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ANALYSIS OF COPPERSMITH'S BLOCK WIEDEMANN
ALGORITHM FOR THE PARALLEL SOLUTION

OF SPARSE LINEAR SYSTEMS

ERICH KALTOFEN

Abstract. By using projections by a block of vectors in place of a single vec-
tor it is possible to parallelize the outer loop of iterative methods for solving
sparse linear systems. We analyze such a scheme proposed by Coppersmith for
Wiedemann's coordinate recurrence algorithm, which is based in part on the
Krylov subspace approach. We prove that by use of certain randomizations on
the input system the parallel speed up is roughly by the number of vectors in the
blocks when using as many processors. Our analysis is valid for fields of entries
that have sufficiently large cardinality. Our analysis also deals with an arising
subproblem of solving a singular block Toeplitz system by use of the theory of
Toeplitz-like matrices.

1. INTRODUCTION

The problem of solving larger unstructured sparse linear systems with exact
arithmetic arises in computer algebra and number theory. For instance, sieve-
based integer factoring algorithms can lead to systems of over 200,000 equations
and variables with over 11 million nonzero entries that need to be solved over
the Galois field of two elements (Lenstra et al. [15]). One way problems of
such a large size are tackled is by structured Gaussian elimination that prevents
fill-in at the early stages, resulting in much denser systems of smaller dimen-
sions (see, e.g., LaMacchia and Odlyzko [14] and Pomerance and Smith [21]),
in the cited example about 72,000. An alternative approach is to use iterative
methods. LaMacchia and Odlyzko [14] use an exact arithmetic version of the
conjugate gradient algorithm, and Wiedemann [24] bases his method on finding
linear relations in Krylov subspaces. Both approaches use the black-box model
for sparse matrices; that is, they require a linear number of matrix times vector
products and quadratically many field operations, both measured in the dimen-
sion of the system. Therefore, the iterative methods do not depend on certain
structural properties of the sparse matrix, in contrast to structured Gaussian
elimination. Clearly, the iterative methods are subject to parallelization when
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considering the steps inside the outer iteration loop, i.e., the matrix times vector
products (see Schwabe et al. [22]).

A more difficult task is the parallelization of the outer iterative loop in any
of these algorithms. It seems natural to consider blocks of vectors instead of
single vectors. Arithmetic is then performed on small square matrices in place
of the individual field entries, and the length of the iteration should become a
fraction of the original length, where the reduction should be proportional to
the number of single column vectors in each block. Since the components of
the blocks can be processed in parallel, the arithmetic necessary in each itera-
tion can be carried out on a parallel system as fast as the unblocked iteration
on a sequential computer. Therefore, the overall parallel speed-up should be
roughly proportional to the number of vectors in each block. Coppersmith [4]
suggests such a modification of the Wiedemann approach. He presents a com-
plete algorithm, a heuristic mathematical argument, and experimental results
that the blocking has the desired effect. In this paper we will give a full analysis
for a variant of Coppersmith's method in the case that the field of entries has
sufficiently many elements. The specifics are as follows.

Wiedemann's [24] algorithm for computing the TV-dimensional solution vec-
tor of a possibly singular system of N linear equations over a finite field K
requires < 37V multiplications of the coefficient matrix B by vectors and
0(N2 log N) additional arithmetic operations in the coefficient field. Only O(N)
additional field elements need to be stored. The method is randomized and
computes first the sequence of field elements

a(i) = utTB'v e K   for 0 < i < 2N - 1,
where u and possibly v are vectors with random entries from K. The key
property is that this sequence is generated by a linear recursion that, with high
probability, corresponds to the minimum polynomial of B, and which can be
computed by the Berklekamp/Massey algorithm.

Coppersmith [4] proposes to use simultaneously m random vectors for u
and n random vectors for v . The sequence now is a sequence of m x n
matrices

fl(i) = xltBiy g Kmx„     where xu e KmxN ^ y g KNxn _

Clearly, the individual entries in c(,) can be computed independently and in
parallel. Coppersmith then cleverly generalizes the Berlekamp/Massey algo-
rithm needed to compute a linear recurrence that generates this sequence and
observed experimentally that over the Galois field with two elements the linear
recurrence is determined by the first N/m + N/n + 0(1) matrices a(,). Thus
the algorithm, when executed in a parallel/distributed setting, performs much
faster.

We prove that if the coefficient matrix satisfies a certain condition regard-
ing the degree of its minimum polynomial, then the algorithm is guaranteed
to compute a solution with high probability. Moreover, that condition can be
obtained by preconditioning the coefficient matrix by pre- and postmultiply-
ing it with certain random structured matrices (Wiedemann [24]; Kaltofen and
Saunders [13]). In all our estimates, we suppose that the field of entries is of
sufficient cardinality. Furthermore, we give an alternative approach to comput-
ing the linear generator for the sequence of <N/m + N/n + 2n/m + l matrices
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a('). The problem can be cast as a homogeneous linear system of block Toeplitz
structure, and the theory of Toeplitz-like matrices (Kailath et al. [9]) can be ap-
plied. We show that by randomization such singular systems can be solved by
generalizations of the Levinson and Durbin algorithms (see Gohberg et al. [8])
or by generalizations of doubling methods that achieve even faster asymptotic
speeds by use of FFT-based polynomial multiplication (Bitmead and Anderson
[1]; Morf [19]). By use of block Toeplitz solvers we are also able to probabilis-
tically and efficiently compute the rank of a singular sparse matrix. Lastly, we
show that all of our algorithms can be carried out on parallel computers.

The key idea in our analysis is the observation that generically, i.e., when the
projection blocks * and y are symbolic, the block method can be specialized to
the original Wiedemann algorithm. From that specialization one then can prove
that certain necessary rank conditions must hold generically. By the commonly
used Schwartz/Zippel lemma those rank conditions will thus hold with high
probability for random blocks.

Our results also impact the sequential complexity of sparse linear system
solving. Suppose, e.g., that B is nonsingular, and that e > 0. Using blocking,
one can find a solution vector x = B~xb, where b e KN, by (1 + e)TV + 0(1)
multiplications of B times vectors, and 0( N2 log TV log log TV) arithmetic op-
erations in K, needing 0(N) additional storage for field elements. The algo-
rithm chooses 0(N) random field elements and is successful with probability
1 - 0(N2)/(card(K) - 1), where card(K) denotes the cardinality of the field K.
Here the constants implied by the big-0 notation grow with 1/e. Note that it
had been an open problem how to speed the Wiedemann method such that no
more than cN, where c < 2, matrix times vector products would be needed.
Notation. We write K^ for the set of column vectors over K, and 0^ for
the TV-dimensional zero column vector; QNxM is the N x M zero matrix.
By IN we denote the N x N identity matrix, and by e\N^ we denote the TV-
dimensional zth unit vector, that is, a vector with 1 in the rth coordintae and 0
everywhere else. Matrices are indicated by capital letters, e.g., A, B, G, V ,W,
and by bold lower-case letters, e.g., a, x, y , z , while single column vectors are
written as lower-case symbols, e.g., b,v,w, etc. Matrices written in script
font or bold lower-case Greek, such as 3? ,^ ,sf ,3? ,& ,ct, have entries
that contain indeterminates. Vector and matrix transposition is indicated by
superscript tr. Individual entries in matrices or vectors are selected by square
brackets; for instance, A[l, 1] denotes the left upper entry in the matrix A .
We indicate a block matrix whose entries are matrices or vectors by vertical and
horizontal strokes, such as [¡ftKn] •

2. Randomizations
Several randomization techniques for linear and polynomial algebra have

been advanced in the past, which we will make use of below. We collect the
needed results in this section.

Theorem 1. Let F(xx, ... , xv) be a nonzero u-variatepolynomial over an in-
tegral domain, and let S be a subset of that domain. Then the probability of
avoiding the zeros of F while evaluating in S is bounded as follows:

Prob(F(5l, ... , sv) + 01 sj■€ S for all 1 < j < u) > 1 - ^£- .
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Here, deg(ir) denotes the total degree of F, i.e., the maximum of all term
exponent sums, and card(S') denotes the cardinality of S. The theorem in the
above form was given by Schwartz [23]. Somewhat different versions are due
to DeMillo and Lipton [6] and Zippel [25; 26, §12].

In the following, we consider an TV x TV singular matrix A with entries from
a field. By A¡ we shall denote the leading i x i principal submatrix, i.e., the
i x i submatrix located in the left upper corner of A , where 1 < i < N. We
say that A has generic rank profile (cf. Delsarte et al. [5]) if A¡ is nonsingular
for all 1 < j < rank A. In such a case, no search for nonzero pivot elements
would have to be performed during triangularization by Gaussian elimination.
The following is Theorem 2 of Kaltofen and Saunders [13].

