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Analysis of Convergence of the T-Transformation
for Power Series

By Avram Sidi

Abstract.   Recently the present author has given some convergence theorems of gen-

eral nature for Levin's nonlinear sequence transformations.   In this work these theo-
rems are extended and sharpened to cover the case of power series, both inside and
on their circle of convergence.   It is shown that one of the two limiting processes

considered in the previous work can be used for analytic continuation and a realis-
tic estimate of its rate of convergence is given.   Three illustrative examples are also
appended.

1.  Introduction and Review of Recent Results.  In a recent paper, Sidi (1979),
(from here on denoted as (*)) a partial study of the convergence properties of the non-
linear sequence transformations due to Levin (1973), namely the T-transformations,
has been given.  The purpose of the present work is to extend the results given in (*)
to cover the case of power series (and Fourier series), and also to improve upon them.
Since we shall be using the notation of (*) and its results, we shall give here its nota-
tion and, when needed, those results that are relevant to the present work.

Let the sequence Ar, r = 1, 2, . . . , be a convergent infinite sequence whose
limit we denote by A.   Tk n, the approximation to A, and the constants y¡, i = 0, 1,
. . . , k - 1, are defined as the solution of the k + 1 linear equations

(1.1) Ar = TKn + Rr ¿ 7,/Á      r = n,n + l,...,n + k,
1=0

where Rr are preassigned numbers related to the sequence in consideration; see Levin
(1973). Equations (1.1) have a simple solution for Tk n which is given by, see Levin
(1973),

_^0(-iy(kXn+i)k-lAn+j/RnH

(L2) k'"        I*=0(-m*)(n+j)k-i/Rn+i

(1.2) can also be written in a more compact and revealing form as, see (*),

(13) j      _ Ak^~lAJRn)

k-"       Ak(nk->/Rn)  '

where A is the forward difference operator operating on n.   Once Tk n has been
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834 AVRAM SIDI

computed, the y¡ can be computed recursively from, see Theorem 5.1 in (*),

(1.4) ¿ y/Akink+i->) = Ak [nk+i(An - Tk „)/*„],      Í = 0, 1, . . . , k - 1,
7=0

in this order.  Note that Afc on the right-hand side of (1.4) does not operate on the
index n of Tk n.

We now define two limiting processes for Tk n ;
(1) fc is held fixed, n —► °° (Process I),
(2) n is held fixed, k —► °° (Process II).
In the analysis given in (*) it is assumed that the members of the sequence {Ar}

satisfy

(1.5) Ar=A+Rrfir),      r=l,2.

where /(x), as a function of the continuous variable x, is defined for all x > 1, in-
cluding x = °°, and as x —► °°, has a Poincaré-type asymptotic expansion in inverse
powers of x, given by

(1.6) /(*)~£ß,M    ßo *°-
i=0

(For Process II it is also assumed that fix) is an infinitely differentiable function of x
for all x > 1 including x = °°.)

Remark 1.  If the sequence Ar has the above property, then for Process II, which
is the more effective of the two processes, Tk n converges to A extremely quickly, as
various computations in the literature show.  If, on the other hand, the sequence does
not possess the above property, then no meaningful results can be expected from T,
as computations have shown.  Therefore, the property above seems to be necessary for
T to work at all.

Remark 2.  As can be seen easily, if (1.5) and (1.6) are satisfied, then we can
express (1.5) in the form

(1-7) Ar=A+Rr7(r),      r=l,2.

where Rr = Rrg(r), and g(x), as a function of the continuous variable x, as x —► <»,
has a Poincaré-type asymptotic expansion in inverse powers of x like that of f(x) with
lirn^^x) # 0.  Therefore, f(x) = f(x)/g(x) has the same properties as f(x).  Thus,
by Remark 1, the Rr in (1.2) can be replaced by Rr without affecting Tk n numerically
very much.

The observations in Remarks 1 and 2 have been very useful in the derivation of
some new numerical quadrature formulas for integrals with algebraic and logarithmic
endpoint singularities, which have strong convergence properties.  For details see Sidi

(1980).
The plan of this paper is as follows:  In Section 2 it is shown that for some

power series with finite radius of convergence (1.5) and (1.6) hold.  Furthermore, the
results of (*) are extended to cover the case of some divergent sequences.  In Section
3 Process I is analyzed for the power series considered in Section 2 and convergence
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CONVERGENCE OF THE T-TRANSFORMATION OF POWER SERIES 835

theorems for it are proved.  In Section 4 a new approach to Process II is presented,
which makes the analysis of this process more amenable.  Using this approach, we
prove some useful convergence theorems that show, to some extent, the mechanism
by which Process II works in some cases including that of power series considered in
Section 2, both inside and outside their circle of convergence.  The results of Sections
2, 3 and 4 are illustrated with three interesting examples in Section 5.

2.  Asymptotic Expansions for Remainders of Some Power Series and Extension
of Some Previous Results.  Our purpose here is to show, with the help of Theorem
6.1 in (*), under what conditions Levin's transformations can be applied to power
series.  We begin by recalling Theorem 6.1 of (*), which is a special case of a more
general theorem given by Levin and Sidi (1975), for future reference.

