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Cross-classified data are frequently encountered in behavioral and social science research.
The loglinear model and dual scaling (correspondence analysis) are two representative methods 
analyzing such data. An alternative method, based on ideal point discriminant analysis (DA), 
proposed for analysis of contingency tables, which in a certain sense encompasses the two existing
methods. A variety of interesting structures can be imposed on rows and columns of the tables
through manipulations of predictor variables and/or as direct constraints on model parameters.
This, along with maximum likelihood estimation of the model parameters, allows interesting
model comparisons. This is illustrated by the analysis of several data sets.
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1. Introduction

The data we encounter in behavioral and social sciences are often qualitative, These

qualitative data may be summarized in a two-way contingency or cross-classification

table whose i, j-th entry (entry in the i-th row and the j-th column) represents the

frequency of joint occurrence of the i-th category of one variable and the j-th category of

another. Each row or column category may, however, be defined as a combination of

categories of more than one variable.

Consider, as an example, the data in Table 1. This data set is a hypothetical data set

originally contrived by Maxwell (1961) for demonstrating his method of discriminant

analysis. The data consist of three criterion groups, schizophrenic (SC), manic-depressive

(MD) and anxiety state (AX), and four binary predictor variables each indicating either

presence (1) or absence (0) of a certain symptom. The four symptoms are anxiety 

suspicion (S), schizophrenic type of thought disorders (T), and delusions of guilt (G). 

four binary variables were factorially combined to form 16 distinct patterns of symptoms

(predictor patterns), and each of these patterns is identified with a row of the table, which

contains the cross-classification of 620 patients according to the 16 patterns of symptoms

and the three criterion groups.

One may be tempted to apply the loglinear model (e.g., Andersen, 1980; Bishop,

Fienberg & Holland, 1975), or dual scaling or correspondence analysis (Greenacre, 1984;

Nishisato, 1980) to this data set. If the loglinear analysis is chosen, detailed model evalu-

ation is possible to test which main effects and/or interactions among the predictor

variables are statistically significant in discriminating the criterion groups. With this
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Table i. Data frc~ Maxwell (1961)

Pattern Predictor

Number Pattern

Observed Frequencies in Groups

SC FD AX

A S T G

1 0 0 0 0 38 69 6

2 0 0 0 1 4 36 0

3 0 0 1 0 29 0 0

4 0 0 1 1 9 0 0

5 0 1 0 0 22 8 1

6 0 1 0 1 5 9 0

7 0 1 1 0 35 0 0

8 0 1 1 1 8 2 0

9 1 0 0 0 14 80 92

i0 1 0 0 1 3 45 3

II 1 0 1 0 ii 1 0

12 1 0 1 1 2 2

13 1 1 0 0 9 10 14

14 1 1 0 1 6 16 1

15 1 1 1 0 19 0 0

16 1 1 1 1 i0 1 0

Total 224 279 117

approach, however, it is relatively difficult to understand the mutual relationship among

the predictor patterns and the criterion groups. If, on the other hand, dual scaling is

applied, a spatial representation of the 16 patterns and the three criterion groups is

obtained, through which one can readily understand their mutual relationship. This ap-

proach, however, does not allow detailed model evaluation. Van der Heijden and de

Leeuw (1985) consequently recommend complementary use of the two methods; dual

scaling to find meaningful structural hypotheses in the data, and the loglinear model to

test the hypotheses.
Ideal point discriminant analysis (DA) which we propose to use in this paper, on the

other hand, combines the best of the two approaches. It provides a spatial representation

of row and column categories, and it allows statistical evaluation of various structural

hypotheses about the contingency tables.

In the next section (section 2) we briefly describe ideal point DA. In section 3 

apply ideal point DA to Maxwell’s data, and observe what it can do in the analysis of

contingency tables. A variety of structural assumptions that may be incorporated will be

systematically investigated in section 4. Some interesting cases will be illustrated through

examples in the following section (section 5). In section 6 we discuss the relationship

between ideal point DA and other methods for analysis of contingency tables. In particu-

lar, we focus our attention to Goodman’s (1981) RC association model and dual scaling
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(correspondence analysis), and compare goodness of fit (GOF) of these models against

that of ideal point DA.

2. Ideal Point Discriminant Analysis (DA)

Ideal point DA was originally developed for discriminant analysis with mixed

measurement level predictor variables (Takane & Shibayama, 1984; Takane, Bozdogan 

Shibayama, 1987). It is based on the following three basic assumptions:

1. Each of R subjects (or other observation units) in DA is represented as a point 

a multidimensional euclidean space. Coordinates of the subject points are given by a

linear combination of predictor variables (and/or their transformations) characterizing the

subject.

2. Each of C criterion groups has an "ideal point" represented in the same multidi-

mensional space. The ideal point is supposed to represent a prototype of the criterion

group.

3. The probability of a particular subject belonging to a particular criterion group is

a decreasing function of the distance between the corresponding points. It is also an

increasing function of the prior probability (or more generally, the bias) of the criterion

group.

Analysis of contingency tables is viewed as a discrimination problem of column categories

based on the information about row categories. Thus, the column categories assume the

role of criterion groups and the row categories the role of subjects in DA.