Theorem 2. For an TV x TV matrix A of rank r consider the matrix product
A = VAW with

v2   v3
1      V2

v = 1
0

VN

VN-l

v2
1

and   W =

1
w2       1
w3      w2

0

w2    1

where the elements of the unit upper triangular Toeplitz matrix V and the el-
ements of the unit lower triangular Toeplitz matrix W are randomly and uni-
formly selected from a subset S of the field of entries. Then A has generic rank
profile with probability no less than 1 - r(r + 1)/ card(S). Furthermore, if A is
nonsingular, the product AW has generic rank profile with probability at least
1 - UN - 1)N/ card(S).

As we will see later, it is often useful to work with the matrix A , which has
generic rank profile, instead of with A . The following technique from Kaltofen
and Saunders [13, Theorem 4] shows how to find random solutions to linear
systems.

Proposition 1. Let A be an N x N matrix of rank r, and suppose that the
leading rxr principal submatrix Ar is nonsingular. Then for a random column
vector y with coordinates from the field of entries, the vector

A~xb'
QN-r

-y

is a random solution to Ax = b, where the vector b' consists of the first r
coordinates of b + Ay.

The rank of a matrix can be related to the degree of the minimum polynomial
of a certain product matrix by the following theorem (see Kaltofen and Saunders
[13, Lemma 2]).

Theorem 3. Let A be an N x N singular matrix that has generic rank profile,
let r be the rank of A, and let G be a diagonal matrix where each entry on the
diagonal has been uniformly selected from a subset S of the field of entries with
0 $ S. Then the minimum polynomial of AG has degree 1 + r with probability
at least 1 - \r(r + 1)/ card(S).
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3. Linearly generated sequences
We now discuss some basic facts about linearly generated sequences of ele-

ments in a vector space V over the field K. A sequence {ûî}^0 , where a, e V,
is linearly generated over K if there exist cq , cx, ... , cn e K, TV > 0, c¿ ^ 0
for some L with 0 < L < TV, such that

(1) V/ > 0 :    cqüj + ■■■ + cNaj+N = 0.

The polynomial Co + cxX + ■ ■ ■ + c^XN is called a generating polynomial for
{a,}?f0. The set of all generating polynomials for {a¡}g0 together with the
zero polynomial forms an ideal in K[A]. The unique polynomial generating
that ideal, normalized to have leading coefficient 1, is called the minimum poly-
nomial of a linearly generated sequence {a¡}¿20 . Every generating polynomial
is divisible by the minimum polynomial.

Let W be also a vector space over K, and let <I>: V -> W be a linear map
from V to W. Then the sequence {0(a,-)}??n is also linearly generated by
a minimum polynomial that divides the minimum generating polynomial of
{a,}?f0. Let B € KNxN be a square matrix over a field. The sequence of
N x N matrices {B'}^0 is linearly generated, and its minimum polynomial
is the minimum polynomial of B, which will be denoted by fB. For any
column vector b e KN the vector sequence {B'b}^, where B'b 6 K^, is
also linearly generated by fB . However, its minimum polynomial denoted by
fB'b, can be a proper divisor of fB. For any row vector wtr e KXxN the
sequence {u^B'b}^, where utTB'b e K, is linearly generated as well, and its
minimum polynomial, denoted by fB'b , is again a divisor of fB'b.

Wiedemann's method is based on the fact that for random vectors u and b
one gets fif = fB with probability bounded away from 0. Below we shall give
a new proof of this fact in the restricted case where the field has sufficiently many
elements. But first we need to establish equality of the minimum polynomials
for "generic" projections.

Proposition 2. Let B € KNxN and let

0\

l»N
and   ß =

ß

ßN

be vectors whose entries are indeterminates. Then the sequence {otrB'ß}^0 over
the transcendental extension field K(ox, ..., Otm, ßx, ..., ßN) is linearly gener-
ated by fB.
Proof. Since f0B,B is a monic factor of fB , the coefficients of f0B,B are all
elements in the ground field K. Let ev denote the uXh unit vector. By special-
izing o to e¡ and ß to ek , the sequence specializes to {(B')[j, k]}™0, which
is also linearly generated by fDB'ß . Therefore fB,B linearly generates {2?'}So
and must be equal to fB .   G

The minimum generator for a sequence {«,}°f0 of field elements a¡ e K
can be computed by the Berlekamp/Massey algorithm [16]. This algorithm will
determine the minimum polynomial /(min> of such a sequence from the first
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2M elements, where M = deg(/(min) ). If more elements are given, the com-
puted minimum polynomial cannot change. Therefore, we have the following
theorem.

Theorem 4. Suppose {a/}¿f0, where a,■ e K, is linearly generated by the mini-
mum polynomial /<min'. Let M = deg(/(min)) and let M' > M. Suppose a
polynomial g with deg(g) < M' linearly generates a sequence

{on » Û1 > ■ • • j #2M'-1 > a2M' > a2M'+\ > • ■ • }

whose first 2M' elements agree with {a,}?f0. Then a\ = a, for all i > 2M'
and g is a polynomial multiple of /<min'.

Now reconsider the linear equations arising from ( 1 ) when a, e K. Setting
Cn = 1, we can solve the first TV equations for ck, where 0 < k < TV. By
Theorem 4 any monic polynomial whose coefficient vector is a solution to this
system must linearly generate the entire sequence. Therefore, the arising NxN
coefficient matrix, which is a Toeplitz matrix, is nonsingular if TV is exactly the
degree of the minimum polynomial, and is singular if TV is larger than that
degree, because then there are more than one such polynomial. We finally can
establish the following fact.

Theorem 5. Let B e KNxN, let b e KN and suppose that the coordinates of
the vector u are selected uniformly randomly from a subset S of K. Then
Prob(fB>b = fuB'b) > 1 - deg(fB'b)/card(S) > 1 - N/card(S) .*
Proof. Let o be the vector with the indeterminate coordinates ox, ... , On ■
As in Proposition 2 we have fB'b = fB'b. Therefore, for M = deg(fB'b)
the M x M coefficient matrix arising from the linear recurrence given by the
minimum polynomial fB'b of {otTB'b}°Z0 is a nonsingular Toeplitz matrix
over K(i>i, ... , v¡v). Let A be the determinant of that matrix. Then for
any vector «eK" with A(ux, ... , uN) ¿ 0 the sequence {utTB'b}™0 can-
not be generated by a smaller minimum polynomial, because otherwise the
corresponding coefficient matrix would have to be singular as stated just be-
fore. By Theorem 1 a zero of A is avoided with probability no less than
1 - deg(A)/ card(S) > 1 - MI card(5').   D

4. Coppersmith's block Wiedemann algorithm
In order to prepare for later discussion, we first give a particular variant of

Wiedemann's coordinate recurrence method for solving a homogeneous linear
system [24, §111, first paragraph]. This variant already accounts for some changes
necessitated by the later block version. Let B e KNxN be a singular matrix,
where K is a finite field; we seek a nonzero vector w € KN such that Bw = 0.

Algorithm Homogeneous Wiedemann.
Step Wl: Pick random vectors u € K^ and v e KN. For any integers

M' > M > TV, compute

b = Bv,    «W - u^Blb,        0 < i < M + M' - 1.

(The letters u and b now agree with the ones in Wiedemann's paper.) This
requires at least 2M multiplications of B by vectors.
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Step W2: Compute a nonzero solution to the linear homogeneous M' x
(M+l) Toeplitz system

■       a{M) ... a(\) fl(0)     -
a(M+\) a(M) a(2) fl(l)

a(M+M'-\)       ... a(A/'-l)_

Define the generating polynomial

m = c^xL+c<l+iui+i + • • •+¿m^,
where c^ = 0 for all 0 < I < L < M and c^ ^ 0. Such a polynomial can
be determined, e.g., by the Berlekamp/Massey algorithm, which then requires,
for M' — M — TV, 0(N2) arithmetic operations in K. Here we introduce
unnecessary generality for the later analysis of the block Wiedemann method.
Note that

utTBJf(B)b = 0   for all 0 < ; < M - 1,
which implies by Theorem 4 that f(A) is a polynomial multiple of fuB'b(k).
Furthermore, by Theorem 5 with probability no less than 1 - TV/ card(K), f(X)
is a polynomial multiple of the polynomial fB'b(X), i.e.,

(2) c{L)BLb + c(L+x)BL+xb + ■■■ + ¿M)BMb = 0.

Step W3: Compute
w = c(L)v + c(L+x)Bv + ■■■ + c{M)BM~Lv .

This requires at most M - L additional multiplications of B times a vector.
One may argue as follows that w ^0N with probability at least 1 - 1/ card(K)
[4]: for v' = v + wo, where wo e kernel(ß), the vector b = Bv', and hence
the sequence a(1' does not change. However,

w' = c{L)v' + c{L+x)Bv' + ■■■ + c(M)BM-Lv' = w + c{L)w0.

Therefore, in the set of vectors v + kernel(ß), at most one vector can pro-
duce w' = 0. Note that the solution c(0), ... , c(M) is computed without any
information on wo.