Theorem 2.1 (see Theorem 6.1 of (*)). Let the sequence Ar = 2rm=1 am,
r = 1, 2, . . . , be such that the terms ar satisfy a linear first-order homogeneous dif-
ference equation of the form

(2-1) ar = p(r)Aar,      r = 1, 2, . . . ,

where p(x), considered as a function of the continuous variable x, as x —► °o, has a
Poincaré-type asymptotic expansion in inverse powers ofx, of the form

(2.2) p(x) ~ xT(p0 + pjx + PJx2 + ■■■),      Po±o,

for T an integer < 1. Let \imr^,„Ar = A, A finite.  Assume

(2.3) lim p(r)ar = 0,

and

(2.4) tp + i,      /«-1,1,2,3,...,

where p = limx^a,p(x)/x.   Then A - At^l, as r —► °°, has an asymptotic expansion
of the form

(2.5) A - Ar_x =  ¿ am ~ a/(ß'0 + ß'Jr + ß'Jr2 +•••).
m = r

Furthermore, from the constructive proof of this theorem it follows that ß'0 =
-P0I<P + 1) * 0.

If we now subtract ar from both sides of (2.5) and rearrange, we obtain

(2.6) Ar ~ A + arrT(ß0 + ßjr + ßjr2 + ■■■),

where
i-ß'i if i * t,

(-ßi + 1    if i = r,
(2.7) ßt = <     , 7 = 0,1,2,....

{-ßi + 1    ifi = T,
Remark 1.  It follows from (2.6), (1.5) and (1.6) that a very natural way to

choose Rr is by letting Rr = a/; see Levin (1973).
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836 AVRAM SIDI

It turns out that there is a large class of infinite power series satisfying the con-
ditions of Theorem 2.1, as the following theorem shows.

Theorem 2.2.   Let Ar = 2rm = 1 am, r = 1, 2, . . . , and suppose ar is of the
form

(2.8) ar = zr-lw(r),

where z is a complex parameter, z €E D C C, and w(x), as a function of the continuous
variable x, as x —► °° has a Poincarè-type asymptotic expansion of the form

(2.9) w(x) ~ xa(w0 + Wj/x + w2/x2 +•••),      w0 * 0.

Then all the conditions of Theorem 2.1 are satisfied simultaneously /or(l)D = {zllzl
< 1} with any a, (2) D = {z\ \z\ < \,z # 1} with a < 0, and (3) D = {z\ \z\ < 1}
with a < -1. Hence an asymptotic expansion of the form (2.6) exists.

Remark 2. The infinite series Z^_j ar = 2^1 x w^^1 represents an analytic
function F(z) in the open disc Izl < 1.  The point z = 1 is usually a point of singular-
ity of this function, a branch point or a pole, while other points on the unit circle are
regular points.

Proof.   As can be easily seen from (2.8) and (2.9), the radius of convergence of
the infinite series 2^11 ar is 1 for all values of a, which explains (1).  The conver-
gence of the infinite series on the unit circle with the exception of z = 1 explains (2).
The convergence of the infinite series everywhere on the unit circle explains (3).
Hence (1), (2), (3) guarantee the convergence of Ar for the specified ranges of z.

Now the terms ar satisfy a difference equation of the form (2.1), where p(r) is
simply

(21°) p(r) = (ar+l/ar-l)-1,

therefore, l/p(x) = zw(x + l)/w(x) - 1.  Now l/p(x), as x —*■<*>, has a Poincaré-
type asymptotic expansion which can be shown to be

(2.11) 1 Ipix) = (z - 1 ) + az/x + 0(x~2).

Hence p(x), as x —► °°, has a Poincaré-type asymptotic expansion which is given by

(l/(z-l)-[oz/(z-l)2]/x + 0(x-2),      *#1,
(2.12) pix)=l

(x/a + 0(l), z = l.

From (2.12) it follows that t = 0, hence p = 0, whenever z ¥= 1 and r = 1 with p =
1/a for z = 1, where p and r have been defined in Theorem 2.1.  Using these last re-
sults it is easy to verify that (2.3) and (2.4) are satisfied.  This completes the proof
of the theorem.

If we now choose Rr, as explained in the remark following Theorem 2.1, then
we have

(2.13) R, = z^gir),
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CONVERGENCE OF THE T-TRANSFORMATION OF POWER SERIES 837

where g(r) = w(r)rT.  Considered as a function of the continuous variable x, as
x —► °°, g(x) has a Poincaré-type asymptotic expansion of the form

(2.14) gix) ~ xa+T(w0 + wjx + w2/x2 + •••)•

We note that for this case Rr can also be taken as

(2.15) Rr = zr~1ra+T,

which is the dominant term of Ar - F(z) as r becomes large, in accordance with Re-
mark 2 in Section 1. In the derivation of the new numerical quadrature formulas in
Sidi (1980), the Rr used are of the form given in (2.15) and not (2.13).

Remark 3. When the ^-transformation is applied to a power series, Tk n turns
out to be a rational function

In many cases the relation

(2.16) Ar = F(z) + R/(r)

together with (1.6), whose existence, whenever lim^^U,. exists, has been proved
above, can be continued analytically to the unit circle and its exterior.  (Examples of
this will be given later.) That is, in some cases (2.16) is valid even when lim^.U,.
does not exist.  (We recall that in Theorem 2.1 we assumed the existence of

timr-+ooAr-)
In view of the remark above, we now extend Theorems 3.1 and 3.2 in (*) to

cover also the case of some nonconvergent sequences as follows:

Theorem 2.3. Let the sequence Ar r = 1, 2, . . . , (convergent or not) satisfy
(1.5), where f(x) is as explained in Section 1 and satisfies (1.6). If, in addition, Rn =
0(na) for some a as n —► °° and, for k> a, k fixed,

sup lAfc((-l)"«fc-1/lÄ„l)/Afc(nfc-1/Än)l<~,
n

then Tk „ —*■ A as n —*■ °°; actually Tkn -A = 0(n~k+a).