Let F denote an R by C contingency table with its i,j-th element denoted byf~j, and let

Y be the R by A matrix of coordinates of the row categories, where A is the dimensional-

ity of the representation space. In accordance with assumption 1 above, we assume that Y

is a linear function of "predictor" variables. Assume there are p predictor variables, which
are contained in an R by p matrix, X. Then the linear model states that

Y = XB, (1)

where B is a p by A matrix of weights to be estimated. We impose different restrictions on

relevant portions of B to reflect different scale types of predictor variables. (These re-

strictions will be discussed in section 4.1).
The predictor variables carry information about a structure of row categories which

we may wish to incorporate. However, when there is no obvious row structure, we may

simply set X = I (identity matrix), and obtain an unconstrained representation in which

no special relationships are assumed among the row categories. We assume that discrete

predictor variables in X have been coded into dummy variables, and continuous variables

appropriately centered.

The dimensionality of the representation space is at most min (R -- 1, C - 1), which

implies that there should be at least two rows and two columns in the table to be

analyzed. The maximum dimensionality is also bounded above by the number of nonre-

dundant predictor variables, p*. This is usually equal to the total number of categories in

unordered categorical variables, minus the number of the unordered categorical variables,

plus the number of ordered categorical and interval variables.
Let M denote the C by A matrix of coordinates of column categories. We assume, in

most cases, that this M is given by weighted centroids of Y; that is,

M = Dc- XF’Y = D~- tF’XB, (2)

where Dc is the diagonal matrix of column totals of F. This is called the centroid

restriction. The same restriction is tacitly imposed in dual scaling. While this restriction is
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not absolutely necessary, it reduces the number of parameters to be estimated. It also

helps avoid certain degeneracies often encountered in nonmetric multidimensional un-

folding analysis (Heiser, 1981). In section 6 we present some empirical evidence indicating

that (2) is not at all unrealistic.

The squared enclidean distance (d~) between the i-th row category and the j-th column
category is now stated’ as

d/~ = (y, - mj)’(yl - m~), (3)

where Yl and mj are column vectors of the i-th row of Y and the j-th row of M, respec-

tively. The simple euclidean model (3) tacitly assumes that the distance is measured in the

same way across all rows and columns. However, it may be generalized into

d~ = (y~ - mj)’H(yl- m (4)

where H is a metric matrix, which may depend on rows or columns. The metric matrix

controls how we measure the distance between two points. Being analogous to the inverse

of covariance matrices, different H’s reflect different sensitivities to coordinate differences.

In DA a group dependent H has an obvious application in quadratic discrimination. It

also has an important implication in attempts to incorporate dispersion parameters in the

exponential family of distributions (e.g., Efron, 1986; Jorgensen, in press). This differential

sensitivity plays a particularly important role in psychology. In pair comparison modeling

it is known as differential comparability (Takane, 1980), in test theory it represents differ-

ential item discriminability, and in multidimensional scaling it gives rise to an individual

differences metric of Carroll and Chang (1970).

Let p~ I i denote the conditional probability of the j-th column given the i-th row. We

assume that this conditional probability is given by

w/exp (--d~)
(5)Pjll

E Wk exp (-- di2k)’
k

where w~ is the bias parameter (to be estimated) for the j-th column category. The bias

parameter may be interpreted as the marginal effect of a certain column, and it represents

an overall likelihood of the column (independent of specific rows). We require ~j w~ = 

in order to remove scale indeterminancy in wj. Note that Pjli is proportional to wj exp
(- d~) for each i, so that it is indeed an increasing function of wj and a decreasing function

of d~j as required in (c) of the basic assumptions of ideal point DA given earlier. Some
justifications for the specific form of the model have been given in Takane, et al. (1987).

An important consideration is that (5) is justified under the general exponential family 

distributions on the predictor variables. (See Takane, et al. for more detail.)
Finally, we define the (conditional) likelihood of the total set of observations 

L = I-I (p.ili)fO, (6)
i,j

where f~, i, j-th element of F, is the observed frequency of the i-th row and the j-th
column categories. The log of the conditional likelihood is maximized with respect to B

and wj. We use Fisher’s scoring algorithm for the maximization.
Note that we use the conditional probability in defining the likelihood, (6). The

marginal probability, Pi, of row i is conditioned out, partly because in DA our primary

interest is to predict j based on i, so that the marginal probability of row i, being common

to all columns, falls out. This conditional estimation is analogous to taking odds rather

than working directly on observed frequencies in loglinear analysis of contingency tables.
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Some general properties of conditional maximum likelihood estimation are given in An-

dersen (1980).
Note that we could have employed

Pu = uv~ w~ exp (-d~), (7)

for joint probability, Pij, and the full (joint) likelihood,

= I-I (p,)& (8)

where vi (i = 1 .... , C) in (7) is the row effect parameter and u the overall scale parameter.

However, this leads to more parameters to be estimated (due to v~), and an increased

accuracy in parameter estimates is expected to be negligible. (The latter may be seen by

noting the fact that so much of the information contained inf,, the marginal frequency of

row i, is "absorbed" by v~, and little is left for the estimation of parameters in p~ I ~’) We

have, therefore, decided to maintain the conditional maximum likelihood estimation de-

scribed earlier.