Suppose now that w ^ 0N. Finally, determine the first integer i such that
B'w — 0N and return w = B'~xw. By (2), this should happen, with high
probability, for an integer i < L+ 1 . At most L + 1 more multiplications of
B by a vector are required.   G

Let m, n < TV. Coppersmith's [4] block version essentially uses

xtreKmxN in place of Mtr ,

z € KNxn in place of v , and
y = Bz£ KNxn   in place of b = Bv .

(The letters B, x, y , and z agree with the ones in Coppersmith's paper; we
use bold type to indicate their block nature.) Thus, the sequence consists of the
rnxn matrices

a{,) = xXTB'y g Kmx" ,        0<i.

c(M-\

À0)
\M'
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(Coppersmith further transposes these matrices.) The main point is that a non-
trivial linear dependence of the type (2) can be found from roughly N/m + N/n
sequence elements a(!). A brief description of a variant of the block Wiede-
mann algorithm follows.

Algorithm Block Wiedemann.
Step Cl: Pick random vectors  xx, ... , xm, zx, ... , z„ e KN . Let

Compute
,(')

y = B-[zx\...\zn].

TV     TV     2«jctr5'y   for all 0 < i < — + — + — + 1
m n m

This requires less than

(3)
(■       n \ -,    2n21 + —   TV +-+ 2«V      ml m

multiplications of B times a vector. However, for every y„ , the v\W columns
of the sequence matrices a(,), namely xvB'yv , can be computed simultane-
ously, yielding a coarse-grain parallelization. Alternatively, one may for each
i perform the products B-(Bl~xyv) in parallel, as Coppersmith does, which
is finer grain and requires synchronization for each i. For instance, if the
matrix is embedded on the distributed memory of a processor network [22],
the entire block B'~xy can be communicated through the network. Note that
computing the products xtT'(B'yu) for all u and i requires some additional
0((m + n)N2) arithmetic operations in K, if done sequentially.

Step C2: Let D = \N/n\, S = n(D + 1), E = \S/m~\, and let R = mE.
Compute a nonzero solution to the linear homogeneous Rx S linear system (of
block Toeplitz structure)

(4)

,(D)
,(/>+!)

a(D+E-\)

iW
id)
,(2)

,(0)

,(£-1)

ÁD)
-(£>-!)

"(0)

= 0*

where c(,) e K" for all 0 < i < D. The dimensions are bounded as follows:
N + n<S<N + 2n, 5<JR,and E < N/m + 2n/m + 1. Therefore, we have

„     „     TV     ,     TV     2n     ,D + E < —+ 1 + —+ —+ 1,n mm
Define the generating poly-

(D)

which determines the length of the sequence a(,)
nomial with (right-side) vector coefficients

f(X) = XLyc(L) + AL+V(L+1) + • • • + *?yc

where <& = 0" for all 0 < / < L < D and c^ ¿ 0" . Coppersmith in his
paper computes such a nonzero vector polynomial by his generalization of the
Berlekamp/Massey algorithm to polynomials with matrix coefficients.  In any
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case, we have xtTBJf(B) = 0m for all 0 < j < E - 1. As we will argue later,
with high probability the projections by jctr do not introduce any additional
linear dependence, so that
(5) f(B) = BLy¿L) + BL+xyc(L+V + ■■■ + 5 V(0) = 0N.

Step C3: Compute
w = zc(L) + Bz¿L+^ + ■■■ + BD~LzcW .

This requires at most D - L additional multiplications of B times a vector
(using a Homer evaluation scheme). One may argue as in Step C3 above that
w ^0N with probability at least 1 - 1/ card(K) (see also proof of Theorem 6
in §5). Suppose now that w ^ 0N . Finally, determine the first integer i such
that B'w = 0N and return w = B'~xw . By (5), this should happen, with high
probability, for an integer i < L+ 1. At most L + 1 more multiplications of
B by a vector are required. Altogether, this step performs

(6) D+K- + 2n
multiplications of B by a vector. An additional 0(N2) arithmetic operations
in K are required to compute zc(,) for L < i < D and to add the D - L + 1
vectors in the Horner scheme. Note that with n processors the parallel number
of matrix-vector multiplication can be reduced (see Appendix B).   G

Coppersmith's paper raises two distinct problems with the block Wiedemann
method.

1. The efficient computation of a nontrivial solution to (4). He proposes a
clever generalization of the Berlekamp/Massey algorithm to linearly generated
sequences of matrices. Although one can define the notion of a minimum gen-
erator, a proof that the algorithm produces it has so far eluded us. However, we
may proceed directly by computing a nontrivial solution of our system by either
a method for Toeplitz-like matrices or by the Wiedemann algorithm itself and
by using a fast polynomial (over K) multiplication algorithm (see §6).

2. The probabilistic analysis, in particular the fact that with high probability
the polynomial found, f(X), satisfies (5). We will show this to be true at least
in the case that the minimum polynomial fB of the coefficient matrix B has
degree deg(/fi) = rank(5) + 1. Fortunately, by the randomizations of the
Theorems 2 and 3 this condition can be enforced for any matrix B. Let us
consider, e.g., solving a nonsingular system x = A~xb . We then can randomize
A = AW G, where W is a random unit lower triangular Toeplitz matrix and G
a random diagonal matrix, and execute the block Wiedemann method on the
(TV + 1) x (TV + 1) matrix

Lolx" loj
Note that_A has with high probability TV distinct eigenvalues, and multiplica-
tions of A by vectors are inexpensive because W is Toeplitz.

5. Probabilistic analysis

We now justify Coppersmith's block version of the Wiedemann algorithm.
We will prove the following theorem.
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Theorem 6. Let K be a finite field, and let B e KNxN be a singular matrix
whose minimal polynomial fB has degree deg(fB) — rank(5) + 1. Suppose
that the vector blocks xu e KmxN and z e KNxn are chosen at random and
that w e KN is computed by the block Wiedemann algorithm o/§3. Then with
probability no less than 1 - (2rank(5) + l)/card(K) > 1 - (2TV - l)/card(K)
we have w ¿ 0N and BL+Xw = O*' for some integer L < \N/n].

The key property for the algorithm to succeed is equation (5). We will prove
(5) first if the entries in x and z are indeterminates ¿;,(/i and £,,„, where
1 < p < m, 1 ■< v < n, and 1 < i < TV. In this case, the algorithm is
performed over the rational function field over K,

L = K(ÇXiX , ... , ÍN,m , Cl,l , ■■■ > CN,n) ■
In order to distinguish when the algorithm is performed over K and when over
L, we will write 3f and 27 for the undetermined x and z and

B37 eL Nxn sit^ =3fXxBiy eL"

The equation (5) is equivalent to the solution vector c of (4) satisfying the
following block Krylov system:

C(D)

(7) [BD+Xz\ \B2z\BZ]

-(o-i)

,(0)

= 0.

Clearly, any solution of (7) also solves (4). We first state that generically, i.e.,
over L, no other solutions to (4) exist. We will prove this fact later, using
Proposition 4 stated below.

Proposition 3. Suppose that the minimum polynomial fB of B has the degree
deg(/Ä) = min{TV, rank(5) + 1} . Then for D = \N/n\ and E = \n(D+ l)/m\
we have the rank equalities

rank

j/V»
j/(0+l)

^(D+E-\)

j/(D)

'(1)

j/(2)

'(0)

j/d)

jf{E-l)

= ranla([BDy\BD-xy\... \B?\p\) = rank(B).
The proof of this proposition is based on its validity for m = n = 1, which

we shall first prove. In that case we will denote our generic sequence by

a« = j/W = 3fxuB'+x37x e L   for i > 0.

Proposition 4. Let M' > M > TV. Define
a(A/) ... a(l

f =
a(A/+l)

a(M+M'-\)

a (M) a (2)

a

a(0)
a(l)

(M'-l)

6 ^M'x{M+l)
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and

Then
3? = [BM27X \B227x\B37x]eh NxM

Mcrs w^     Í de8 / lfB ls nonstngular,
rank (77 ) = rank (317 ) = <       t,Rs     t    .. n .    .ldeg(/5)-l   if B is singular.

Proof. Since fB(X) linearly generates the sequence {■#'-2'i}g0, where B'37x e
L^, we must have the rank inequality

rank([BM27x \B37x\37x])<dt%(fB)
for any vector 37x and any integer M > TV. Moreover, by Proposition 2 of §3
the linear image {3fVsBl37x }g0 is minimally generated by fB , so the minimum
generator fB'z^ cannot be a polynomial of lesser degree; hence

rank([2?"jr, \...\B37X \37x]) = deg(/B).
If B is a nonsingular matrix, the minimum generating polynomial of the se-
quence {B'p\}Jl0 = {B'+X27X}°10 does not change, while for singular B the
minimum generating polynomial is fB(X)/X; thus the rank of 3? drops by 1.
We define this polynomial by

fB(X) - { fB^      if 5 is nonsingular,
l fBWß   if B is singular.

