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Analysis of Contention Tree Algorithms
Augustus J. E. M. Janssen, Senior Member, IEEE,and Marc J. M. de Jong

Abstract—The Capetanakis–Tsybakov–Mikhailov contention
tree algorithm provides an efficient scheme for multiaccessing a
broadcast-communication channel. This paper studies statistical
properties of multiple-access contention tree algorithms with
ternary feedback for arbitrary degree of node. The particular
quantities under investigation are the number of levels required
for a random contender to have successful access, as well as the
number of levels and the number of contention frames required
to provide access for all contenders. Through classical Fourier
analysis approximations to both the average and the variance
are calculated as a function of the number of contenders . It is
demonstrated that in the limit of large these quantities do not
converge to a fixed mode, but contain an oscillating term as well.

Index Terms—Broadcast communication, collision resolution,
contention tree algorithms, random multiple access.

I. INTRODUCTION

T HE allocation of a single broadcast-communication chan-
nel among a large number of independent transmitters

usually requires more advanced medium-access protocols than
time-division multiple access (TDMA). The reason is that
TDMA provides a notoriously low performance with respect
to channel utilization, unless all transmitters are continuously
transmitting, and with respect to access delay, unless the
number of users is low.

Introduced in the early 1970s as a solution to the problem
sketched above, the ALOHA protocol yields an elegant scheme
to provide immediate random access to the channel [1]. The con-
cept of random access implies that two or more transmitters may
be active at the same time, prohibiting error-free reception. If
such a collision occurs, the transmitters try again later, each one
after a randomly chosen time. However, the performance of the
ALOHA protocol becomes very poor, if the channel occupancy
increases beyond a certain level.

Basically, there are two strategies to improve the performance
of random multiple-access protocols: carrier-sense multiple ac-
cess [2] and collision-resolution algorithms [3], [4], [25]. This
paper studies statistical properties of the basic collision-resolu-
tion algorithm: the contention tree algorithm. The outline is as
follows: Section II overviews the development and explains the
operation of the contention tree algorithm. In Sections III and
IV, we investigate the number of levels and the number of con-
tention frames, respectively, required to complete the tree algo-
rithm. We present conclusions in Section V. Appendices A and
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B provide the details of our mathematical analysis. A brief ac-
count of this work was presented in [5].

II. THE CONTENTION TREE ALGORITHM

Let us now describe the multiple-access contention tree al-
gorithm as first reported by Capetanakis [3] and by Tsybakov
and Mikhailov [4], [25]. A large number of transmitters (sta-
tions, terminals, sources, etc.) share a single, slotted broadcast
channel. The transmitters that contend for channel access are
able to acquire ternary feedback on what happened during a con-
tention slot, i.e., whether zero transmitters (anemptyslot), one
transmitter (asuccessful transmission), or more than one trans-
mitter (acollision) has been broadcasting during the particular
slot. The ternary feedback can either be detected by the stations
themselves or by a central controller and is not required to be
immediate, i.e., there may be a certain delay between the trans-
mission during the contention slot and the reception of the feed-
back. Furthermore, the tree has nodal degree , and as
a consequence (see below)consecutive contention slots are
grouped into a contention frame.

The contention tree algorithm utilizes the ternary feedback as
follows. Let us assume that there arecontending transmitters
at the start of a new tree algorithm, i.e.,transmitters want to
broadcast a data packet. During the first contention frame, i.e.,
the frame at the root of the tree, each of thetransmitters picks
at random a number (say) between and —with equal prob-
abilities—and transmits its packet during theth contention
slot. If after completion of the contention frame the ternary
feedback becomes available, each transmitter knows whether
its packet has been successfully broadcast or not. If not, a new
contention frame is assigned to all transmitters that caused the
collision during the particular slot. Therefore, if there were col-
lisions in all contention slots, new contention frames would
become available. This leads to the formation of a tree with
nodal degree . The expansion of the tree stops at either empty
or successful slots. Upon completion of the tree algorithm, all
the contenders have successfully broadcast their data. There-
after, a new tree algorithm may start again. To exemplify the
contention tree algorithm, Fig. 1 depicts a possible contention
tree for contenders and slots per frame. Note
that the formation of the tree is a stochastic process, because
in each frame each contender picks a slot at random. The con-
tention tree depicted in Fig. 1 is just one realization out of an
infinite number of possible trees for and . The
development of the algorithm is thus the result of an interplay
between the exponential growth of the contention tree and the
random choices made by the contenders.

