are negligibly o2 an o3 sinh (272g/a)

small for not too large values ef (m = ¢~ = 2, 3, 4), while q#0
it is sufficient to include only the terms withh = +1 for mod- . o . . (75)
erately larger values af (m = 5, - - -, 20) respectively. The series in (75) is very small and will be ne-

lected together with the/(4n). The first-order corrections to

Returning to (59) and (60) for the leading approximation 54) and (55) are thus given by

we see thaf; 4(n) has, within a negligible error, a sinusoidal

oscillation around a monotonously increasing term 1
) Y 9 p,a(n) =7 = 91() + 3~ (76)
pa,a(n) =2+ <§ + %) + K1 sin(27z — ¢1) (64) , , 1
og(n) =g2(z) — gi(») — ok (77)
1" =T(1 + 2mi . 65
o e _ L+ m/a)_/w (63) In principle, one can continue the process of adding terms, see
Similarly, we find for the variance (37) and (68), so as to obtain higher order corrections. However,
) 1 72 ) the expressions (76) and (77) approxima&teand var (d,,) al-
oa(n) = T e 2 sin(2mz — ¢2), (66)  ready up to sufficient accuracy. Inclusion of the third term in

i ) ) ) (37) only has the modest effect dp of magnitudel /(12an?).
hoe'®* =T(1+ 2i/a){2n[(1 + 2wi/a) +9]/a +}/7%. \\e'aiso note that the so-obtained series of apégoximat)ions is
(67) asymptotic in nature, in the sense that#henge where inclu-
sion of thekth term of the RHS of (37) and (38) yields a better

C. Error Analysis for Leading Approximations approximation shifts towardo with increasingk.

An evaluation of the corrections on mean and varianc® of
?rom (38) is almost similar. Note that the leading approximation
of D,, andvar (D,,) can be obtained from the relation (48). In-

We now briefly indicate how the leading approximation
change when instead of per (44) (M) is replaced by (see

(37)) cluding the constant terms of the next order of approximation
e—n/]\l _ i (i)Q e—n/]\l' (68) we have
2n \M 1
o - | w1, p(n) =7 = g1(2) = 5— (78)
An analysis similar to the one given in Appendix A-B shows nece 4
that the RHS of (51) has to be changed into oh(n) =go(2) — gi(2) — = (79)
1 ‘ ‘ et
290(2) = 91(2) = 5 -[2jo(2) = 71(2)] (69)  where nowz = log,,(n?/2).
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APPENDIX B (89) to minus infinity at the expense of an exponentially small
DETAILS FOR SECTION IV error so that we obtain
In this appendix we derive the results presented in Section In=m+0 (nfl) (91)

IV on the approximation of the average and the variance of the
number of contention frames required for the tree algorithm {ghere
the limit of a large number of contendets We start from the

expressions given in [21] for the average
Xp i given in [21] " verag pip=n Z ( ) Z (/)(mp)_ (92)
Ly=> ca(mP) (80)
=0 where the last term on the RHS is due to the: in (83). The

highest order term of our result is equal to the function given

- in [21]. Below, it is demonstrated how from this term and the

G (L) _g Z , KA Z S other series in (92) an analytical approximationZip can be
obtained.

wherec,, (M) is defined in (25) and for the variance

j—oo, n=lmJ n

+ Z p <L) X <L) B. Fourier Analysis ofi; 1,

p=—0c0 Similarly to Appendix A, we use the notatiom = logm
oo I 2 andz = log,, n, i.e.,n = ¢**. From the following Fourier
- Z <—> (81) transforms
mP
- % i s 1 T(1 — 2niv/a)
. . 2wivz az _ =
for fixed integerl, where /_Oo e X(e¥)dz=———— = 2o (93)
ple) =(1+z)e”* 82 o o )
(=) (1 ) (62) / e 2TE B ) dz = —M (1 —2miv/«) (94)
— e ® —w —0o0
x(z) = —c (83) _ . ,
x and from the Poisson summation formula it follows that
T(z) =ze™" (84) 0o P(1 — 2mig/a)
— 7qu & g
for x > 0. Our largen analysis makes use of the same type Z X (ﬁ) = - T Z 1+ 2mig/a ————— "™ (95)
of approximations and Fourier analysis as the analysis in Ap-P=—°°

pendix A. o0 n - -
o Z ¢ (ﬁ) == Z ql'(1 — 2mig/a)e®™9%,  (96)
A. Approximation of.,, p=—00 g#0