This theorem extends Corollary 2 of Theorem 3.1 in (*), and its proof is similar
to that given in (*).

Theorem 2.4.   Let the sequence A^ r = 1, 2.(convergent or not), f(x),
and Rn be as in Theorem 2.3 and assume that f(x) is infinitely differentiable for all
x > n, including x = °°.  If, for n fixed,

suplAk((- l)"nk-l/\Rn \)/Ak(nk-l/Rn)\ < ~
k

then Tkn^>Aask-+°°; actually Tk„-A= o(k~x) for any \>0.

This theorem extends Corollary 2 of Theorem 3.2 in (*), and its proof is similar
to that given in (*).

As in (*), these last theorems can be applied immediately to oscillatory se-
quences for which RrRr+1 < 0, r = 1, 2, . . . , since for these sequences
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838 AVRAM SIDI

\Ak((-i)nnk-l/\Rn\yAk(nk-l/Rn)\ = 1,

see (*), giving us an extension of Theorem 4.1 in (*).

Theorem 2.5.  Let the sequence A^r = 1,2, ... , (convergent or not), f(x),
and Rn be as described in Theorem 2.3 and assume R,Rr+ j < 0, r = 1, 2, . . . .
Then wTien k > a, k fixed, Tkn~A = 0(n~k+a) as n —> ~   // in addition f(x) is
infinitely differentiable as described in Theorem 2.4, then, for n fixed, Tk n -A =
o(k~x) as k —* °° for any X > 0.

The above theorems can now be applied to the power series that have been con-
sidered in Theorem 2.2 and the remark following it, inside and on the chele of con-
vengence. Especially when z = -1, Theorem 2.5 can be applied to the partial sums of
the infinite series 2~ = 1 (- ljm~lw(m), where w(m) > 0 for all m and w(x) is as in
(2.9).

Although the results of Theorems 2.3-2.5 are stronger than their predecessors
given in (*), they are still not the best, due to their general nature. In the next sec-
tions, we shall improve on them by making certain (realistic) assumptions about the
sequences to which Levin's transformations are applied.

3. Application of Process I to Power Series and Fourier Series. The purpose of
this section is to extend Theorems 4.2 and 5.2 of (*), which were stated and proved
for some monotone sequences, to cover the case of infinite power series such as those
that we have considered in the previous section, inside and on the unit chele, taking
into account Remark 2 in Section 2. Our new results will be stated in slightly more
general terms. They seem to be the best that one can obtain under the given condi-
tions.

Theorem 3.1. Let the sequence Ar r = 1, 2, . . . , (convergent or divergent)
depending on the complex parameter z, satisfy

(3-0 Ar = F(z)+Rrf(r),

where F(z) is a function depending on z such that lim,.^^, = F(z) whenever this
limit exists, and

(3-2) R^z^gir),

where g(x), as a function of the continuous variable x, when z ¥= 1 has a Poincaré-
type asymptotic expansion of the form

(3.3) *<*)-£ pA'+°.      Po*0>
«=o

and f(x), considered as a function of the continuous variable x, has a Poincaré-type
asymptotic expansion of the form (1.6) with the same notation.   Let Tk n be as given
in (1.3).  77ien, when z # 1,

(34) Tk,n -F(z) = z"~1/n2k + a[D + Oin'1)]    asn^»
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CONVERGENCE OF THE T-TRANSFORMATION OF POWER SERIES 839

where

(3.5) D = p0ßkk\(l-Hz)-k.

Proof.   Equation (3.6) in (*) reads

(3.6)

where

(3.7)

k,n F(z) =
Ak[nk-lwk(n)}

Ak(nk~l/Rn)

wk(x)=/(x)-¿^/x'".
í=0

Now wk(x) = ßk/xk + 0(x~k~1) as x —> ~, therefore x*-1wfc(x) = ßk/x + 0(x~2)
as x —► °°, consequently Ak[nk~lwkin)] = Oiri~k~l) as n —► °°.  Using the fact that

(3.8) A"*"1 = (- l)kk\l[n(n + !)•■•(» + *)],

which can easily be proved by induction, we can actually write for the numerator of
(3-6)

(3-9) A*[«*_1wfc(H)] = (-l)kk\/nk+l \ßk + 0(/i-1)]    as n -♦ ~.

As for the denominator of (3.6) we proceed as follows:  since g(x) has a Poincaré-
type asymptotic expansion, so does 1 Igipc) and its asymptotic expansion is given by

(3.10) !/«(*) ~ T, epc" '   asx
i=0

where e0 = l/p0. We now need the asymptotic behavior of Afc(z nna) as n —*■ «>.
Fhst of all we have

k
a k.t —n   A\ i

(3.11) /=o \/
which, as « —► oo, can be shown to behave like

A*(z-"«a)= £ (-if-ir.Unl

(3.12)
Ak(z-"rta) = Z(-

7=0

k-i(kV' z-nna[l +Oin~1)]

= (-1)*(1 - l/z)kz-"«a[l + Oin~1)].