Capetanakis [3] has shown that in the case of Poisson
generated data packets the maximum throughput of the binary

contention tree algorithm equals 0.347 packets/slot.

0018–9448/00$10.00 © 2000 IEEE
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Fig. 1. An example contention tree withm = 3 slots per contention frame and
n = 13 contending transmitters involved. The numbers in each contention slot
denote the number of packets being transmitted. If this number is larger than1

(a collision) a new frame is assigned to the contenders involved. If this number
is 0 (an empty slot) or1 (a successful transmission) the tree expansion stops.

Capetanakis also demonstrated that if the number of contention
slots in the root frame is allowed to be variable, but all other
frames still contain two slots, the maximum throughput equals
0.430 packets/slot. The most efficient contention tree algorithm
demonstrated so far leads to a maximum capacity of 0.487
packets/slot, again in the case of Poisson generated data packets
[6]–[10], [26].

A variant of the contention tree algorithm, the contention
stack algorithm, has been introduced by Tsybakov and Vveden-
skaya [11]–[13], [27], [28]. In the stack algorithm, a transmitter
does not need to wait until the tree is completed, but is allowed
to contend in the first available contention frame. An advantage
is that this eliminates the requirement that all transmitters con-
tinuously monitor the status of the channel.

In the above described algorithms the contention process is
being executed with the data packets themselves, in other words,
a successful contention implies that the data is transmitted as
well. Alternatively, one can make use of the contention tree al-
gorithm to make reservations or requests for data transmission.
As generally the length of a reservation packet is smaller than
the length of a data packet, the reservation contention tree algo-
rithm may lead to even larger channel utilization [14], [15], [29].
This mechanism is currently being proposed in several network
standards [16], [17].

Apart from the channel utilization, the access delay, i.e., the
time it takes before the data packet has successfully been trans-
mitted, is also an important performance parameter. In order
to minimize the access delay, one must take into account the
round-trip delay between the transmission of a packet and the
reception of the feedback [3], [18]. If the round-trip delay is
negligibly small, it is most advantageous to perform a serial
search, in which each branch is fully completed before returning
to the root. However, in communication channels with a large
round-trip delay, such as metropolitan cable networks and satel-
lite networks, it may be advantageous to perform a parallel tree
search, in which all the contention frames at a certain level are
executed before proceeding to the next level [3].

In the present paper, we investigate statistical properties of the
contention tree algorithm. In particular, we study as a function
of the number of contenders and the number of slots in a
contention frame (or nodal degree) the following statistical
quantities.

• The number of levels required for a random contender
to have successful contention. This number is of impor-
tance to calculate the mean access delay in systems with
a large round-trip delay. In Fig. 1, is either or
depending on the contender. The average equals.

• The number of levels required to complete the tree.
This number is of importance to calculate the duration of
the algorithm in systems with a large round-trip delay. In
Fig. 1, .

• The number of contention frames required to complete
the tree algorithm. In Fig. 1, . This quantity
determines how much of the channel capacity is needed
for the tree algorithm. In the case of a negligible round-trip
delay, it determines the duration of the algorithm, as well.

As far as we know, the quantities and have not been
studied in detail before. The quantity has been thoroughly in-
vestigated from the moment of its introduction [3], [4], [6]–[9],
[19]–[22], [25], [26], [30]. The reason for reinvestigating is
that the techniques taken at hand to calculate various statistical
properties of and can be readily applied to the quantity

. This allows us to confirm and state precisely various results
and conjectures presented earlier [8], [20], [21].