Once the maximum (conditional) likelihood, L*, is obtained, AIC (Akaike, 1974) 
calculated according to

AIC = -2 In L* + 2np, (9)

and is used for identifying the best fitting model. The effective number of parameters, np,
in the above formula is given by

A(A- 1)
n~, = p*A -~ + (C -- 1),

where p* is the number of nonredundant predictor variables. The AIC defined above

plays an important role in the evaluation of various structural hypotheses about the

contingency tables. A variety of structural hypotheses or constraints (to be discussed in

Section 4) may be incorporated in the representation of row and column categories, and

their empirical validity may be tested through the minimum AIC procedure.

3. An Illustrative Example: Maxwell’s Data

Within the basic framework of the method presented in the previous section, a

variety of interesting analyses are possible. We explore some of the possibilities here,

using Maxwell’s data as an example.

Let us first look at Figure 1. This is the unconstrained solution obtained by setting

X = I. In this case the configuration was derived entirely on the basis of joint frequencies

of row and column categories. In Figure 1 the 16 predictor patterns are indicated by
numbered dots and the three criterion groups by asterisks.

Figure 2 depicts a constrained two-dimensional solution obtained by specifying the

main effects of the four symptom variables as the predictor variables. Coordinates of the

16 predictor patterns were constrained to be a linear function of the predictor variables.

We see some regularity or parallelism in the configuration of the 16 patterns. This is

because additivity of the four predictor variables is now assumed, so that, for example, the
location of pattern 10 with the predictor pattern of (1001), presence of the first and the

last symptoms and absence of the second and the third symptoms, is obtained by the sum

of four vectors designated as 1-1 (presence of the first symptom), 2-0 (absence of 
second symptom), 3-0 and 4-1. Note that two vectors corresponding to presence and

absence of a symptom (e.g., 1-1 & 1-0) are pointing in opposite directions, their lengths
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FIGURE 1.

being proportional to the reciprocal of their marginal frequencies. This is due to the

binary nature of the predictor variables.

An important consequence of a specific row structure like additivity is that a point

can be located in the configuration (albeit less reliably), even if information is missing for

some of the symptoms. For example, the location of pattern (0 0 0 ?) marked by a star,

the fourth symptom information missing, is obtained by adding only three vectors corre-

sponding to 1-0, 2-0 and 3-0.
The constrained solution in Figure 2 uses only nine parameters, while the un-

constrained solution in Figure 1 uses 31. Table 2 gives the AIC values corresponding to

the two solutions, which are 841 and 869 for the constrained and the unconstrained
solutions, respectively and the constrained solution turns out to be a much better solution

than its unconstrained counterpart. Comparing the two configurations, we notice that

relative locations of several points, namely 4, 8, 11, 12 and 15, differ quite radically from

one configuration to the other. This means that these points could change their locations

in Figure 1 without much effect on the value of the overall likelihood. That is, they are

rather poorly estimated in the unconstrained solution. This was confirmed by other

evidence; I tried to draw 95% asymptotic confidence regions (Ramsay, 1978) for points 
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the unconstrained solution, but they turned out to be much too big to fit in the figure.

However, the points are much more tightly estimated in the constrained solution. This

suggests an importance of having proper constraints for reliable estimation of model

parameters, particularly when the data are weak in the sense that there are many low

frequency cells.
We may ask other questions about Maxwell’s data. For example, in the above analyses

the dimensionality of the representation space was assumed to be two, but are the two

dimensions really necessary? The main effects of the four symptom variables were used as

the predictor variables, but do they provide the best structure for the row categories? Are

all of them significant? Aren’t there any significant interactions among them? Also, the

three criterion groups were assumed to be all distinct, but are they really? If not, which

groups are distinct and/or not distinct from which groups?

These questions may be answered by model evaluation capabilities of ideal point DA.

The best dimensionality of the representation space is determined by obtaining solutions
in different dimensionalities and by comparing their fits to the data through AIC. The

optimal set of predictor variables may be determined by subset selection of the predictor

variables. That is, by deleting variables and/or adding interactions, and by observing how
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Table 2. Smeary statistics for Maxwell’s

Dim AIC (# of para. Lower Bound for
AIC

Saturated Model 3 855 (32)

Ideal Point ~A

[ 1]~ 1,2,3
Four main effects 3 2 841" (9)

Variable I deleted 3 2 945 (7)
Variable 2 deleted 3 2 871 (7)
Variable 3 deleted 3 2 1013 (7)
Variable 4 deleted 3 2 915 (7)

2-way interactions added
3-way interactions added

3 2 853 (21)

3 2 866 (29)

4-way interactions a~ed 3 2 869 (31)
(~uivalent to the 3 I 918 (17) 888 (2)+
U.constrained Solution)

[2] (1,2),3 2 1 1121 (17) 1091 (2)+

[3] 1,(2,3) 2 1 970 (6) 940 (2)+

[4] (1,3),2 2 1 1098 (17) 1068 (2)+

[5] (1,2,3) 1 0 1296 (2) 1296 (2)+

(Equivalent to
the Null Model)

+÷ K: the nm~er of distinct criterion groups assm.ed in each clustering alternative

+ The cases in which the l(m~er bound for the AIC value that can be ~ossibly attained by

subset selection is larger than the ~ AIC for Case [i ], dim=2.

the goodness of fit of the model changes as a result. Multisample cluster analysis (Takane

et al., 1987) may be used to identify distinct and nondistinct subsets of criterion groups.