Combining (3.10) and (3.12), we obtain for the denominator of (3.6)

Akink-llRn) = A*[n*-1z-',+1e0na(l + 0(n~1))]
(3.13)

= (-l)k(l - l/z)*e0z-" + I«*+<'-1 [1 + 0(n~1)]    as n -+ ~.

Substituting now (3.9) and (3.13) in (3.6) and using the fact that e0 = l/p0, we ob-
tain (3.4) together with (3.5), thus proving the theorem.

Corollary.   // Izl < 1, z # 1, then Tkn —*F(z), as n —*<*>, provided k is
chosen so that 2k + a > 0. For Izl > 1, however, Tk n diverges as n —► <», ie., Pro-
cess I cannot be used for analytic continuation beyond the circle of convergence of
the infinite series considered in Section 2.
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840 AVRAM SIDI

Proof.   The proof follows by observing that the right-hand side of (3.4) tends
to zero as « —* °° for Izl < 1, z ¥= 1, only if 2k + o > 0.  For Izl > 1, however
Tk n - F(z) = 0(zn) as n —► <*>, thus completing the proof.

Remark 1. (3.1), (3.2) and (3.3) imply that lim,..^, = F(z) for (1) lzl< 1
for all a, and (2) Izl < 1 for a > 0. The corollary above tells us that Tk n —► F(z)

as n —► <*> for all Izl < 1, z ¥= 1, no matter what o is, i.e., whether lim^,^,. exists
or not, provided k is chosen large enough so that 2k + a > 0.

Remark 2.  Equation (3.4) tells us that for z # 1, whenever An converges to
F(z) as « —*°°,Tkn converges to F(z) more quickly, in fact

Tk„- F(z)
(3.14) -te--=0(n~2k)   asn—~.

An~F(z)

Remark 3.  From the expression for D, given in (3.5), we can see that problems
will arise as we approach z = 1.  Indeed, there is a drastic fall in the rate of conver-
gence of Tk n to F(z), as numerical experiments show.  Also Theorem 4.2 in (*) shows
that, if limr_><«^4r = F(l) exists, we have

Tk n - F(l)(3.15) -te-= Oin~k)   asw->°°,
,4„-F(l)

as opposed to (3.14).
Going back to Ar = 2^=1 wim)zm~l, where w(x) is as described in the pre-

vious section, we can see that, on Izl = 1, Ar is a partial sum of the complex Fourier
series 2^=1 w(m)ei^m~l^e, where we have put z = e'e.  Hence Theorems 2.2 and
3.1 cover the case of the complex Fourier series, whose coefficients w(m) are as de-
scribed in Section 2.

Theorem 3.2. Let the sequence Ar r = 1, 2, . . . , satisfy all the conditions of
Theorem 3.1 with the notation therein and let y¡, i = 0, 1, . . . , k - 1, be as in (1.1).
Then, for z ^ 1, we have

(3.16) yi-ßi = 0(n-k + i)   as n -> °°.

Proof.   The proof of (3.16) proceeds along the same lines as that of Theorem
5.2 in (♦).  Equation (5.6) in (*) reads

[^) - Tk JAV+Í/A„) + Ak[nk+if(n)]
(3.17)

= Z  7jAk(nk+i->),      i = 0, 1 ,...,k- 1.
7=0

Now Ak(nk+,/Rn) = z~n + 10(nk+,+a) as n —* °°, which can be proved in a way simi-
lar to that in Theorem 3.1.  Also F(z) - Tkn = z"~lO(n~2k~°) as n —► °° which
follows from (3.4).  Therefore, the first term on the left-hand side of (3.17) is just

(3.18) [F(z) - Tkn]Ak(nk+i/Rn) = 0(n~k+i)   as n -> °°.

Once this has been established the rest of the proof is exactly the same as that of
Theorem 5.2 in (*), therefore we shall omit it.
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CONVERGENCE OF THE T-TRANSFORMATION OF POWER SERIES 841

We note that Theorem 5.2 in (*) covers the case z = 1 and for this case too
yi-ßi = O(n-k+i),i = 0,...,k-l.

4.  Another Approach to the Analysis of Levin's Transformations.  In Theorem
2.4 it was assumed that the sequence Ar r — 1,2, . . . , (convergent or not) satisfies
(1.5), where fix), as a function of the continuous variable x, is defined and is infinite-
ly differentiable for all x > 1, including x = °°, and has a Poincaré-type asymptotic
expansion of the form (1.6). We shall now assume further that /(x)/x = fix) is the
Laplace transform of a function 0(r), which is an infinitely differentiable function of
r for 0 < r < °°, i.e.,

(4.1 ) lix) = L MY, x] = J"~ e~x 'm dt.
Then, using Watson's lemma, see Olver (1974, p. 71), we have

(4.2) fix) ~ ¿ tf>('>(0)/x''+ !    as x -+ °°,
i=0

where we immediately identify 0^(0) as ßr  (Examples of this will be given in Sec-
tion 5.)

Equation (3.7) in (♦) reads
Ak[nk-lfjn)]

(^"3) ^k,n ~A -     .     fc_, >A («     IR„)

which, in view of the assumptions above, can be expressed as

,       A*>*/(")]
(4-4) Tk „ - A =    u   .   ,-•M Akink-llRn)

Now, from the theory of the Laplace transform we have, see Sneddon (1972, p. 147),
_ m-l

(4.5) L[0(m)(r);x] =xm/(x)- £  0(m-'-1)(O)xl.
i=0

Letting x = n, m = k, and applying the operator Ak to both sides of (4.5) and using
the fact that Afcp(«) = 0, when p(n) is a polynomial in m of degree at most k - 1, we
obtain

(4.6) Ak[nkfin)] = Ak{ L[0(k)(r); n] } = A*l/J" e-"f0(*>(r) J .