The aim of our calculations is to analyze both the expecta-
tion values , , and as well as the variances ,

, and . Through classical Fourier analysis we
have found analytical expressions for these quantities in the
limit of large . In a nutshell, the results can be summarized
as follows:

(1)

(2)

(3)

where the logarithm base is given by
and . More precise results are presented in Sections
III and IV, with the mathematical details given in Appendices A
and B. From comparison with the exact results it follows that
the expressions obtained are already quite accurate for rather
small values of . Furthermore, we demonstrate that the aver-
ages and variances obtained do not converge for largeto the
laws (1)–(3), but contain oscillating terms as well, reflecting the
discrete-level nature of the contention tree. We learned through
the kindness of a referee that the oscillatory behavior ofwas
noted without proof by B. Hajek in 1980 and N. D. Vveden-
skaya in 1984.

This paper considers the statistical properties of the con-
tention tree algorithm only. However, our results can be
combined with arbitrary traffic models in order to make predic-
tions on the performance of various cases. In many situations,
(1)–(3) suffice to make back-of-the-envelope estimates on the
performance.
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III. T HE NUMBER OF TREE LEVELS

The probability distribution of the number of levels re-
quired for a random transmitter to have successful contention
when transmitters contend in a tree algorithm withcon-
tention slots per frame reads

(4)

with the Kronecker delta function if and
otherwise. The function is given by

(5)

if , otherwise. Equations (4) and (5) can be
understood as follows, where we borrow an argument from [21],
[23]: We consider an infinite, complete tree of nodal degree.
The number of slots in level amounts to . In the first level,
each of the contenders picks at random one of theslots.
This process is repeated for each subsequent level. As a result,
the contenders in level are independently and identically,
randomly distributed with equal probabilities over the slots.
Therefore, the probability that a slot in leveloccupied by a
random contender is not occupied by any of the other con-
tenders equals . The difference between
and equals the probability that the random con-
tender requires preciselylevels to be the single occupant of a
contention slot. The fact that in the implementation of the con-
tention tree algorithm the tree is not expanded upon an empty
or successful slot, does not change this argument.

Similarly, we have for the probability distribution of the
number of levels required to complete the tree

(6)

where denotes the probability that all contenders in
level occupy different slots

(7)

if , otherwise. Fig. 2 provides a histogram
of and for and . Indeed, it
takes a few levels more to have successful transmission for all
contenders than for a random contender.

Given the probability distribution one can readily
calculate the average

(8)

the second moment

(9)

and the variance

(10)

Similarly, , , and can be evaluated.
The moments and variance of and as a function of
and can be computed up to arbitrary precision. However,

much more insight in the tree algorithm can be obtained if the
general behavior of , , , and is known as

(a)

(b)

Fig. 2. (a) Probability distributionP (djn) for d , the number of levels
required for a random contender to have successful transmission and
(b)P (Djn) for D , the number of levels required to complete the tree
algorithm. The heavily shaded bars are forn = 5 and the lightly shaded bars
for n = 25 contenders, both form = 3 slots per contention frame.

a function of and . In Appendix A, we derive accurate an-
alytical approximations for these values in the limit of large.
In short, our derivation for proceeds as follows. First, we ex-
pand the function in a series with terms .
Secondly, we note that

except when , so that the summation in (8) and (9) can
be replaced by a summation from to . Finally, we utilize
classical Fourier analysis to approximate the summation up to
the aimed accuracy. This approach can be directly applied to

, as well. As expected, we find a logarithmic dependence on
for both and . However, around this “DC value” there

is a Fourier series of oscillations. For only the first
oscillation is significant, the others being exponentially small.

Let us now quote our results. From (64), (65), and (76) we
have

(11)

The first term on the right-hand side (RHS) denotes the “DC
value,” which is given by

(12)

with Euler’s constant . We find an approximate loga-
rithmic dependence of as a function of , as is not unexpected
for the tree algorithm. Multiplying the number of contenders by
a factor of , leads to an increase of one required level. Around
this “DC value” there are oscillations given by

(13)
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TABLE I
THE PARAMETERS REQUIRED TO CALCULATE THE AVERAGE AND THE

VARIANCE OF THE NUMBER OF LEVELS d AND D FOR VARIOUSm OF

CONTENTION SLOTS PERFRAME. THE OSCILLATIONS IN THE AVERAGES�d

AND �D HAVE AMPLITUDE � AND PHASE � , SEE(13) AND (16). THE

LARGE-n LIMIT OF THE “DC VALUE” OF THE VARIANCES ~v AND ~v IS
GIVEN BY ~v , SEE(22). THE OSCILLATIONS AROUND THIS VALUE �v