So far, we have shown that rank(^) = deg(/_s).
Second, we need to prove that rank(^) = rank(37). As before, we can argue

by making use of Proposition 2 that fB is the minimum generating polynomial
of the sequence {a^}^ . We finally show that rank(^) — dt%(fB). Consider
any nonzero solution y e LM+X of

(8)     Py =

a(M)
a(M+\) a (M) Q(2)

a(M+M'-\)

Then for all j = 0,..., M-1 <M'-1

a(0)
a(D

a(M'-l)

,(M-1)

.(0)

= 0M'

a(M+j)y(M) + + aU)y(0) = 0.

hence by Theorem 4 of §3 the polynomial

(p(X) = y(M)XM + ■■■ + y(X)X + y<0) € L[/l]

generates the entire sequence {a(!)}/S0. This implies that fB divides <p , so q>
is in the linear span over L of

(9)      f_B(X), Xf_B(X), X2f_B(X),..., XsfB(X),    where Ö = M - deg(/_fi).
Also, any coefficient vector of a polynomial in the linear span of (9) solves (8),
since any such polynomial generates {a(,)}^0 . Therefore, the dimension of the
kernel of ET is equal to the dimension of the space generated by (9), which is
M + 1 - dt%(fB) ; thus the rank of 7T, M + 1 - (the dimension of the kernel
of 7T), is equal to deg(/_B).   a
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Proof of Proposition 3. Consider the specialization

27' 37x I BD+X37X  I B2^^37x
-*2 -*3

B{n-l){D+l)3r

Then the set of columns in

[BD27'\BD-X37'\ ...\27'\
is equal to

{27x, B27x, B227x,..., Bn{-D+X^x 27x) .
Since n(D + 1) > TV, this set has rank equal deg(/B), as is argued in the proof
of Proposition 2. Therefore, the "more generic" matrix

[BD27\BD~X27\ ...\27]
has rank > deg(/fi). Now define

3^a = [BD^\BD-ly\ ... \y\ = B-[BD27\BD-x27\ ... \27],

which thus satisfies rank(^ffl) < rank(5). If B is nonsingular, the matrix 37m
actually has full rank TV, since by assumption deg(/5) = TV. From Proposition
4 we further get for a singular B that

deg(/ß) - 1 = rank([5D+1^-' | BD37' \...\ B27'\) < rank(Jfffl) ;

hence deg(/ß) - 1 < rank(^œ) < rank(ß), which implies by the assumption
of the theorem that rank(^s) = rank(Z?). Note that if B is singular and
deg(/Ä) = TV, we automatically have rank(ß) = N — 1 = deg(/Ä) - 1 .

We will use a similar specialization for the columns of 3f to establish that
the rank of

(10) ¿rm

j/(Z»

S/(D+\)

IjtfiD+E-l)

SfW

'(1)

'(2)

'(0)

tf(E-\)

agrees with the rank of 73~ e \M'*(M+\) of Proposition 4 with the dimensions

M = n(D+ 1)- 1 =S- 1 >N   and   M' = mE = R > S - 1.
Consider the specialization 37' given above, and

37' = 37x\ (BXr)t37x  | (BXx)lt37x (ßü^m-DE^

Then with jaf'(') = 37IXxBM27' there exist permutation matrices P € {0, l}RxR
and Q e {0, l}5x5 such that

P5rQ =

stf'W
j/'(0+l) j/'iD)

>i(D+E-\) j/'(£-l).
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The row and column permutations move the entry

= ^TB(i-l)EBD+l+I-JßU-WD+l)^

in the right-side block Toeplitz matrix, which is in row ml+i, where 0 < I < E
and 1 < i <m, and column nJ + j, where 0< J < D+l and 1 < j < n, to
row E(i - 1) +1 + 1 and column (D + l)(n - j) + J + 1 in ¿T, namely

Cfrl.   ,,   ,   ,   ,n   ...      .,    .   , _a(M+E(i-\)+I+\-((D+l)(n-j)+J+\))<SE(i-\)+I+l ,(D+\)(n-j)+J+\ — "
= ^tr5"(°+1)+£'('-i)+^+(O+i)0-")-^_2'

Therefore, the rank of 77~m is no less than the rank of 7T with the given
dimensions, which by Proposition 3 and the assumptions is equal to deg(/5) =
TV for nonsingular B, and is equal to deg(/B) - 1 for singular B. Since the
kernel of 37® is contained in the kernel of 7T® , the rank cannot be more.   G

Proof of Theorem 6. Let

A(£l,l , ... , %N,m, Cl.l > ••• > ̂ N,n)

be a nonzero maximal minor of 7Tm in (10). Then for all matrices x and z
with

A(Xi,i , ... , XatjW , ZX?X, ... , Zfi!,m) ¥" 0

any solution to (4) must also solve (7), because the ranks of both coefficient
matrices will be equal to deg(/B) - 1. Hence,

BL+xzc{L) + BL+2zc(L+l) + ■■■ + BD+xzc{D) = BL+Xw = 0N

for 0 < L < D such that ¿L) ¿ 0 and c(/) = 0 for all 0 < / < L. By Theorem
1 the probability of hitting a zero of A is no more than deg(A)/card(K) <
2rank(ß)/card(K).

It remains to estimate the probability that w ^ 0. The argument, by Cop-
persmith, is as that for Step W3 in the homogeneous Wiedemann algorithm.
For a matrix y = Bz eKNxn consider the equivalence class

(11) {z'£KNxn\y = Bz' = Bz}

of KNxn . Then for each member in that class

w' = z'c(L' + Bz'¿L+V + ■■■ + B^D-Lh'c{D)
= ZcW + Bz¿L+" + ■■■ + B^D-Lhc^ +(z' - z)c{L),

w

where

z' - Z = [wx I w21 ... I w„]   with Bwu = 0 for all 1 < v < n .

Since, given any c(I) e K"\{0"}, for randomly chosen wu in the kernel of B
the linear combination

c\L)wx + --- + c„L)wn

uniformly samples vectors in the kernel of B, at most a fraction of 1 / card(K)
matrices in the set (11) can give -w as that linear combination and thus lead
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to w' = 0. Therefore, the probability that w = 0 is no more than 1/ card(K).
Summing both estimates bounds the probability of failure,   a

6. Fast solution of Toeplitz-like singular systems
In §7 we will give the asymptotic analysis of the block Wiedemann method

described in §4. There it will be necessary to efficiently compute a nonzero solu-
tion of the block-Toeplitz system (4) in §4. We know five different approaches to
this subproblem. The first is the one given by Coppersmith [4] based on a gener-
alization of the Berlekamp/Massey algorithm to linearly generated sequences of
matrices. Coppersmith's method requires 0((m + n)N2) arithmetic operations
in K and needs no randomization, but the correctness of the algorithm remains
an open problem. The second method is presented in Kaltofen [10, Proof of
Theorem 2] and uses the Wiedemann method of §4 and a fast matrix times
vector routine for the arising block-Toeplitz coefficient matrix. Randomization
and fast FFT-based polynomial multiplication is necessary, and the arithmetic
cost is 0((m + «)TV2 log TV log log TV).

The last three methods are based on the theory of Toeplitz-like matrices [9]
and also require randomization. Without fast FFT-based polynomial multipli-
cation one can achieve arithmetic complexity 0((m + n)N2), using a generaliza-
tion of the Levinson-Durbin algorithm to Toeplitz-like matrices (see Gohberg
et al. [8]). The fourth method is the speeded counterpart of that approach us-
ing divide-and-conquer and fast FFT-based polynomial multiplication (Bitmead
and Anderson [1]; Morf [19]). The number of arithmetic operations can then
be bounded by 0((m + «)2TV(log TV)2 log log TV). The fifth possibility is to adapt
the processor-efficient parallel linear system solver by Kaltofen and Pan [12] to
Toeplitz-like matrices. In this section we shall describe and analyze the gen-
eralized Levinson-Durbin algorithm with emphasis on the singular case. The
asymptotically faster divide-and-conquer algorithm is described in an appendix
to this paper.

First, we need to introduce the notion of the displacement rank of a matrix,
which applies not only to block-Toeplitz matrices but also to their inverses. We
consider N x N matrices; define the lower-shift matrix

0
1    0 0

1    '••
0

i   o.
and define the matrix shift operators

[A = ZA   and    r A = AZXl.

The matrix J. A is equal to A after being shifted down by one row, filling the
first row by zeros, and the matrix r A is equal to A after being shifted to the
right by one column, filling the first column by zeros. Following Kailath et al.
[9], we define

(¡)+(A) = A- |(r A) = A-ZAZXr   and   a+(A) = rank<t>+(A),
the latter being the displacement rank of A with respect to the displacement
operator cp+.   The fundamental property is that, given 2a column vectors
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yi, ... ,ya and zx, ... , za, the functional equation in the matrix X,

(12) X-i(fX) = J2yjZxJ,
7=1

has the unique solution

(13) X = ,£LiyßUlzJl,

where L[[y]| denotes a lower triangular Toeplitz matrix whose first column is
y and [T|[ztr]| denotes an upper triangular Toeplitz matrix whose first row is
ztr. Therefore, a matrix of displacement rank a with respect to <j>+ is a sum
of a products of lower and upper triangular Toeplitz matrices. We shall call
the vectors yi,..., yQ and zx,..., za in

(14) Y = JË,yjzJ=\yl\y2 I Va]
7=1

Z" J— ,,     -I

>Z

the left and right generators of the N x N matrix Y. The matrix Y is usually
a displaced matrix (f>+(X). Furthermore, we shall call the representation (13)
the I LU representation for X. That representation requires only the storage
of 0(aN) field elements. Clearly, one may derive a generator (14) for Y by
choosing the vectors y¡ to be a linearly independent columns of Y, and the
entries in each column of the right factor matrix with the rows zj to be the
linear combination that yields the corresponding column of Y.