Since the operator Afc operates only on n and since

(4.7) Ak(e-"f) = e-"f(e-' - 0*,

we can express (4.6) in the form

(4.8) Ak [nkf\n)] = /" e^V - l)k^k\t)dt.

We have therefore proved the following
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842 AVRAM SIDI

Theorem 4.1.   Let the sequence Ar r = 1, 2, . . . , iconvergent or not) be as
described in the first paragraph of this section.   Then
(4 9) T        A      U(e-r-O¥fc)(0;«]

Akin«-i/Rn)

If Eq. (4.9) is used in the analysis of Process I ik fixed, n —► «>), it seems that
one can obtain only those results that were given previously, so that there is not much
to be gained from (4.9), as far as Process I is concerned.

As for Process II (n fixed, k —► °°), which is the more effective of the two pro-
cesses, yet the more difficult to analyze, Theorem (4.1) does seem to represent a
breakthrough.  Of course, eventually one has to analyze the asymptotic behavior of
L[(e_f - l)fc0(k)(r); n] and of Akink~l/Rn) as k —► °°, which is not an easy task in
general.  The following results and the examples in the next section do, however, give
an indication about the mechanism by which Process II works and why it works so
efficiently.

Lemma 4.1.  Let 0(£) be analytic and uniformly bounded in the half strip Siu)
= {£lRe í>-u, Ihn %\ < u), for some u > 0.  Then

(4.10)       I L[(e_i - l)*tf>(m)(r); n]\^Mm\k\l[um + 1nin + 1) • • • (n + *)],

where M is the uniform bound of<t>ii-) in Siu); Le., 10(1)1 **° M for £ €E Siu).

Proof.   Since 0(£) is analytic in Siu), we can write, using Cauchy's formulas,
ml  r <t*£)

(4,.) ♦<"•>(,)=- flt_„_„ ̂n *
where t G [0, °°).  Taking the modulus of both sides of (4.11) and using the assump-
tion of uniform boundedness, we obtain

(4.12) l^(m)(i)l<Mm!/um + 1.

Making use of (4.12), we therefore have

(4.13) | L[(e_i - l)k<t>(m\t); n] I <Mm\lum + 1 f™ e-"f(l - e-')" dt.

But

Jo~ e-"'(l - e-'fdt = (- l)kA* (C e-ntdt)
(4.14) V 7

= (-ly^OT1) = k\l[nin + 1) • • • (n + k)]

by (3.8).  Substituting (4.14) in (4.13), (4.10) now follows.

Corollary.  If m = k + p, where p is fixed, then

(4.15) | /_[(*-' - l)*0(k+p)(O; n] I < MkMi^kT-P),

for some constant M > 0 which is independent of k

The proof of (4.15) follows easily from (4.10).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



CONVERGENCE OF THE T'-TRANSFORMATION OF POWER SERIES 843

We shall now apply Theorem 4.1 and the corollary of Lemma 4.1 to the power
series considered in Sections 2 and 3.

Theorem 4.2.  Let the sequence Ar, r= 1,2,... ,be as in Theorems 3.1 and 4.1

and Lemma 4.1 with the notation therein.   Then, for z real and negative and Izl <
(ue)2,

(4.16) Tkn-F(z) = 0(q-kk-n-" + 2)   ask^°°

at least, where q = ue\z\~V2 > 1.

Proof.   From the conditions above it is clear that (4.15) holds, therefore the nu-
merator of the expression on the right-hand side of (4.9) is at least 0(k\k~"u~k) as
k —► °°.  As for the denominator of this expression we proceed as follows:  Since
g(m) satisfies (3.3), g(m) ~ p0m~a asm —► °° and has a fixed sign (that of p0) for
m> m0 for some positive integer m0.  Denoting

(4.17)
»/=(-iy(jj("+/ri/*„+/

= (-1)" + 1 (*)(« + if'1 \z\-"-'+l/g(n +j),      / = 0, 1, 2, ... , *,

we can write for the denominator

(4.18)
k

Lb,-
7=o

>
mo~l I   k

7=o \J=™0

Now since 6, are all of the same sign for j > m0, and m0 is fixed, we can write

(4.19)

k

j=m0
>\b ik/2]

k
[k/2] rfflf'\z\-n-[k/2] +,4+[t]

= 0[/t!(elzr1/2)fc^-2]    as *-»■«»,

which can be proved by using Stirling's formula, k\ ~ kke~ky/2nk as k —► °°.  Essen-
tially, this is a 0(kk)-like behavior.  The sum l££L%-1 bA, on the other hand, can
grow at most like ä^"o(« + mQf as k —► «> as can readily be verified.  Therefore,

(4.20)
k
Zbj
7=0

k

7=m0
as k —► °°.

Combining these results for the numerator and denominator in (4.9), the result
follows.

Remark 1.  By replacing (4.19) by

(4.19')
k

j=m0
>'W. mn

<a<l,

we can show, by using the method above, that (4.16) holds with q =
[a/(l - a)] 1~aue\z\~a, provided z is chosen such that q > 1.  Now one can choose
a so as to make q as large as possible.