This is done by constraining the coordinates of some of the criterion groups (presumed to

be nondistinct) to be equal, and by comparing the constrained fit against that of the

original model.

We have applied the above procedures to Maxwell’s data rather systematically and the

results are reported in Table 2. With three criterion groups there are five possible clus-
tering alternatives labeled by bracketed numbers in the table. For each case the numbers

enclosed in parentheses indicate indices of the criterion groups presumed to be nondi-

stinct.

In Case 1 all the three criterion groups are assumed distinct. In this case both one- and
two-dimensional solutions can be obtained, and within each dimensionality an optimal

subset of predictor variables may be identified. We first obtained the unconstrained

one-dimensional solution. The AIC value of 918 associated with this solution is found to

be much larger than that of the constrained two-dimensional solution discussed earlier.

We then calculated the lower bound for the AIC value that can be possibly attained by
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subset selection of predictor variables in the one-dimensional solution. This value is

obtained by assuming that the log likelihood attained by the unconstrained one-

dimensional solution is maintained, even if all the predictor variables were eliminated. As

it has turned out, this lower bound for the AIC value also exceeds the AIC value of the
constrained two-dimensional solution. This implies that no one-dimensional solutions can

possibly fit the data better than the constrained two-dimensional solution. That is, the

best dimensionality of the representation space is two.

The above fact implies that there are three distinct groups. To see this is indeed the

case, we obtained the unconstrained solutions for Cases 2, 3, and 4, in which two of the

three criterion groups were in turn assumed nondistinct. Again the lower bounds for the

AIC value (that could be achieved by subset selection) were calculated for these cases, but

they all exceed the AIC value of the constrained two-dimensional solution in Case 1,

which is so far the best solution. The AIC value for Case 5 also exceeds that of the

constrained two-dimensional solution. This confirms the distinctiveness of the three cri-

terion groups in Maxwell’s data.

Given that there are three distinct criterion groups to be represented in a two-

dimensional euclidean space, we may now apply a subset selection procedure to identify

the optimal set of predictor variables that provide the best row structure for Maxwell’s

data. The constrained solution in Figure 2 used the main effects of the four symptom

variables as the predictor variables. We eliminated each of the predictor variables in turn

from this model, and fitted the reduced models. None of the reduced models fit the data
better than the original model according to the minimum AIC criterion. This implies that

all the four main effects are significant for discrimination.

We then added interaction terms among the symptom variables to the main effects

model. There are 6 two-way interactions, 4 three-way interactions, and 1 four-way inter-

action that can be defined among the four variables. In order to reduce the number of

possible models to be fitted we added all the interactions of a same order simultaneously

and incrementally from the lowest order interactions. Again none of the incremented

models were found to provide a better fit than the main effects model.

The constrained two-dimensional solution depicted in Figure 2 is indeed the best

solution obtained. The four main effects of the original predictor variables provide the

best row structure for Maxwell’s data. This roughly corresponds with the condition under

which Maxwell’s data were generated. The above analysis thus confirms the ability of
ideal point DA and the minimum AIC criterion to detect and recover the original "true"

structure.

4. A Variety of Model Specifications

A variety of specialized models may be specified and subjected to model compari-

sons. We have already seen some of them in the previous section. In this section we

conduct a more systematic survey of possible model specifications. A few particularly

interesting ones will be highlighted through examples in the next section. The specifi-
cations are divided into three groups: (a) direct constraints on model parameters, (b) 

structures, and (c) column structures.
There are two particularly important benchmark models worth mentioning. They

serve as an upper bound (the saturated model) and a lower bound (the null model) for 
other models. In the saturated model no structural assumptions are made, so that PJl ~ is

estimated by f~fff~. The null model, on the other hand, assumes independence of rows and
columns (rows have no predictive power on columns), which amounts to assuming that

Pgl~ = Pg for all i. The goodness of fit (GOF) of specialized models are to be compared
against that of the benchmark models.
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4.1. Direct Constraints on Model Parameters

There are two kinds of model parameters, weight matrix B and bias parameters wj

j = 1 ..... C. Constraints on wi are relatively simple; the bias parameters are either left

free, or fixed at w~ = 1/C for all j or at some other externally supplied values. In some

cases we may allow different sets of wj to apply different subsets of rows. This is useful, for

example, when we manipulate w~ without changing do, as in a signal detection experi-

ment. Constraints on B are more varied and need some explanation. They may be

classified into several groups: (1) the scale type restriction, (2) the dimensionality 

striction, (3) the zero restriction, (4) the equality restriction and (5) the multiplicative

decomposition of weights for unordered categorical variables.

(1) The Scale Type Restriction

As alluded to earlier, different types of constraints reflecting different scale levels of

the predictor variables are imposed on relevant portions of B. We summarize these

restrictions as follows.

(a) Unordered categorical variable. If variable k is unordered categorical, we find

multidimensional quantifications (weights) of categories subject to the centering re-

striction,

~ fk~s~ bkts~a = 0 for all a, (10)

where fkt~ is the marginal frequency of category s in variable k, and bkts) a is the weight to

be applied to the category on dimension a. The summation extends over all categories in

variable k. The same kind of restriction is also implicit in dual scaling.

(b) Ordered categorical variable. It is not possible to find two orthogonal sets of

quantifications satisfying the same prescribed order. We therefore seek to find only one

set of quantifications subject to an order restriction and a centering restriction similar to

(10). These unidimensional quantifications are multidimensionally weighted to obtain

multidimensional quantifications.