We can now sketch the generalized Levinson-Durbin algorithm as described
in Gohberg et al. [8, §1.C].
Algorithm Generalized Levinson-Durbin.

Input. Vectors yx, ... , ya, zx, ... , za , and b eKN such that

A^LlyjWlz^e rNxN

7 = 1

has generic rank profile (see §2).
Output. An integer r < TV and a vector x' e Kr such that r = rank(^4) and

Arx' = b', where A, is the largest nonsingular leading principal submatrix of
A, and b' e Kr is the vector consisting of the first r coordinates of b,

Step LO: Initialize A[l, 1]
[yi[l]/A[l,l]]forall i^l,.

£"=iy;[l]-^[l]; yW^[l/A[l,l]]; <p\
,a;x{l)^[b[l]/A[l,l]].

(i)

For k <- 2, 3, ... Do Steps L1-L5.
Step LI: At this moment we have the (k - 1 )-dimensional vectors y(k~x^

/(*-i) and tp)(k-\) for 1 < i < a such that

Ak-Xy^ = etx\    ilwl*-,)-^,    Ak-\fi
(k- l) = yf-

,(k-\)

and
ii~i    is tmî (^ _ l)st UIUt vector of A; - 1  dimensions, and y)

è(fc-i) are vectors formed by the first k - 1 coordinates of y, and b,
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W(k)

respectively. Steps L1-L5 compute the k-dimensional versions of the vectors
y, x , and <p .

For i *- 1,... ,a compute the scalars
k-\
Y,zi[j+i]-y{k-l)[j].
j=x

As is easily verified from the ZLU representation of the leading principal sub-
matrix Ak = YTi=x Lly^WKzf^l, where zf] is the vector formed by the
first k coordinates of z,, the p\ ^ satisfy

0
i=i

(15) Ak y(k-\

Step L2: Compute the kth row of Ak
[A[k, l]A[k,2] ■•• A[k,k]]

= eik)-E^)ylk]-

[OA[k-l,l]...A[k-l,k-l]] + Y,yi[k](ziik))(*htr

i=\
Step L3: For i <— 1, ... , a compute the scalars

7=1

These scalars satisfy

(16) .(*) V](k-\)

0 + v\k)y^   foralll</<a.

Step L4: From (15) and (16) and the defining property for <p\ ' we obtain
the following equation for y^ :

(17) y(k) = 0
Ak-\) + I>iw

!=i
r,(k-\)

0
(*>,#>     v«0+ [E^rb,i=i

If i = Y%=x pf]u\k), then return r <- k - 1 and x' «- x{k~l) ■ In this case, Ak
must be singular, as we will explain below. Else set

,(*) 1
a     „(k),Ak)i - eu *rx

o
,(*+!)+ 5>i«/=i

<p)(k-\)

and compute all <p{k) according to (16).
Step L5: Similarly to (16), compute the scalar X{k) «- b[k] - £*",' A[k, j] x

yf(fc_1)[7] and tne sector

,(k)
r(k-\)

0
+ X^y{k).   G

Clearly, the above method requires no more than 0(aN2) arithmetic opera-
tions in the field of entries. The correctness of the algorithm hinges on the fact
that a possible zero division in the computation of y{k) indicates the singularity
of the corresponding submatrix.
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Lemma 1. In the algorithm Generalized Levinson-Durbin, 1 ^ Y%=\ ¿4 v\ ' f°r
all 1 < I < k if and only if Ax, ... , Ak are nonsingular.
Proof. The proof is by induction on k . Suppose now that 1 ^ J2%x p\ v\ '.
Then by (17) a solution to A^^ — ek ^ can be found, and hence a solution ex-
ists to Akx' = c' for any fc-dimensional vector c' by the induction hypothesis
and reapplication of the algorithm. Therefore, Ak must be invertible. Second,
we must prove that for nonsingular Ax, ... , Ak the division in Step L4 is in-
deed possible. Assume that 1 = YTi=x ß\ v¡ } and consider the last coordinate
of (17): we must then have y(k~x)[k - 1] = 0, which contradicts the nonsin-
gularity of Ak_2 when considering solving Ak_xy^k~x^ = e[_~¡^ by Cramer's
rule.   G

We can now apply algorithm Generalized Levinson-Durbin to compute a
random solution of (4) in §4. First, we rearrange the Rx S coefficient matrix

,(£»)
,(fl+l)

JD+E-l)

,(D)

l(>>

l(2)

,(0)

l(E-l)

into an m x n block matrix such that each block is a Toeplitz matrix, using
the permutation matrices P and Q of the proof of Proposition 3. However,
by inspection of the proof of Proposition 3 we see that we may drop the rows
in position R,R-m,...,R-(R-S— l)m from A without affecting the
probabilistic rank estimates, thus making a smaller coefficient matrix AD of the
square dimensions S x S. Note the blocks are of dimensions (R/m) x (S/n),
except in the last row of blocks, where the dimensions are (R/m - R + S) x
(S/n). Briefly, the row permutation matrix P, which is now acting on Aa ,
moves rows 1, m + 1, 2m + 1, ... into rows 1,2,3,..., and rows 2, m +
2, 2m + 2, ... into rows (R/m) + 1, (R/m) + 2, (R/m) + 3, ... , etc.; the
column permutation matrix Q moves columns l,n + l,2n + l,... of Aa
into columns 1,2,3,..., and columns 2,n + 2,2n + 2,... into columns
(S/n) + 1, (S/n) + 2, (S/n) + 3, ... , etc.

The matrix PAaQ has displacement rank no more than m + n with respect
to <j)+, and a ZLU representation can be easily computed from the (known)
generators of (p+(PA°Q). By pre- and post-multiplication by random unit
upper and unit lower triangular Toeplitz matrices, V, W e KSxS we obtain a
matrix

A = V-(PADQ)-W
of generic rank profile (see Theorem 2), that with high probability. Moreover, a
ELU representation for A of length no more than m + n+ 4 can be computed
in 0((m + n)S2) arithmetic operations for the product by the usual product for-
mulas for Toeplitz-like matrices (see Pan [20, Proposition A.3; also Proposition
8 in the Appendix]).

We now apply algorithm Generalized Levinson-Durbin to the XLU represen-
tation of A and a right-side vector derived as in Proposition 1 of §2. The algo-
rithm returns an integer r that with high probability equals rank(^) = rank(y3),
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and a solution to Ar xb'. Using Proposition 1, we can now quickly obtain ran-
dom vectors in the right null space of A. Note that the y^ and <p\ in the
algorithm Generalized Levinson-Durbin need only be computed once, and then
the system can be solved for new random b' in 0(N2) arithmetic operations
in K.

7. Algorithms and their running times

The block Wiedemann method of §4 is used to solve both nonsingular and
singular sparse linear systems, i.e., linear systems with an efficient way to mul-
tiply the coefficient matrix by any vector. The method is randomized and can
be executed sequentially or in parallel. Especially in the latter form the method
becomes very efficient. We now present several variants of the block algorithm.
One main point is that we are able to give both explicit expected running times
and estimates on the success probability of the randomizations. We first deal
with the sequential performance of the blocking. Parallel variants will be dis-
cussed below.
Theorem 7. Let B e KNxN be a singular matrix and 1 < m, n < TV. Then one
can compute the rank of B and a solution vector w e K^fO} with Bw = 0 in
no more than

(,     n      1 \ .,    2az21 + — + -   TV + — + 2n + 2
\      m    n) m

multiplications of B times a vector in KN, and an additional

O ((m + n)N2 + (l + — ) TV2 log TV log log Tv)

arithmetic operations in K. The algorithm selects no more than (m + n + 6)N +
6n — 4 random elements in K and computes the correct rank and succeeds to
produce a solution with probability no less than 1 - 2(TV + n)2/(card(K) - 1).
The algorithm requires an additional 0((m + n)N) amount of storage for field
elements in K.
Proof. Consider the preconditioned matrix B = VBWG, where V e KNxN
is a random unit upper triangular Toeplitz matrix, W e KNxN is a random
unit lower triangular Toeplitz matrix, and G € KNxN is a random nonsingu-
lar diagonal matrix.  Then by Theorems 2 and 3 with probability of at least
1 - j (TV - l)TV/(card(K) - 1) for the minimum polynomial fB of B we have
deg(/B) = rank(5) + 1. Note that the cardinality of K in the estimate is
decreased by 1 since the diagonal entries of G must be nonzero. Also, for
a vector b e KN the product Bb can be computed by one multiplication of
B by a vector, and an additional 0(N log TV log log TV) arithmetic operations
in K. This is because the product of V or W by an arbitrary vector can be
reduced to polynomial multiplication, which over arbitrary fields is doable in
0(N log TV log log TV) [3]. We remark that by using matrices corresponding to
Benes networks in place of V and W [24, §V] one can reduce the arithmetic
complexity by the log log TV factor at the cost of requiring 0( TV log TV) random
field elements.