We now give a result that will be useful in dealing with monotonie sequences.
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Theorem 43.  Let the sequence Ar r = 1, 2, . . . , be as in Theorem 4.1 and
Lemma 4.1 with u > 1 and the notation therein, and with Rr = r~a, for some a > 0.
Then

(4.21) Tkn -A= 0(u-kk-"-a+2)   ask^~.

Remark 2.  Such a sequence is monotonie.  If Ar are the partial sums of the
power series considered in Theorem 2.2, then Rr = f~a corresponds to the case z = 1

and for this case a finite limit exists, if a > 0.  Otherwise the limit is infinite.
Proof.   As in Theorem 4.2, the numerator of the expression on the right-hand

side of (4.9) is at least Oik\k~"u~k) as k —► °°.  Now the denominator of this ex-
pression becomes Afc(nfc+a_1).  From the calculus of finite differences we know
that, see Isaacson and Keller (1966, p. 262),

(4.22) Akhix) = fc(fc)(y)   for some y G (x, x + k).

Therefore,

(4.23) Afcx" = Ml (° ~ f)\ya~k    for some y G (x, x + k).

Hence the denominator becomes

(4.24) Ak(«fc+a-1) = ( m"-'    for some m G («, n + k).
(a- 1)!

Using Stirling's approximation, we have (fc + a - 1)! ~ Bk\ka~l as k —► «», for
some B > 0 independent of k.   Also ma~l > «a/(« + k). Combining all these results
in (4.9), (4.21) follows.

We now consider the y¡ in (1.1).

Theorem 4.4.  If the sequence A^r—1,2,... , is as in Theorem 4.1, then

¿  (7/ -0,)A*<n*+i-*) =[A-Tk n]Akink+i/Rn)
7=0

(4.25) + L[ie-f-l)k^k+i+l\t);n],

i = 0, 1, . . . ,*-l.

Proof.   Using (3.17), we just have to prove that

Ak[nk+ifin)] =L[(e-f - l)ty*+i+»>(*); »]

(4.26)
+ ¿ fyAV-"-/),      f»0,l,...,*-l.

7=0

This can be proved easily by using (4.5) with x = n and m = k + i + 1 and apply-
ing A* to both sides, keeping in mind that Akp(n) = 0 when pin) is a polynomial
of degree at most k - 1 and that fy = 0(/)(O), / = 0, 1, . . . .
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Theorem 4.5.   Let the sequence Ar, r = 1, 2, . . . , be as in Theorem 4.3

with the notation therein.   Then, for fixed i,

(4.27) 7/-0/ = O("~**pO   as*-*-«»,

where pi depends on n, a, and i

Proof.   We shall prove (4.27) by induction on i.  For i = 0, (4.25) becomes

Now [,4 - rk „] = 0(w_fcifc-"-0,+2) as k -> °°.  From (4.23) Akink/Rn) =
Ak(«k+a) = ma(fc + a)!/a! for some m G («, n + k). Using Stirling's formula, we
obtain Akink/Rn) = Oik\k2a) as fc —♦ «>.  Therefore, the first term on the right-
hand side of (4.28) is Oiu~kk~n+a+2) as k -* °°.  Using (4.15) in the corollary of
Lemma 4.1, we can see that the second term is Oiu~kk~n+1) as k —> <*>. Hence we
have shown that (4.27) holds for í = 0, with p0 = -n + a + 2.  Let us now assume
that (4.27) is true for /' < m - 1.  For / = m we have from (4.25),

a IA      T     i  Ak("k + m/Rn)  ,   L[(g~'-l)fc0(fc + m + 1)(O;»1

(4.29)
m-i Ak(nk+H)

+  Z(7/-0/)-V-^
i=o K-

Using in (4.29) the same technique that was used in (4.28), we again have ym - ßm =
0(u~kkPm) as k —► ■», where pm depends on «, a, and m.   This proves the theorem.

In many interesting cases it can be shown that f(x) is a Laplace transform as in
(4.1) and that 0(£) satisfies the conditions of Lemma 4.1 so that (4.10) and hence
(4.15) hold.  These points will be illustrated with three typical examples in the next
section.

Before closing this section, we note that Wimp (1977) has considered the prob-
lem of accelerating the convergence of some monotonie sequences of the form similar
to that considered in this section, with Rr = r~l. Wimp develops different transfor-
mations, in the form of linear summability methods, corresponding to different
Lp(0, °°) classes of the function 0(r).  (It is assumed that (1) 0(r) €1^(0, °°),
(2) 0(i)(r) is locally integrable on (0, °°), and (3) 0(î)(r)e£Cf G ¿p(0, ~) for some e > 0,
0 < c < 1.) For finite s, for which

Ç;1 0(O(O)       / 1 \

useful error bounds and rates of convergence are provided.  For s = °°, which is the
case considered also in the present work and in (*), though with stronger assump-
tions on 0(r), Wimp's method gives approximations which are very similar to Tk n
with Rr = r~l.    Actually  Levin's ^-transformation for the sequence
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Ar r a* 1, 2, . . . , with Rr = r    reduces to

whereas Wimp's transformation for the sequence £-, / = 0, 1, . . . , is

where Bk, k = 0, 1, . . . , is the sequence of approximations to B = lim^^B-. As
is clear from above, for Wimp's transformation Process I does not exist.  For the case
s = °° Wimp gives bounds for B - Bk but makes no statement about convergence or
rate of convergence as & —► <*>.  It seems that no such statement can be made, if no
new assumptions are made on 0(r), except its being an Z,J function.