AND �vD CAN BE DESCRIBED BY� AND � , SEE(21)

(a)

(b)

Fig. 3. (a) The averaged of the number of levels required for a random
contender to have successful transmission and (b) the averageD of the number
of levels required to complete the tree algorithm as a function of the number of
contendersn. The symbols denote the exact valued andD calculated from
(4), (8), and (6), the lines the approximation~d +�d and ~D +�D according
to (12), (13), and (15), (16), respectively.

where and are defined according to (65). The values of
and are listed in Table I for several values of. The

magnitude of the oscillation increases with.
Fig. 3(a) compares the approximation with the exact

value . We note that our large-approximation is remarkably
accurate. Already, for the deviation is below 1%. Fig. 4
displays the same data but now versus . Indeed, one
notices the logarithmic behavior, but there is a deviation from
this behavior as can be clearly observed. This is due to the
term in (12) and the oscillation (13).

The oscillation in can be studied in more detail in Fig. 5,
which compares with . Note, that for the
oscillation is at least three orders of magnitude smaller than the
“DC value,” and is therefore barely visible in Figs. 3(a) and 4.
The approximation becomes excellent whenincreases. In non-

Fig. 4. Same as Fig. 3(a), but now on a logarithmic scale.

Fig. 5. The oscillations ind , the average number of levels required for a
random contender to have a successful transmission, as a function of the number
of contendersn for m = 3 contention slots per frame. The symbols denote
d �

~d according to (8) and (12) and the line denotes�d according to (13).

mathematical terms, the exponential increase of the period of
the oscillations with reflects the nature of the tree expansion,
while the oscillations themselves are a consequence of the dis-
creteness of the number of levels in the contention tree.

Similarly to , we find for the approximation of using
(78) instead of (76)

(14)

where the “DC value” is given by

(15)

It takes approximately twice as much levels to have successful
transmission for all contenders than for a random contender.
The oscillation around has the same amplitude as ,
at—approximately—a doubled frequency

(16)

Fig. 3(b) plots as a function of .
The variance of and follows from (66) and (67), in

combination with (77) and (79), respectively,

(17)

(18)

Again, we have found a “DC value” of magnitude

(19)
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Fig. 6. The variancesvar (d ) and var (D ) as a function ofn for
m = 10. Symbols denote the exact value calculated from (4)–(10), lines the
approximation according to (19)–(21). For clarity,var (D ) has been offset
by a value of0:2.

(20)

and an oscillation around this value according to

(21)

where for and for .
The parameters and are defined in (67), see also Table I.

We find that . This is not unexpected,
since is in fact the largest value of the values of , for
each realization of the tree algorithm. For large, we have

(22)

Values are displayed in Table I. The variances and
are plotted in Fig. 6 for (the oscillations are

less prominent for smaller ). Note, the difference in the period
of the oscillation.

IV. THE NUMBER OF CONTENTION FRAMES

Let us now address the number of contention framesre-
quired to complete the contention tree algorithm withcon-
tenders. This quantity has been studied extensively upon the in-
troduction of the contention tree algorithm itself [3], [4], [6]–[9],
[14], [19]–[22], [25], [26], [29], [30]. We note that the exact
definition of varies a bit from author to author. The differ-
ences are due to whether the root frame consists of one or
contention slots and to whether the number of contention slots
are counted instead of the number of contention frames. We
will follow the definition as given in [21], which corresponds
to counting the number of contention frames. For the tree of
Fig. 1 this implies . The expectation value of can
be expressed recursively according to [8], [22]

(23)

for . The first two values are , .
It has been demonstrated in [8], [21] that increases propor-
tionally with . It has been suggested by Massey [8] that for
a binary tree the constant of proportionality equals

. However, this suggestion was rebutted by the obser-
vation that does not really converge to a fixed value, but

rather oscillates weakly around some value [8], [21]. Below, we
reinvestigate this issue and obtain exact expressions for the “DC
value” as well as the magnitude and the phase of the oscillation.