Now, the matrix B jatisfies the assumptions of Theorem 6, and we can find
a solution w ¿ 0 to Bw = 0. Thus, w = VGw ¿ 0 solves Bw = 0. By (3)
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and (6) of §4 the method multiplies B by a vector no more than

/.      n      1\ »T    2n21 + — + -   TV +-+ 2«+ 2
\      m     nj m

many times. The extra work in terms of arithmetic operations in K is
0((m + n)N2) plus the work it takes to solve (4), which by the results of §6 is
doable in 0((m + n)N2) additional arithmetic operations.

Let us suppose that B has the properties required by Theorem 6. The prob-
abilistic analysis depends on the algorithm used for solving (4), whose S x S
coefficient matrix we denote by A. In order to obtain a nonzero solution to
Ac = 0, the additional randomization A = VAW discussed at the end of
§6 must make the matrix A of generic rank profile. This is true for random
V and W with probability > 1 - \(N + 2n - 1)(TV + 2n)/card(K), since
S < N + 2n (see Step C2 in §4). Furthermore, the vector selected by the
randomization of Proposition 1 must be nonzero. This will happen with proba-
bility at least 1 - 1/ card(K). Note that the computation of r and A~xb' when
accomplished by the generalized Levinson-Durbin algorithm needs no further
randomization. Moreover, by Proposition 3 and the proof of Theorem 6 the
computed rankr = rank(^) is equal to rank(J5) = rank(Z?), provided A and
B have the properties stated above. Once a nonzero vector c is found, which
can of course be verified on the spot, the estimates of Theorem 6 become valid.
Therefore, the overall probability of success is at least

/3  (TV-l)TV       l(N + 2n- l)(N + 2n) 1     \ 2(N + n)2
k2card(K) - 1     2 cardK cardK/ ~       card(K) - 1 '

The randomization for B requires 3TV - 2 random nonzero field elements,
that for A no more than 2TV + 4n - 2, and that for b of Proposition 1 no more
than TV + 2« . The block Wiedemann algorithm itself needs (m + n)N random
field elements, so the total is no more than the one stated above. Finally, the
algorithm only needs to store a(,) and the XLU representation of the matrix
A and the ZUL representation of the incremental inverses.   G

Theorem 7 can be employed to solve nonsingular systems as outlined in the
last paragraph of §4. We shall formulate the result not in terms of the block
sizes m and n , but in terms of the quantity e — (n/m) + (1/n). For suitable
constant block sizes, e can be made arbitrarily close to 0. Thus we have the
following sequential complexity result.

Corollary. Let B e KNxN be a nonsingular matrix, and let e > 0 be fixed. Then
one can compute the solution vector w = B~xb with b e KN in no more than
(1 + e)N + 0(1) multiplications of B times a vector in KN, and an additional
0(TV2 log TV log log TV) arithmetic operations in K. The algorithm selects O(N)
random elements in K and succeeds to produce the solution with probability no
less than 1 - 0(TV2)/(card(K) - 1). The algorithm requires an additional O(N)
amount of storage for field elements in K. Note that here all big-0 estimates
depend on e.

Of course, the main application of blocking is to compute the sequence of
matrices a(,) in parallel. In order to make the statement of the next theorem
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simpler, we suppose that m/n is constant and that we have n parallel proces-
sors.

Theorem 8. Let m, n > 0 be integers < TV with m/n - 6(1). Suppose there
is a network of n < TV processors, each of which can independently multiply
the matrix B e KNxN by an arbitrary vector. Here, B can either be stored
in memory shared by all processors or be distributed over the local memories of
the processors. Then a random solution to the linear system Bw = b, where
b eKN is a vector in the space spanned by the columns of B, can be computed
in no more than 2N/m + 4N/n + O(l) multiplications of B by vectors car-
ried out simultaneously by each processor. Furthermore, each processor performs
0(N2 log TV log log TV) additional arithmetic operations in K and stores O(N)
intermediately computed field elements. As an extra intermediate substep the
network of processors can solve a singular homogeneous system of displacement
rank m + n in 0(N2) parallel time.

Proof. The linear system Bw = b under consideration is inhomogeneous and
singular. We appeal to Proposition 1. The method first computes the rankr
of B and then solves a nonsingular r x r system, thus executing the block
Wiedemann algorithm essentially twice. As in the proof of Theorem 7, be-
fore we can apply the block Wiedemann algorithm of §4, we must randomly
precondition the matrix B to B — VBWG. Now the product of B times a
vector requires an additional 0(N log TV log log TV) arithmetic steps in K. In
Step Cl of §4, each processor independently computes the sequence of col-
umn vectors {xXrB'yu} for the i/th columns y„ of y . These sequences have
length N/m + N/n + 0(1). Finally, a single processor carries out the computa-
tions of Step C3, which require an additional N/n + 0(1) matrix times vector
products. The work required to compute each xXT -(Blyv) in Step Cl and the
single-processor work of Step C3 amount to 0(N2 log TV log log TV) arithmetic
operations in K for each processor.

The rank of the coefficient matrix of (4), which is equal to the rank of B
with high probability, is computed in parallel by the methods described in §6.
That entails first computing a XLU representation for A and then applying
algorithm Generalized Levinson-Durbin. By the well-known product formula
for Toeplitz-like matrices [20, Proposition A. 3; also Proposition 8 in the Ap-
pendix] the derivation of the generators for 4>+(A) can be distributed over the
n processors, each performing 0(N2) arithmetic. Finally, the work in Steps
LI, L2, L3, and L4 of the Generalized Levinson-Durbin algorithm can be di-
vided among n = 8(a) processors, such that each processor performs O(N)
arithmetic operations. For instance, the sums of a vectors of k dimensions
required in Steps L2 and L4 can be computed in parallel by letting each pro-
cessor compute the sum of \k/a\ coordinates. Note that this scheme has a
high communication cost, especially if the z'th processor locally has stored the
vectors y,, z,, (p¡ and the scalars p¡ and v¡, and it may be more efficient to
perform a binary tree addition, that at a cost of 0(Nlog n).

Once the rank of B is known, we can apply Proposition 1 to the system
Bjc — Vb, from which we obtain the random solution x — WGx. In order to
compute B7XV of Proposition 1, we execute the block Wiedemann algorithm
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on the (r + 1) x (r + 1) matrix

Br
lxr

V
0

following the ideas in the last paragraph of §4. Clearly, multiplying Br
by a vector can be accomplished in a single B times a vector product plus
0(N log TV log log TV) field operations.   G

We remark that the above proof may be overly complex. A nonzero solution
of the homogeneous linear system

(B - [cxb\c2b\ ■■■ |cNb])w = 0,
where cx,... , c^ are random field elements, may yield

1
B-FTi-rn\w = b,cxw[l] + --- + cNw[N]

provided the division is not by zero. However, since the block Wiedemann
algorithm does not return a random vector in the null space of B, we cannot
make any guarantees. Furthermore, Step C3 of the Block Wiedemann algorithm
can be parallelized (see Appendix B), reducing the number of parallel matrix-
vector multiplications.

8. Conclusion
Our main contribution in this paper is to give a theoretical basis for the block

generalization of the Wiedemann method. We could prove our algorithm for
sufficiently large fields and by using a certain preconditioning of the input ma-
trix. The algorithm can still be valid without the assumptions on the degree
of the minimum polynomial. For instance, the matrices arising in our poly-
nomial factorization algorithm [11] clearly have (degree of minimum polyno-
mial) < (rank -1 ), while the algorithm still produces a solution. Coppersmith
observes, however, that for certain "pathological" cases the straightforward al-
gorithm might fail to compute a solution. Also, Coppersmith's application of
factorization of integers leads to sparse systems over the field K = F2 of two
elements. In that situation, Proposition 3 could be relaxed. If the rank of (4)
were one or two less than the rank of (7), with probability 1/2 or 1/4 we still
would find a solution to (7). For very large finite fields such a rank deficiency
would make the problem quite infeasible. Nonetheless, the case of very small
finite fields remains to be resolved, which is an important open problem. We
remark that if we have blocking by single vectors, the probability of success
of the block Wiedemann algorithm is o(l) for K = W2 (see Wiedemann [24,
Proposition 3]).

Our algorithms are formulated for finite fields only, but it is not difficult to
extend them to fields such as the rational numbers and functions by the use of
Chinese remaindering, interpolation, and p-adic lifting [17, 12].