With the assumptions that we have made on 0(£) in the complex {--plane, we
have been able to prove results on convergence and rates of convergence for the T-
transformation with different types of Rr and in particular with Rr = r~l, which is
the case treated by Wimp.  Theorems 4.3 and 4.5, only with slight changes in nota-
tion and proofs, apply to Wimp's approximations Bk too.

5.  Examples.  In this section we shah show, through three typical examples,
that the assumptions made in the previous sections are realistic and we shall especially
be concerned with the application of Process II to these examples, keeping in mind
the results of Section 4.

Example 1. Ar = 2Jn=1 zm_1 ¡m, r = 1,2, . . . . This sequence satisfies the
conditions of Theorem 2.2 with a = -1 in (2.7); therefore Theorem 2.2 applies to
it.  Now lim^,»^,. = -(1/z) log(l - z) = Fiz), provided Izl < 1, z # 1.    z = lis
a branch point of F(z) and we put the branch cut along the real interval [1, °°).
This being the case, Theorem 3.1 applies and Tk n - F\z) = 0(n_2k_1)z" as n —► °°.

Taking z ^ [1, °°) and integrating both sides of the equality

1 H sr
(5.1) — =   Z^+T^-

1-s     m=0 1-s

from s = 0 to s = z along a straight line in the s-plane, and dividing by z, we obtain

ds.(5-2) F&=Ar + \Slfrs
Letting s = ze-£ in the integral on the right-hand side of (5.2), the contour in the s-
plane is mapped to the positive real line in the Ç-plane, and (5.2) becomes

(5-3> Fiz) =Ar + zr Jo" e-'V - z)-1 dt.
Defining Rr = zr~1/r, the rth term of the infinite series £^ = 1 zm~1/m, as in the t-
transformation of Levin, we can express (5.3) in the form (1.5) with/(x) = xfix),
where fix) = L [0(r); x] and <p(t) = z(z - ef)_1.   Since (pit) is analytic at t = 0 and
for any t > 0, provided z £ [1, °°), applying (4.2) we therefore obtain
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(5.4) f(x) ~ ~ + —Z— -+■•-,Jy)       Z-l       (Z-1)2*

with j30 = z/iz - 1) as predicted by Theorem 2.1, and this expansion is valid both for
Izl < 1, z # 1, and for Izl > 1, z ^ [1, <*>), see the remark preceding the proof of
Theorem 2.2.

Since fip) is a Laplace transform, it is analytic for Re p > -1, therefore so is
f(p). However, since 0(|) is not an entire function, (5.4) diverges for all x, hence
f(x) is not analytic at infinity.  On the other hand, it is easy to show that fix) is
infinitely differentiable at x = °°.  This is an important property that f(x) was re-
quired to have in Process II in (I).

Now the function 0(£) is meromorphic and its only poles are £ = log z + i2irl,
I = 0, ± 1, ±2, . . . , i.e., all the singularities are on the straight line Re % — log Izl.
Furthermore, 0(£) is uniformly bounded as Re % —► °°, in fact l0(£)l < lzl(ef - Izl)-1
= 0(e_i) as Re £ = t —► °°.  Hence the strip Siu) in Lemma 4.1 exists and u in de-
termined as follows:   For Izl < 1, u = lloglzl + i arg zl - 6; for Izl > 1, arg z =£
0, u = Iarg zl - S for S > 0 and as small as we wish.  Therefore, Theorem 4.2 applies
and consequently (4.16) holds.

For example, for z = -1, Tk „ - F\-1) = 0[iin - 8)e)"k] at least, as k —» °°.
For this case the sequence Ar, r = 1, 2, . . . , is a very slowly converging oscillatory
sequence.  For z = -2, Tkn - F(-2) = 0[((7r - 8)e/y/2y~k] at least, as k —* °°, and
for this case the sequence Ar, r = 1, 2, . . . , is a strongly diverging oscillatory se-
quence.

Example 2. Ar = 2^,=1 zm~l/m2, r = 1, 2, . . . .  This sequence satisfies the
conditions of Theorem 2.2 with a = -2 in (2.7).  Now the Ar of this example are
the partial sums of the Maclaurin series of the function

ip log(z/s)

where the integral is taken along the straight line in the s-plane, joining s = 0 to
s = z.  Then F(z) has a branch point at z = 1 and a branch cut along the real inter-
val [1, <">).  By using the expansion in (5.1), we can express Fiz) as follows:

rz / logiz/s)1    rz S  10
(5-5) F^ = Ar +I So- ds.

Making the change of variable s = ze * in the integral on the right-hand side of (5.5),
exactly as in the previous example, we obtain

(5.6) P(z) =Ar + zr J"o~ e~rt -!— dt,
e — z

where t = Re £.  Defining Rr = z^^fr2 for z ¥= 1, again as in the r-transformation
of Levin, we obtain f(x) = zx2 /J° e~xtt/(z - e*)dt, which, on using Watson's lemma
for x —*■ °°, becomes

(5.7) ^--^T+T^Tx4'*''     z^[1'°°)>z-l     (z - 1)   ■*
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as in the previous example.  Hence, also for this example, we see that (1.5) and (1.6)

are valid beyond the circle of convergence of 2™ = 1 zm_1¡m2. Using the fact that

(5-8) L[g'it);p] =pL[git);p]-giO),

we can express fix) in the form fix) = xfix), where fix) = L [0(0; x] and 0(r) =
z[l/(z - ef) + tetl(z - ef)2] ■  Now this 0(£) has the same properties as that 0(£) of
the previous example.  Therefore, the conclusion of the previous example concerning
Process II is valid also for the present example.