(c) Interval variable. In this case we assume that category quantifications are al-

ready given, and obtain only dimensional weights.

(2) The Dimensionality Restriction

Each analysis by ideal point DA presupposes a specification of dimensionality A in

the representation space. This A usually corresponds to the number of columns in matrix

B. (More precisely it corresponds to the rank of B.) As has been demonstrated in the

previous section the best dimensionality of the representation space can be identified by

comparing the GOF of solutions obtained in different dimensionalities.

(3) The Zero Restrictions

The zero restriction, that is, to set certain elements of B to zero, plays two important

roles in ideal point DA. First, we may use it to test the significance of a contribution of

some predictor variable on certain dimensions. Secondly, we may force certain dimensions

of the representation space to coincide with some specific predictor variables. This is

useful to make ideal point DA completely equivalent to the loglinear model.

(4) The Equality Restriction

The equality restriction may be imposed to test the equality of contributions of two

or more predictor variables on certain dimensions. Both the zero restriction and the
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equality restriction imposed directly on B are more general than analogous restrictions

imposed through manipulations of predictor variables (to be explained in section 4.2) 
that they can be imposed separately for each dimension.

(5) Multiplicative Decomposition

Multidimensional quantifications of categories usually obtained for unordered cate-

gorical variables may be decomposed into the product of a single set of category quantifi-

cations and dimensional weights. This is similar to the scale type restriction for ordered

categorical variables, but without the order restriction. Again the empirical validity of this

assumption may be tested through model comparisons.

4.2 Row Structures

This class of restrictions are perhaps the most important ones in ideal point DA. The

restrictions representing certain row structures are usually incorporated via predictor
variables. It is thus crucial to be able to define appropriate predictor variables for specific

purposes of analysis.

We have already mentioned that the matrix of predictor variables may be set to an

identity matrix if row categories are to be left unconstrained. A particular row structure

model will be tested against the unconstrained case, whose X is set to an identity matrix,

by specifying that there is only one unordered categorical variable with as many catego-

ries as there are rows in a contingency table. Row structures most often take the form of

an additive function of several predictor variables. This however, does not exclude the

possibility of having a single predictor variable. Interactions among the original predictor
variables may be defined and included in the predictor set. Additivity (or no interaction

hypothesis) of the predictor variables may be tested against specific interaction models.
Takane, et al., (1987) describe how the interactions are to be defined in ideal point DA.

Other specialized comparisons or contrasts may be specified, including polynomials

or trends of different degrees. This is important, for example, in a psychophysieal study
where row categories represent some kind of physical stimuli, and we would like to find
out how well physical attributes of the stimuli can explain subjects’ responses.

Other designs may be meaningful. For example, in pair comparison data we provide
a design matrix which takes the difference between scale values of compared stimuli. The

design matrix for pair comparisons may be combined with other stimulus information to
form a new design matrix.

Certain effects may be partialed out from the predictor set. This is done in a manner

similar to that in the usual linear regression. Suppose we would like to eliminate the

effects of variables Z from X. Then we define Xz = (I -- Z(Z’Z)-IZ’)X and use it as 

predictor variables. This matrix represents the portion of X that cannot be accounted for
by Z. If we set X = I, we obtain Iz = Xz = I -- Z(Z’Z)-1Z’. This represents the variation

accounted for by the unconstrained model, but left unaccounted for by the model in

which we have Z as the predictor variables. In this particular case I z is singular. A
minimal set of linearly independent predictor variables may be obtained by the set of

eigenvectors of Iz corresponding to unit eigenvalues. To be more consistent with corre-

spondence analysis we may introduce a metric matrix, Dr, which is a diagonal matrix of

row marginals, and redefine I z = I- Z(Z’D,Z)-~Z’Dr. Attempts have been made 
partial out certain effects in correspondence analysis (Nishisato, 1982; ter Braak, in press;

van der Heijden & de Leeuw, 1985; Yanai, 1987), and our development is analogous to

these developments.

The effect of a particular variable may be tested by deleting that variable from the
predictor set. This tests the overall contribution of the variable, rather than its dimension-
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al contribution. The test of equality of certain rows may be considered as a special case of

the test of the overall contribution of a predictor variable. The overall equality of contri-

butions of two or more variables may be tested by creating a new variable by summing

the variables whose effects are presumed to be equal.

In all the above cases subset selection of predictor variables plays an important role.

The number of parameters, and consequently the number of predictor variables, should

be kept as small as possible to ensure reliable estimation. The best predictor set is

supposed to provide the best structure for row categories.

4.3 Column Structures

The ~entroid restriction, (2), is usually imposed on columns. Other structures similar

to those On rows may also be imposed on the columns. For example, the column catego-

ries may have a factorial structure, and then additivity analysis may be performed on the

column categories. In section 5.1 we will discuss an example of this and explain how this

type of restriction can be incorporated.

In certain cases coordinates of column categories may be fixed at prescribed values.

This is useful, for example, for analysis of pair comparison data. For certain square

matrices in which rows and columns have certain correspondence, for example, stimulus

recognition data, M may be set equal to ¥. This will make ideal point DA a model of

quasisymmetry (Caussinus, 1965).
Equality restrictions may be imposed on certain columns, allowing the test of equal-

ity among the columns. Statistically nondistinct columns may be combined into one.