Further problems left unresolved regard the solution of the block-Toeplitz
system arising in the course of the block algorithm. We have shown how by
randomization the system can be brought into a regular form, namely of generic
rank profile, and how it can then be solved very fast. It may be possible to
avoid the condition that the coefficient matrix be of generic rank profile (cf.
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Delsarte et al. [5]), thus avoiding randomization. Coppersmith's generalized
Berlekamp/Massey approach needs no randomizations either, but it remains
open how to prove the algorithm correct or how to speed it by use of FFT-
based polynomial multiplication (cf. Brent et al. [2, §8]). More importantly,
it is unclear to us if the asymptotically faster divide-and-conquer algorithm by
Bitmead-Anderson/Morf can in practice outperform the generalized Levinson-
Durbin algorithm.

With Austin Lobo we have implemented several versions of the block Wiede-
mann algorithm in the programming language C for K = ¥p and executed it
using simultaneously a network of eight Sun Sparc 2 computers, each rated
28.5MIPS. For p = 32749, for instance, we can solve a 20,000 x 20,000 sys-
tem with 1.32 million nonzero entries on four computers in about 60 CPU
hours. Our implementation also covers the case of small coefficient fields. For
example, for p = 2 we can solve a 100,000 x 100,000 system with 10.3 million
nonzero entries on three 28.5MIPS-computers in about 54 CPU hours. In that
case we use "double blocking," where each of the computers processes blocks
of 32 vectors by 32 bit logic. The details of this experiment are published in
[7]. We have also applied the method to the problem of factoring polynomials
of degree 10,000 and more over finite fields [11]. In that application, the coef-
ficient matrix has a true black-box representation with a fast function for the
matrix-times-vector product.

Appendix A

By use of FFT-based polynomial arithmetic and a divide-and-conquer strat-
egy, the block-Toeplitz system (4) of §4 can be solved in

0((m + «)2TV(logTV)2loglogTV)

arithmetic operations. We shall describe and analyze a version of the Bitmead-
Anderson/Morf method suitable for such singular inputs. This approach will
need to reduce a ELU representation of §6 for a matrix X to one with a
minimum number of terms under the sum (13). Here, we solve this problem
by randomization. Consider that we are given ß > a generators for a matrix
Y = (¡>+(X),

Y = y-zXT,       y,zeKNxP,

and we wish to determine the displacement rank a — a+(X) and a ELU rep-
resentation of length a for I. We pick random matrices V and W as in
Theorem 2 of §2. Then the matrix Y = VYW has, with high probability,
generic rank profile. Since rank(Y") = rank(T), every column to the right of
the first a columns of y is a linear combination of the first a columns. These
linear combinations determine generators for Y ; namely, Y = y • zXT, where
y, Z € KNxa. Here, y are the first a columns of Y and each column in
Zxr = [Ia I • • • ] corresponds to the linear combination yielding the column of Y
in the same position. The minimum-length generators for Y are then obtained
as Y = (V~xy) • (iW~x). The running time of this method is stated in the next
proposition.

Proposition 5. From a ELU representation of X e KNxN of length ß, namely
X = EjLi^Œ^I^Œ^l. one can compute in  0(aßN + ßN log TV log log TV)
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arithmetic steps in K a ILU representation X - J2%x L\\yjWîzJI> where
a = rank<j>+(X) is minimum. The algorithm is randomized and requires 2TV-2
uniformly sampled elements from a set ScK; it returns with probability no less
than 1 - a(a + l)/card(S) a correct result.
Proof. First we note that the multiplication of an TV-dimensional row vector
by a triangular N x N Toeplitz matrix or its inverse can be carried out in
0(N log TV log log TV) arithmetic operations by use of asymptotically fast poly-
nomial multiplication or power series inversion. Thus, we may compute Vy
and zXTW in 0(ßN log TV log log TV) arithmetic operations. Next, one can incre-
mentally compute and invert the leading principal submatrices Y¡ of Y until a
singular Ya+X is found. This costs 0(a2ß) arithmetic operations in K. Then
the first a rows and columns of Y are found from Vy and zXTW in 0(aßN)
steps. Using Y~x, we can also compute ztr in 0(a2N) arithmetic steps. Fi-
nally, we have to pre- and post-multiply the generators of Y with V~x and
W~x, costing 0(aN log TV log log TV) arithmetic steps in K.   G

The main property of matrices of small displacement rank is that their in-
verses also have small displacement rank. Clearly, the inverse of a Toeplitz
matrix is not Toeplitz but, as we will see, it is Toeplitz-like. However, the dis-
placement operator <f>+ does not directly apply to the inverse; instead, a dual
operator is used, which we now introduce. Consider the shift operators

Î A = ZXtA   and    *\ A = AZ .
The matrix î A is equal to A after being shifted up by one row, filling the last
row by zeros, and the matrix 1 A is equal to A after being shifted to the left
by one column, filling the last column by zeros. Now define

(¡>-(A) = A- î (1 A) = A - ZXJAZ   and   a-(A) = rank 4>-( A),
the latter being the displacement rank with respect to the displacement operator
(f>-. By transposition along the antidiagonal of the matrix X in (12), one
obtains a dual to the ELU representation; namely,

(18) X- î (U) = ¿ ykz'r <=► X = ¿ t/ICymLpn,
k=l k=\

where zrev is the reverse of a vector z ; that is,
"O   •••    0   1

J • z   with J
0   ••■    10

1 0   0

rNxN

We will call the right side of (18) the EUL representation of X. There is an
explicit formula for converting a ELU representation to a EUL representation
(cf. Bitmead and Anderson [1, Lemma 5]), which we will need later:
(19) L[[y]|í7|Iztr]| = /Lp]l + í7|Iytl/-c/I[(Z7y)tr]|L[[Z7z]|   fory.zeK",
where ztr is the reversed last row of L[yTJ(7|[zu]], and y the reversed last
column of L[[y]]i7[[ztr]] but with the first entry set to 0. Note that / is the
N x N identity matrix. From ( 19) and the dual formula

(20) Ulzv]L\\yl = Lini + IU\\zXrJ - L\ZJz\Ul(ZJyf\   for y, z e K*,
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where ztr is the first row of ÍT[[ztrTJL[[y]|, and y is the first column of
J7[[ztr]|L[[y]| with its first entry set to 0, we conclude that for any square ma-
trix A the inequalities -2 < a+(A) - a-(A) < 2 must hold. Moreover, the
conversions (19) and (20) can be carried out in 0(N log TV log log TV) arithmetic
operations in K. We finally can formulate the closure property with respect to
matrix inversion.
Proposition 6. For any nonsingular matrix A e KNxN wehave a+(A)-a-(A~x)
and a-(A) — a+(A~x).

An elegant proof of this property is found in [20, Proposition A.4].
At task is to compute the EUL representation for the inverse of a nonsin-

gular matrix A given in ELU representation. If A is singular, but of generic
rank profile, we seek the EUL representation for the largest nonsingular lead-
ing principal submatrix. The algorithm follows a divide-and-conquer matrix
partitioning à la Strassen: let
(21)

A =
[i,i

Ai,
'1,2

where
Ax j G KMxM,  Ax 2, Ax{ . € KMx<Ar-M),

^2,2j '\A2t2€K^-M^N~MK
If Ax t ! is nonsingular, we consider the Schur complement

A = A2,2-A2>XA7XXAX<2-

If both Ax i and A are nonsingular, the inverse can be computed as

A-x =
(-1at;1 + a1\aU2a-1a2,iA -i

1,1

-A-xA2AA-\
A-\AX¡2A

The key property is
Proposition 7. If A, AXtX, and A are the matrices defined above, Ax,x is non-
singular, and if the top-left entry of A, A[l, 1], is nonzero, then a+(A) < a+(A).
Proof. In case that A is a nonsingular matrix, the stated displacement rank in-
equality for the Schur complement is proven (without the condition on A[l, 1])
in Bitmead and Anderson [1, Lemma 8] and it is also stated in Morf [19]. We
will reduce the singular case to the nonsingular case. Consider a minimum-
length ELU representation of A; namely, A = Y,%XL^W^], and suppose
without loss of generality that (L(1)C/(1))[1, 1] ^ 0. The latter condition is
necessitated by our assumption on the nonvanishing of the top-left entry of A .
Therefore, the parametrized matrix

a
A(X) = (L^+XI)U{x) + J2lU)uU) = A + XUW € K(X)NxN

7=2
is nonsingular of displacement rank a with respect to 0+ . Partitioning A(X)
corresponding to (21), we obtain a parametrized Schur complement

A(X) = A2,2+XU{2x\-A2A(AXA+XU{xx\)-\Axa + XUlw2).
It follows from the nonsingular version of this proposition that a+(A(X)) < a .
We may write A(X) as power series in X with matrix coefficients,

A(X) = A + X(U(2l\ + A2AA-i
i,r

7(D   A-\ (1)U\l\A7\Al,2-A1AA\\U\l,1)
+ higher-order terms,
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using the series expansion

(G + XH)~X = (I + XG~XH)-XG-X
= G~x -XG~XHG~X + X2(G~XH)2G'X + ■ ■ ■ .