Equation (23) allows easy calculation of the values of.
However, for further analysis it is more convenient to start from
the expression by Kaplan and Gulko [21]

(24)

where the function is given by

(25)

The term in the summation of (24) equals the expected
number of contention slots with collisions in leveland thus
the expected number of contention frames in the next level.

In Appendix B, we analyze and approximate the infinite se-
ries (24) in a similar fashion as used for the evaluation ofand

. The result can be written as

(26)

where denotes the “DC value,” given by

(27)

Note that increases linearly with . Indeed, this result con-
firms and generalizes the conjecture by Massey [8] and the re-
sults by Mathys and Flajolet [20] that the constant of propor-
tionality equals . The fluctuation around this linear be-
havior can be approximated with excellent accuracy by

(28)

where the parameters are given by

(29)

(30)

(31)

(32)

Note that . In Table II we display the numerical value
of these parameters for selected values of. We remark that,
similarly to , the quantity contains a part which rises
linearly with as well. However, for not too large values of

the amplitude of the fluctuation is at least an order of
magnitude smaller than the leading coefficient . The
limiting behavior of for is in complete agreement
with the numerical values found by Kaplan and Gulko [21].

Fig. 7 compares the exact values of as calculated from
(23) with our approximation calculated from (27)
and (28). Deviations are only observable for a small number of
contenders and are smaller than 1% if
for the values of , respectively. Note further
that the oscillating behavior is barely visible on this plot. The
oscillation is depicted in more detail by Fig. 8, which compares
the exact value minus the “DC value” with the “AC
approximation” for . Note, that the vertical scale
is three orders of magnitude smaller than in Fig. 7. Clearly, the
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TABLE II
THE PARAMETERS REQUIRED FOR THECALCULATION OF THE AVERAGE AND

THE VARIANCE OF THE NUMBER OF CONTENTION FRAMESL ENLISTED FOR

VARIOUS VALUES OFm, THE NUMBER OF CONTENTION SLOTS PERFRAME.
THE CONSTANT OF PROPORTIONALITY FOR THE“DC VALUE” OF L

EQUALS 1= logm, SEE (27). THE QUANTITIES � AND � DESCRIBE

THE FLUCTUATION AROUND THIS VALUE, SEE (28)–(32). THE LAST

COLUMN LISTS THENUMBER ~v , WHICH APPROXIMATESvar (L )=n FOR

LARGEn, ACCORDING TO(33) AND (34)

Fig. 7. The average number of contention frames versus the number of
contendersn for m = 2; 3; 5; 10 contention slots per frame. The symbols
denote the exact valueL according to (23), the lines the approximation
~L + �L according to (27) and (28).

Fig. 8. The oscillations in the average number of contention framesL as a
function of the number of contendersn for m = 3 contention slots per frame.
The symbols denoteL �

~L according to (23) and (27) and the line denotes
�L according to (28).

approximation becomes better upon increasing. More details
upon the accuracy of (25)–(28) can be found in Appendix B.

Finally, we address the variance of the number of contention
frames. In [21] an expression is given for in the limit
of large . Again, it was found from numerical evaluation that
this value does not converge to a fixed value, but oscillates with
small amplitude around a “DC value.” In Appendix B, we derive
from the expression in [21] an analytical approximation for the

variance, again using classical Fourier analysis. The result can
be written as

(33)

where is fixed. The second term oscillates as a function
of . We have only explicitly evaluated the “DC value” since
the exact magnitude of the oscillation, though computable, is
not relevant and very small. The result is

(34)

The summation can be easily carried out numerically. The mag-
nitude of agrees with the numerical values given in [8], [21].
In Table II the number is given for some values of . As ex-
pected, the variance decreases upon increasing number of con-
tention slots per frame.

V. CONCLUSIONS

We have analyzed properties of the contention tree algorithm
for multiaccessing a broadcast-communication channel as a
function of the number of contenders and the number of
contention slots per frame . The quantities under study are
the number of levels required for a random contender to
have successful access, as well as the number of levels
and the number of contention frames required to complete
the tree algorithm. These quantities are of importance for the
evaluation of the performance of the contention tree protocol
in communication channels with both low and high round-trip
delays.