Equality restrictions may also be used to impose a prescribed order among columns.

Those columns in an order violation are simply combined into one. When the test of

equality among column categories is systematically applied, it is called multisample clus-
ter analysis (CA). This allows multiple comparisons of the column categories in the

context of ideal point DA. Takane, et al. (1987) discuss how multisample CA may 

performed in ideal point DA. It involves prior combinations of column categories (as-
sumed nondistinct) and a post adjustment of the value of the maximum log likelihood.

Equality restrictions may also be directly imposed on M in a manner similar to the way
an additivity hypothesis is incorporated.

5. More Examples

In this section we present a few more examples to demonstrate some of the interest-
ing model specifications discussed in the previous section.

5.1 The ISM Data on the Traditional Versus Modern Views

This data set was taken from part of a large scale survey on Japanese nationality

conducted at the Institute of Statistical Mathematics in Tokyo. The current data set
pertains to the survey conducted in 1973. The following two questions on traditional

versus modern views were selected, and six categories were formed by factorially combin-

ing three answer alternatives in the first question and two in the second question. The six

categories constitute the criterion groups.

Q1. If you have no children, do you think it is necessary to adopt a child in order

to continue the family line?

A1. Would adopt

A2. Would not adopt

A3. Depends on circumstances
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Q2. Some people say that if we get good political leaders, the

improve the country is for the people to leave everything to them.

B1. Agree

B2. Disagree

best way to

In addition three background variables about the subjects were provided: sex (1.male

2. female), age groups (1.20-30 2. 30-40 4. 40-50 5. 50-60 6. > 60) and levels of education
(1. elementary and junior high, 2. senior high and 3. college). These background variables

were used as predictor variables. Over 2,000 subjects were cross-classified according to the

six response categories and the three background variables. We were interested in testing

the additivity of the background variables (for a row structure) as well as the additivity 

columns implied by the factorial nature of the response categories.

The additivity hypothesis on columns may be incorporated as follows. Define the

design matrix, G, for the columns. This matrix may look like

G=
0 0

0

1

0 °11
1 1

0 0 "

0 0

1 0

Rows of G correspond to the six response categories, while columns to the five answer

alternatives in the original questions (Q1 & Q2). Matrix G indicates which response

alternatives in the original questions constitute the derived response categories. Let

F* = FG.

Then under the additivity hypothesis M is defined as

M = GDc*-IF*’Y

where De* is the column total of F*.
We analyzed the data under the row additivity hypothesis only, and then under both

the row and column additivity hypotheses. Circular dots in Figure 3 represent the column

points obtained under the row additivity hypothesis only. Points associated with A1, A3,
and A2 were connected by a solid line separately for B1 and B2. The two lines are not

parallel. Squares in Figure 3 represent the column points obtained under the row as well

as the column additivity hypothesis, and are similarly connected by dotted lines, which

are now parallel, because under the column additivity hypothesis the point corresponding
to (A1, B2), for example, is obtained by the sum of two vectors designated as A1 and B2.

This situation is analogous to how row points are obtained under a row additivity
hypothesis.

The GOF of various models fitted are reported in Table 3. The model with only the

row additivity hypothesis has turned out to be the best fitting model.

5.2 Guilford’s Data by the Constant Method

Ideal point DA has interesting relationships to some of the traditional psychometric

methods. In this section we apply ideal point DA to two data sets collected by the
constant method. In this method a single stimulus is presented to the subject in each trial,

and the subject is usually required to make a two-category judgment about the stimulus



[A1 B2]

[A1 B1] ~~ ,..[A3 B2]

.................................... [A2 B2]

~2 B1]

FIGURE 3.
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Table 3. Smmm~ry statistics for the I~ data on
traditional vs. m~dern views

507

AIC (# of para. 

Saturated m~del

No structures on rows

Rows constrained by sex,

age and education

Rows constrained as above
plus additivity in coltm~

Null m~el

6511 (140)

6399 (58)

6364* (18)

6381 (18)

6728 (5)

* Minim~ ~JC

according to some criterion (See data set (A) below). However, in some cases judgments

are made in more than two response categories (See data set (B) below).

The two data sets were taken from Guilford (1954; p. 150). In data set (A), each of 

stimuli (two pointed objects applied to the skin and separated by a distance varying from

18 mm to 34 mm in steps of 4 ram) was judged whether it was a "one object" or "two

objects" one hundred times. In data set (B), each of seven comparison stimuli (weights

ranging from 88 g to 106 g in steps of 3 g) was compared with a standard weight of 100 

and a judgment was made as to whether the comparison stimulus was heavier than,

doubtful or lighter than the standard stimulus. Again this was done one hundred times. In

both cases we are interested in how well the physical attribute of the stimuli can account

for the data. This was investigated by incorporating the physical measurement of the

stimuli as the predictor variable.

Table 4 summarizes the GOF of various models fitted to the two data sets. For data set

(A) we can obtain only one-dimensional solutions. Notice that with two response catego-

ries the unconstrained solution is identical to the saturated model, and this is generally

true. A squared physical separation term was also included in one model, but the model

in which the stimulus representation was constrained by a linear function of the distance

is found to be the best fitting model.