The following approximation holds for (25): The result (95) has already been obtained by Mathys and Fla-
n n 1 n 1 n jolet[20] on the basis of an asymptotic analysis. The assessment
on(M) = nx (—) +9 (_) L (H) Tl (M) T Under what conditions and which terms in the RHS of (95) and
(85) (96) with ¢ # 0 are significant is the same as in Appendix A-B.
For not too large values ef:, including only the; = £1 terms,
#(x) = 1 a(z — e~ (86) leads to.suffic_ient accuracy. From (91), (92), (95)_, and (96) one
can easily derive the results (26)—(32) presented in the main text.
, 17 o 1\ . In a similar fashion as in Appendix A-C, we can give cor-
b(x) = <_§ T+ ot Tg” ) € (87) rections to the approximation just found by incorporating the
higher order terms of (85) in the analysis. The tékm/AM)/n
n(z) = <_x3 n . 15 n 1 xe) ¢~ (g8) Vieldsa correction td, which oscillates with small amplitude
12 48 48 around “DC value'0, while the termy(n/M)/n? yields a cor-
for > 0. The proof of (85) follows straightforwardly from rection term of magnitude 1/(2an?). Hence, it is sufficient to
(37). consider only the first two terms in (85).
Substitution of (85) into (80) yields

wherey is given in (38) and

C. Fourier Analysis of (81)

=n Z ( ) + Z </)( ) +E (89)  We briefly outline how the RHS of (81) can be evaluated,
the method being similar to the derivations above. We only ex-
where £ is the error due to the Iast two terms on the RHS dflicitly calculate the “DC value,” but we have checked that the
(85). ThiskE = O(n~1), since, for instance, oscillations around this value are indeed at least an order of mag-
< L1 & "2 ) nitude smaller.
Z — e < = Z (—) e m (90)  Let us consider fof > 0 the quantities

m2p n mP
p=0 p=—00 oo
the RHS-series being periodic (and whence bounded) in s(l; B) = Z p<i>x</3i>_ (97)
log,,, n. Furthermore, we extend the lower summation limit in Mo SN L mP
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Inthe RHS of (81), the first term equalsy _ ..., s(I, m~") and
the second term equaigl, 1). Settingz = log,,, [, we obtain
for the Fourier transform of(c**; 3)

(1 - 2wiv/a)
Bla + 2miv)

1+ (1= 2riv/a)B + 32

- -1
(1 + /3)17271'11//0(

(98)

S(v; B) =

Note thatS(v; 5) = O(3) asf — 0. This ensures that the
summatiors(l, m~") overr converges rapidly. The “DC term”

of s(l; 3) is given by

1 B

5(0; B) = a1t g (99)

For the third therm on the RHS of (81) we note that, as before,
(10]

> (L) =L+ LS - sy aoo)

p=—00 q#0

so that its contribution to the “DC value” of (81) is given by

! l ’ 27rq2/a
_/0 EP:T<M> dz:—— o? Z sinh(2n2¢/a)’
(101)

(4]

(5]

(6]
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B. S. Tsybakov and V. A. Mikhailov, “Free synchronous packet access
in a broadcast channel with feedbacRiobl. Pered. Inform.vol. 14,

no. 4, pp. 32-59, 1978.

M. J. M. de Jong and A. J. E. M. Janssen, “Analytic properties of con-
tention tree-algorithms,” ifProc. Inform. Theory WorkshogKillarney,
Ireland, 1998, pp. 128-129.

B. S. Tsybakov and V. A. Mikhailov, “Random multiple access of
packets: Part and try algorithmProbl. Pered. Inform.vol. 16, no. 4,

pp. 65-79, 1980.

[7] T. Berger, “The Poisson multiple-access conflict resolution problem,”

(8]

9]

[11]
(12]

(23]

[14]

(18]

The second term on the RHS is very small and will be neglected.

Collecting the results, we arrive at our expression (34).

niques used here can be applied to the setigsgiven in [21,

Theorem 7] (this quantity is of importance for contention tregy g
algorithms where the number of slots in the root is variable).

We immediately give the result

_ EmP 1 472
W= Grewp=atw

p=—00

g cos(2mgz)
— sinh(27%g/a)
(102)

wherez = 1/log,, £. As remarked in [21], the oscillations
around the “DC value” are indeed substantially smaller thargg;

those in (95).
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