We have presented the probability distribution ofand ,
which enables us to determine various statistical quantities, such
as the average and the variance , .
Through classical Fourier analysis we have derived accurate,
analytical approximations for these quantities. Bothand
increase logarithmically with . Around this increase there is
a small oscillation with exponentially increasing period which
reflects the discrete-level nature of the contention tree. The am-
plitude increases with . In addition, it is found that

apart from similar oscillations.
Starting from expressions given by Kaplan and Gulko [21],

the average and variance have been evaluated
as well. This has allowed us to confirm the conjecture by
Massey [8] and the results by Mathys and Flajolet [20] that
increases linearly with with constant of proportionality equal
to . This surmise was under debate because it had
been found numerically that does not converge to a fixed
value, but rather oscillates. We have identified this oscillation
as well.

APPENDIX A
DETAILS FOR SECTION III

In this appendix we derive the results given in Section III for
the expectation value and the variance of the number of levels
in the tree algorithm required for a random contender and for all
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the contenders. The results follow from the approximation and
the (approximate) Fourier analysis of the quantities

(35)

(36)

for as well as of the quantities and ,
when . The functions and are defined in (5) and
(7).

A. Approximation and Relevant Summation Ranges

To obtain convenient expressions for mean and variance of
we expand as

(37)

(38)

Here the errors caused by truncating the series are of the same
order as the first deleted term.

Therefore, is either close to or close to , unless
is confined to a region . It follows that in the series
(35) only those contribute that satisfy

(39)

Similarly, in the series (36) only thosecontribute that satisfy

(40)

The proof of (37) with truncation error assessment follows
easily from the Taylor expansion of
around and the inequality

(41)

so that the -regime for which (37) has to be established
can be split up conveniently in and . The
proof of (38) uses the approximation

(42)

together with the inequality

(43)

for conveniently splitting up the range for in and
, and a lengthy but elementary computation.

B. Fourier Analysis of Leading Approximations

We replace in (35) and (36)

by (44)

by (45)

and we extend the summation range ofto all integers, at the ex-
pense of errors of order . We thus arrive at the leading
approximation

(46)

(47)

for the th moment of respectively. Observe that

(48)

so that we can restrict ourselves in the remainder of this subsec-
tion to the evaluation of .

We introduce the notation , , i.e.,
, and we define

(49)

Then the following holds:

(50)

For we have

(51)

(52)

Here we have set for

(53)

which are one-periodic, bounded, smooth functions of. Noting
that (as decreases from to as in-
creases from to ), we get

(54)

(55)

for the leading approximations of mean and variance of, re-
spectively. Hence, grows like with oscil-
lations due to the term , and is a bounded function
of , which is one-periodic in .

Let us now analyze the functions a bit further. From the
Poisson summation formula and some elementary properties of
the Fourier transform it follows that

(56)

where is the th derivative of the
Fourier transform

(57)
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of in (49). The function can be expressed in terms of the
-function as

(58)

It thus follows upon some elementary but rather lengthy com-
putations that

(59)

(60)

with the digamma function

(61)

and Euler’s constant .
We now argue that the terms in the two series at the RHS of

(59) and (60) can be largely ignored. To this end we quote the
formulas, see [24]

(62)

(63)

It thus follows that the two series in (59) and (60) are negligibly
small for not too large values of while
it is sufficient to include only the terms with for mod-
erately larger values of

Returning to (59) and (60) for the leading approximations,
we see that has, within a negligible error, a sinusoidal
oscillation around a monotonously increasing term

(64)

(65)

Similarly, we find for the variance

(66)

(67)

C. Error Analysis for Leading Approximations

We now briefly indicate how the leading approximations
change when instead of per (44) is replaced by (see
(37))

(68)

An analysis similar to the one given in Appendix A-B shows
that the RHS of (51) has to be changed into

(69)

and the RHS of (52) into

(70)
where

(71)

with

(72)

Since , it follows that

(73)

(74)