Results for data set (B) are similar. A major difference is that for this data set (having

three response categories) we can obtain two-dimensional as well as one-dimensional

solutions. As it turned out, the constrained one-dimensional solution with a linear func-
tion of the physical attribute as the predictor variable is again found to be the best fitting

model. The three response categories are arranged in the expected order in the derived

unidimensional space although no order restrictions were explicitly imposed on the
column categories.

When there are only two response categories, it can be shown that ideal point DA

has a simple relationship with the logit analysis of the constant method. In this particular

caseA= land

d.2.
,j = (Yl - m j)2, j = 1, 2,
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Table 4. bXtmary statittcies for Guilford’s data

Model Dimemsi~ (A)

Saturated
model 474 (5) 1097 (14)

2 1098 (13)

i 474 (5) 1091 (8)

Linear in
physical attribute I 472* ( 2 1083" (3)

Linear andquadratic
in physical attribute 2 1084 (5)

i 473 (3) 1084 (4)

*Mininu~ AIC

(where y~ may be further constrained by x/b), so that

Pill = [1 + exp (__qi)]-t,

where

q,= 2(ml--m2)y~--(ml- m2)(ml +m2)--ln(W-~*~
\w2/

where

and

= ay i + C,

a = 2(mI -- m2),

c=--(ml--m2)(m ~ +m2)--ln(W~2).

Note that qi is linear in yi, and is also linear in x~. Coefficient a is a sensitivity parameter

(analogous to d’ in signal detection theory) and c a bias (or threshold) parameter. Parame-

ter c may also be interpreted as an order effect parameter. In the simplest case we may set

a = 1 (m2 = --m I = 1/4) and c = 0 (w, = w2) in 

Ideal point DA has interesting relationships to other psychometric methods such as

pair comparison models (Bradley & Terry, 1952; Colonius, 1981; Luce, 1959; Strauss,
1981), successive categories scaling (e.g., Torgerson, 1958), signal detection theory (e.g.,

Green & Swets, 1966), information theory (e.g., Krippendorff, 1986; McGill, 1954), models

of stimulus recognition data (e.g., Takane & Shibayama, 1986), the method of similar

reactions (Thurstone, 1929; Torgerson, pp. 395-402), and so forth. However, this topic

requires a separate treatment.
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6. Relations to Other Methods

Ideal point DA may be viewed as a special form of unfolding analysis (Coombs,

1964). In ecology a similar method called Gaussian ordination (Ihm & van Groenewoud,
1975) has been in use for quite some time. Some attempts have also been made to

establish the relationship between unfolding analysis, Gaussian ordination, and corre-

spondence analysis (Escoufier, 1987; Heiser, 1981, 1987; Ihm & van Groenewoud, 1984;

ter Braak, 1986). Ideal point DA has many other relatives in statistics. Its relation to
loglinear DA (e.g., Andersen, 1980), logistic discrimination (e.g., Anderson, 1982) and 

generalized linear models (McCullagh & Nelder, 1983) has already been discussed 

Takane, et al. (1987). In this section we discuss two more methods bearing interesting

relationships to ideal point DA, namely Goodman’s RC association model and dual

scaling (correspondence analysis).

We may rewrite (8) 

P~j = uvi wj exp (-d~)

= u*v~’w~ exp (y~"m~’) (11)

by adjusting scales of u*, v~’, w~, y~* and m~. Squared terms in the distance model are

absorbed in row and column effect parameters, v~* and w~. If no centroid restriction is
imposed on columns, (11) becomes Goodman’s (1981) RC association model. The differ-

ence between the two models is rather critical. The distance interpretation no longer holds

for the RC association model. Later in this section we demonstrate the importance of the

centroid restriction.

Note that (11) leads 

w~’ exp (y~"m~’)
Pjli

Z W’~ exp (Yi mk)
k

which may be called the conditional probability representation of the RC association

model. This form of the RC association model can be also derived from (5), the con-
ditional probability form of ideal point DA.

We may also rewrite (8) 

In L =fu* + Z fiiv~ + ~., f~w~. -- Zf~jd~,
j i,j

(12)

where u*, v~’ and w~ are log transformed overall scale, row effect and column effect

parameters, and f, f~ and f~ are total, row marginal and column marginal frequencies,
respectively. (A similar line of argument follows if (6), instead of (8), is used.) Obviously 

last term in (12) is the most important term for the estimation of parameters in the

distance model. Minimizing ~ f~jd~ under appropriate ortho-normalization restrictions

leads to dual scaling (correspondence analysis), as has been shown by Heiser (1981).
Consequently, ideal point DA (in the unconstrained case) is expected to give similar

results to correspondence analysis. With constraints on row categories ideal point DA

gives similar results to canonical correspondence analysis (ter Braak, 1986; see also Car-

roll, 1973; Fisher, 1948; Hayashi, 1952; Johnson, 1950; and Maxwell, 1961), which is 

special form of correspondence analysis with constraints. Correspondence analysis and

canonical correspondence analysis are, respectively, known as the third kind and the

second kind of quantification methods in Japan (Hayashi, 1952). The latter is mathemat-
ically equivalent to canonical DA applied to dummy coded discrete predictor variables.