We now want to investigate Process II for z = 1, for which 2~ = 1 1/m2 is a
monotonie series.  For this case

(5-9) Fil) = A   + C e~rt —-dt.
r    Jo (e'-l)

Choosing Rr = l/r as in the «-transformation of Levin, we have fix) = xfix), where
fix) = L[<t*{t); x], with 0(r) = r/(l - e*).  Again using Watson's lemma, we obtain

(5.10) fix) ~ - ¿ Bjx*   as x —► °°,
i=0

where B¡ are the Bernoulli numbers.  Again ß0 = -B0 = -1, as predicted by Theorem
2.1.  Now 0(£) satisfies all the conditions of Lemma 4.1 with u = 2n - 8 and there-
fore the result of Theorem 4.3 holds and Tkn -F(l) = 0((27r - 8)~k) as k —* °°.

Example 3. Ar = 2rm=1 1/m - log r, r = 1, 2, . . . .  It is known that
limr_>00^r = C, Euler's constant.   Denoting ax = l,ar=Ar - Ar_l = l/r +
log(l - l/r), r = 2, 3, . . . , we can see that ar is as in Theorem 2.2, with a = -2 and
z = 1.  Therefore, (1.5) and (1.6) hold with Rr = l/r, in accordance with (2.15).

Now let us show that, also for this case fix) = x/(x), where fix) = L[<Kt)', x]
with 0(r) = r_1 -(e'-l)-1.

Using the fact that 0(r + 1) = -C + 2J„=1 l¡m and Gauss' formula for the
Psi function, see Olver (1974, pp. 39-40), we have

(5,„ „Ç,"m = c + MT-7^J*
Now, for the integral on the right-hand side of (5.11), we can write

(5.12)       0(r + 1) = F ( — - — J* =   hm   f" ( — - -?—\ dr.

Making the change of variable t = rt' in the integral /" (e f/t)dt, we can express
(5.12) as

(5.13) !K' + 1)=  um   f"/"«"rf*(0A+ /'—*].

The second integral in (5.13) can easily be shown to be equal to log r + 0(e)
as e —»• 0 +.  Letting now e —> 0 +, the desired result follows.
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Now 0(|) is a meromorphic function with poles at % = /27r/, / = ±1,±2,...,
and is uniformly bounded as Re % —► °°, actually 0(£) = 0(£_1) as Re £ —► °°.
Therefore, all the conditions of Lemma 4.1 are satisfied with u = 2n - 6, for 5 > 0
but as small as we wish.  Hence (4.15) holds.  Consequently, Theorem 4.3 holds and
Tkn-C = 0((2tt - 8)~k) at least, as k —*• <*>.

Finally, we note that the ^-transformation has been applied with great success
to the sequences

Ar = Z  Mm/zm,      r - 1, 2.where um = jj w(x)xm-1 <&,
m=l

m = 1,2, . . . , and w(x) = (1 -x)V(-logx)v, a + v >-l, 0 >-l.  Actually,
,4r are the partial sums of the Laurent expansion at z = °° of the functions Fiz) =
¡0l wix)Hz - x)dx.

For these sequences it can be shown that

1        -   h
ur->    —   as r —> °°,

r     ra+"+1 ,to r*

which is of the form dealt with in Theorem 2.2.  Furthermore, it can be shown that
(2.16) is satisfied with Rr = l/(ror+I'+1zr) and for all z £ [0, 1].  The rational ap-
proximations, obtained by applying the ^-transformation to these sequences, have
been used to derive very accurate numerical quadrature formulas without preassigned
abscissas for integrals with algebraic and logarithmic endpoint singularities of the form
/o1 (1 - x)ax^(-log x)vgix)dx.  These formulas have the property that for some
families of weight functions they have the same set of abscissas and they also have
positive weights; for details see Sidi (1980).

The power series dealt with in this work, in particular in this section, fall in the
category of (1) linearly convergent alternating series when z G (-1, 0) (or z G [-1,0)
if for z = -1 they converge), (2) linearly convergent monotonie series when z G

i(0, 1), and (3) logarithmically convergent (monotonie) series when z = 1, if they con-
verge.  For such series (and others) different linear and nonlinear acceleration methods
have been compared numerically by Smith and Ford (1979).  Their conclusions for
the series of this work, with respect to four nonlinear methods, namely Levin's «-
transformation (i.e., the T-transformation with/Jr = rA/l^j), the transformations of
Shanks (1955) or then implementation, the e-algorithm of Wynn (1956), the p-algo-
rithm of Wynn (1956a), and the 0-algorithm of Brezinski (1971), are as follows:   For
linearly convergent alternating series the «-transformation is the best, followed by the
O-algorithm and the e-algorithm.  The p-algorithm fails to work.  For linearly con-
vergent monotonie series the «-transformation is again the best, followed by the e-
algorithm and the 0-algorithm.  The p-algorithm again fails.  For logarithmically con-
vergent series the p-algorithm is usually the best, the «-transformation is slightly inferior
and the 0-algorithm is thud best in efficiency.  The e-algorithm fails to work for such
series.  As for the performance of linear methods, it turns out that they are usually
less efficient than the nonlinear methods, which are applicable, and they have limited
scope.
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