Hence the corrected values differ by from (54) and (55).
One can make calculations for and in the same manner

as was done in Appendix A-B for and . It thus turns out
that the function , required for the average, and the func-
tion between the square brackets in (74)], required for the vari-
ance, both oscillate with periodand small amplitude around
the values and

(75)
respectively. The series in (75) is very small and will be ne-
glected together with the . The first-order corrections to
(54) and (55) are thus given by

(76)

(77)

In principle, one can continue the process of adding terms, see
(37) and (68), so as to obtain higher order corrections. However,
the expressions (76) and (77) approximateand al-
ready up to sufficient accuracy. Inclusion of the third term in
(37) only has the modest effect on of magnitude .
We also note that the so-obtained series of approximations is
asymptotic in nature, in the sense that the-range where inclu-
sion of the th term of the RHS of (37) and (38) yields a better
approximation shifts toward with increasing .

An evaluation of the corrections on mean and variance of
from (38) is almost similar. Note that the leading approximation
of and can be obtained from the relation (48). In-
cluding the constant terms of the next order of approximation
we have

(78)

(79)

where now .
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APPENDIX B
DETAILS FOR SECTION IV

In this appendix we derive the results presented in Section
IV on the approximation of the average and the variance of the
number of contention frames required for the tree algorithm in
the limit of a large number of contenders. We start from the
expressions given in [21] for the average

(80)

where is defined in (25) and for the variance

(81)

for fixed integer , where

(82)

(83)

(84)

for . Our large- analysis makes use of the same type
of approximations and Fourier analysis as the analysis in Ap-
pendix A.

A. Approximation of

The following approximation holds for (25):

(85)
where is given in (38) and

(86)

(87)

(88)

for . The proof of (85) follows straightforwardly from
(37).

Substitution of (85) into (80) yields

(89)

where is the error due to the last two terms on the RHS of
(85). This , since, for instance,

(90)

the RHS-series being periodic (and whence bounded) in
. Furthermore, we extend the lower summation limit in

(89) to minus infinity at the expense of an exponentially small
error so that we obtain

(91)

where

(92)

where the last term on the RHS is due to the in (83). The
highest order term of our result is equal to the function given
in [21]. Below, it is demonstrated how from this term and the
other series in (92) an analytical approximation to can be
obtained.

B. Fourier Analysis of

Similarly to Appendix A, we use the notation
and , i.e., . From the following Fourier
transforms

(93)

(94)

and from the Poisson summation formula it follows that

(95)

(96)

The result (95) has already been obtained by Mathys and Fla-
jolet [20] on the basis of an asymptotic analysis. The assessment
under what conditions and which terms in the RHS of (95) and
(96) with are significant is the same as in Appendix A-B.
For not too large values of , including only the terms,
leads to sufficient accuracy. From (91), (92), (95), and (96) one
can easily derive the results (26)–(32) presented in the main text.

In a similar fashion as in Appendix A-C, we can give cor-
rections to the approximation just found by incorporating the
higher order terms of (85) in the analysis. The term
yields a correction to which oscillates with small amplitude
around “DC value” , while the term yields a cor-
rection term of magnitude . Hence, it is sufficient to
consider only the first two terms in (85).

C. Fourier Analysis of (81)

We briefly outline how the RHS of (81) can be evaluated,
the method being similar to the derivations above. We only ex-
plicitly calculate the “DC value,” but we have checked that the
oscillations around this value are indeed at least an order of mag-
nitude smaller.

Let us consider for the quantities

(97)
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In the RHS of (81), the first term equals and
the second term equals . Setting , we obtain
for the Fourier transform of

(98)

Note that as . This ensures that the
summation over converges rapidly. The “DC term”
of is given by

(99)

For the third therm on the RHS of (81) we note that, as before,

(100)

so that its contribution to the “DC value” of (81) is given by

(101)
The second term on the RHS is very small and will be neglected.
Collecting the results, we arrive at our expression (34).

We conclude this appendix with the remark that the tech-
niques used here can be applied to the seriesgiven in [21,
Theorem 7] (this quantity is of importance for contention tree
algorithms where the number of slots in the root is variable).
We immediately give the result

(102)
where . As remarked in [21], the oscillations
around the “DC value” are indeed substantially smaller than
those in (95).
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