Correspondence analysis or canonical correspondence analysis (with special provisions for
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Table 5. Comparison with maximmn likelihood canonical

analysis and the RC association model

Ideal Point Canonical Association
Data DA analysis model

G2(df) AIC G2(df) AIC G2(df) AIC

Stole, et al. 3.6(12) -20.4* 2.8(8) -13.2 3.6(8) -12.4

Fisher 9.4 (6) - 2.6* 4.7(2) 0.7 8.7(5) - 1.3

Snee 2.0 (4) - 6.0* 3.7(4) - 4.3

Cramer 2.8 (6) - 9.2* 0.8(3) - 5.2

Rasch-Andersen 3.5 (9) -14.5" 3.5(6) - 8.5

Caussinus 0.8 (5) - 9.2* 0.2(2) - 3.8

G2 is the value of the log likelihood ratio chi-square from the saturated m~del.

* ~AIC’s

ordinal and interval predictor variables), as the case may be, is used to obtain initial

estimates of parameters in ideal point DA. Gilula and Haberman (1986) recently proposed

what they call "canonical analysis" which is a sort of maximum likelihood correspon-
dence analysis. The relationship between correspondence analysis and the association

model has been discussed in Goodman (1985), and Gilula and Haberman.
The GOF of ideal point DA was compared with that of canonical analysis and that

of the RC association model. The following six data sets were used for this purpose. The

first two were fitted by Gilula and Haberman (1986), and the remaining four analyzed 

Goodman (1984, 1986).

1. Srole, Michael, Opler and Rennie (1962): 1,660 midtown Manhattan subjects

cross-classified according to six parental socio-economic status strata and four categories

of mental health status (well, mild symptom formation, moderate symptom formation,

and impaired).

2. Fisher (1940): 5,387 school children in Caithness cross-classified according 
four levels of eye color (blue, light, medium, and dark) and five levels of hair color (fair,

red, medium, dark, and black).

3. Snee (1974): 592 subjects cross-classified according to their eye color (four levels:
brown, blue, hazel, and green) and hair color (four levels: black, brunette, red, and blond).

4. Cramer (1946): 25,263 Swedish families cross-classified according to their yearly

income (four levels: 0-1, 1-2, 2-3, and > 3 thousand Kronor) and number of children (five

levels: 0, 1, 2, 3, and > 4).
5. Rasch-Andersen (Goodman, 1986): 7,025 Danish men cross-classified by year

(four levels: 1955-1958) and age (five levels: 15 through 19 years) for whom initial 6harges

have been dropped.

6. Caussinus (1986): 2,730 patients cross-classified according to five age groups

( < 50, 50-60, 60-70, 70-80, and > 80) and four cancer types.
Table 5 shows the likelihood ratio chi-square (G2) representing the difference between
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the saturated model and the model selected as the best fitting model by the respective

methods (along with the associated degrees of freedom of the chi-square in parentheses)

for the six data sets. The table is not complete, since the results from canonical analysis

were obtained by Gilula and Haberman (1986) and those of the RC association model 

Goodman (1985, 1986). In all cases the chosen model provides a satisfactory fit in terms 

the chi-square GOF tests.

In order to make direct comparisons among the three methods, AIC was calculated

by

AIC = G2 -- 2 df.

The AIC values indicate that in all the six data sets ideal point DA provides a better fit

than canonical analysis or the RC association model. The result also indicates that the

centroid restriction in ideal point DA is not at all restrictive. On the contrary it has the

positive effect of reducing the number of model parameters without impairing the overall

GOF of the model.

The above comparison is actually somewhat unfair to ideal point DA, which is based

on the conditional likelihood as opposed to the full {joint) likelihood. This is because the

conditional likelihood and the marginal likelihood of rows, separately maximized and

multiplied, never exceeds the joint maximum likelihood. Thus, G2 derived from the joint

maximum likelihood gives a lower bound for G2 derived from the conditional maximum

likelihood. Ideal point DA with the centroid restriction still fits better than the two

methods.

Ideal point DA could be applied to the above data sets with rows and columns

interchanged. When this was done, similar results were obtained; the advantage of ideal

point DA remained intact in all the six cases.

7. Concluding Remarks

We have seen a variety of interesting analyses that can be performed by ideal point

DA. Throughout these analyses we have emphasized various advantages of ideal point

DA. It allows a spatial representation like the one obtained in dual scaling. At the same

time it allows detailed model evaluation that is feasible in loglinear analysis of contin-

gency tables. A variety of constraints may be incorporated at different levels, and can be

subjected to interesting model comparisons. As we have seen, proper constraints are also

important for reliable estimation of model parameters. Ideal point DA can be widely

used, and subsumes a number of interesting models as special cases. Perhaps it is not as

widely applicable as correspondence analysis, since it requires certain statistical assump-

tions of the data. However, it certainly surpasses correspondence analysis in the variety of

analyses it can undertake on a same set of data. This is quite important in data analysis in
general to avoid accepting just any model which happens to be fitted (de Leeuw, 1984).

There are a number of developments that could make the method even more attrac-

tive. The most important one of these is the availability of various diagnostic capabilities,

for which many of the techniques (Landwehr, Pregibon & Shoemaker, 1984; Pregibon,

1981; Rubin, 1984) developed for the generalized linear model (McCullagh & Nelder,

1983) will be of great value. In particular the method should allow extensive residual

analysis. Diagnostic methods are extremely important in data analysis to obtain insight
for further improvements of the model.
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