Since no negative powers of X occur, the constant term in this power series for
A(X), which is A, cannot have a higher displacement rank than A(X), which
proves the proposition.   G

The last property of Toeplitz-like matrices that we need for our algorithm is
the fact that their products remain Toeplitz-like. Because we encounter rectan-
gular matrices in our algorithm, we first have to extend the definitions of the
displacement operators to such matrices. By subscripting ZN we shall indi-
cate that the shift matrix Z is of dimensions TV x TV ; we define a rectangular
displacement operator

4>+{X) = X-ZMXZ%   forZ€KMxJv.

Again, <j>+(X) is generated by a = a+(X) = rank<f>+(X) vectors yx, ... , ya £
KM and zx, ... , za e KN : (¡>+(X) = £°=, y¡zxj. We now have the following
product rule (cf. [20, Proposition A.3]).

Proposition 8. Let G e KLxM and H e KMxN be rectangular matrices with dis-
placement ranks y = a+(G) and S - a+(H). Then <t>+(GH) can be generated
by y + S + 1 vectors.
Proof. First, we observe that Im = ZMZM + eMexM , where Im is the M x M
identity matrix and e^ is the Mth unit vector. Therefore,

(f>+(GH) = GH- ZLGIMHZ%
= GH- (ZLGZXM)(ZMHZX¿) - ZLGeMexMHZx^
= (G - ZLGZM)H + ZLGZM(H - ZMHZ%) - ghXl
= <P+(G)H + ZLGZxM<t>+(H) - ghxr,

where g = ZLGeM e KL and h = ZnIP^m e KN.   G
We can now sketch the main algorithm (cf. [1, p. 110]).

Algorithm Leading Principal Inverse.
Input. Vectors yx, ... ,ya, zx, ... ,zaeKN suchthat A = Y.%X LlyßUi^ß

£KNxN has generic rank profile.
Output. An integer r < TV and vectors yx, ... , ys, ~zx, ... , z- e Kr with

5 < q such that with high probability
ä

r = rank(,4)   and   Ajx = £ cT[y[r]|Lp,]|,
*=i

where Ar is the largest nonsingular leading principal submatrix of A .
If TV < a then expand the Y.LU representation of A and compute A7X

explicitly, finally, from (j>-(A~x) explicitly determine the Y.UL representation
and return.

Now, let the matrix A be partitioned as in (21) with M - ("TV/2].
Step 1: Call the algorithm recursively to process AXtX . Note that the ELU

representation of Ax x  is given by the first M entries of y, and z¡. If the
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returned rank of Axx is less than M, we are done. Otherwise, the algorithm
has produced a EUL representation of A~7XX .

Step 2: Compute a Y,LU representation of length no more than a for the
Schur complement A = A2j2 - A2iXAxlxAx,2. We further explain this task in
the analysis of the algorithm. If A[l, 1] = 0, then M = rank(/í) ; else perform
the next steps.

Step 3: Call the algorithm recursively to process A. Note that, with high
probability, rank(yi) = M + rank(A) = r.

Step 4: Consider the leading principal submatrix Ar partitioned as

Ar
'i,i

A'2,1

'1,2

ÁÍ2,2 J
where

^i,i e
l2,2

xM, A'x2,A!Xxx eKMx('-M),
r-M)x(r-M)

At this point we have the EUL representations for A, \ and for A' ', where
A' = A'2,2

4'     A~x A'^2,1^1,1^1,2 Compute (possibly nonminimum-length) genera-
tors for 4>.(B[tl),4>-(B[t2), and <f>_(B1A), where B\2 = -A7\A\2A'-

-A'-U; ,A7\, and B\B2X—      ¿a       ^2   !^n   , ,  uni*   ulx
minimum-length Y.UL representation for

V. - B\

A7l = B\i,i
*2,1

B\1,2

A'-

2A'2 XAX \. Finally, compute a

D

We can now state and prove the running time of the above algorithm.

Theorem 9. Algorithm Leading Principal Inverse finishes after

0(a2TV(logTV)2loglogTV)

arithmetic operations in K. It requires 0(TV log TV) random field elements that
are uniformly sampled from a subset S c K, and it returns with probability
no less than 1 - 4Na/ card(S') a correct rank and S UL representation of the
largest leading principal submatrix.
Proof. Let T(a, TV) denote the maximum number of arithmetic operations
required for any input of dimension TV and of at most a displacement rank.
Step 1 requires at most T(a, [TV/2] ) arithmetic operations. By Proposition 7,
Step 3 requires at most T(a, [N/2\) arithmetic operations. We shall show
that both Step 2 and Step 4 have arithmetic complexity 0(a2TV log TV log log TV).
Hence, for a constant C, we must have

r(Q,TV)<r(a, rTV/21) + r(a, LAr/2J) + Ca2TVlogTVloglogTV,
which yields the arithmetic complexity T(a, TV) = 0(a2TV(log TV)2 log log TV).

In Step 2, we first compute generators for </>+(A) of length ß < 4a+8, which
we then reduce by Propositions 5 and 7 to a length of no more than a. The
former is accomplished as follows: generators of length no more than a + 2
can be derived for <f>+(A2t2) from generators for <t>+ (A) by correcting for the
shift into A2y2 of parts of row M and parts of column M of A. Similarly,
generators of length no more than a + 1 can be derived for d)+(A2^x) and
(j)+(AXi2) (cf. Bitmead and Anderson [1, Lemma 8]). The EUL representation
for ,4^', can be converted to a ELU representation of length no more than a+2
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by using formula (20). We do not have ELU representations for the rectangular
matrices A2<x and ^1,2 • However, we have the ELU representation of A
restricted to these submatrices. Thus, we may effectively use the product rule
(22) of Proposition 8. For instance, the generators

ZN-MA2,xZM(j)Jr(Axxx)

arising in the computation of generators for ^»+(^42, i^r\) are f°un£l by mul"
tiplying each y-vector of the generators of (f>+(A\~\) ; first by ZM, then by
^2,1, and finally by Zn-m ■ Clearly, from the ELU representation of A
restricted to ^2,1, such multiplication can be carried out for a single vec-
tor in 0(aN log TV log log TV) arithmetic operations. Therefore, the compu-
tation of the generators for A2tXA7xxAx<2 dominates this step at a cost of
0(a2N log TV log log TV) arithmetic operations.

The tasks of Step 4 are carried out similarly. After converting the ELU
representation of A to a EUL representation using formula (19), we can obtain
generators of length no more than a + 3 for <j>-(A'2 x) and <fi-(A\ 2). Note
that here we need a generalized </5_ operator on rectangular matrices. Then, as
in Step 2 with a product formula for <f>-(GH) dual to (22), we find generators
for

4>-(B'xa) witha_(Ä{>2)<3a + 5,
(t>-(B2x) witha_(v32)1)<3a + 5,
4>-(B'xx)   witha_(ßj j) <6a + 10.

Finally, the generators for the blocks can be "puzzled" together to a generator
of 4>-(A~x) of length no more than 13a + 22. Note that the length is the
sum of the individual lengths corrected by two extra generators, which make
up for the "cross" of a row and a column missing in the shift of the individ-
ual blocks. Finally, we reduce the EUL representation of A71 to minimum
length, again appealing to a dual of Proposition 5. The overall cost in this step
is again dominated by the implementation of the product formula, which is
0(a2 TV log TV log log TV).

Finally, we argue that the algorithm produces, with the stated probability, the
correct result. By Proposition 7, the displacement rank of the Schur complement
A is no more than a. Furthermore, A has generic rank profile, as can be
deduced from the factorization

0'M

Ai,xA7)x
[i,i

L 0
[1,2

iN-M

Thus, the algorithm produces a correct result if the randomizations of Propo-
sition 5 needed in Steps 2 and 4 result in correct ELU representations and
the recursive calls return correct EUL representations. Let Pf(a, TV) be the
probability that the algorithm fails to compute a correct result. We have the
recursive estimate

Pf(a, TV) < Pf(a, TTV/2]) + Pf(a, LTV/2J) + ^¿^ ,
and Pf(a, L) = 0 for all L < a, which by induction yields

Pf(a,N)<(^--l)^^l    for N>a.
K        ' - \a+ 1       J    card5
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The number of random elements required, El(a, TV), satisfies the recursive
inequality

El(a, TV) < El(a, [TV/21 ) + El(a, [N/2\ ) + 4TV - 4,
and El(a, L) = 0 for all L < a, which yields El(a, TV) = 0(TV log TV).   G

Appendix B
In Theorem 8 we have supposed that Step C3 of the algorithm Block Wiede-

mann of §4 is carried out by a single processor, i.e., sequentially. One of the
referees has suggested the following parallelization that with n processors re-
quires only about TV(1 + log2 n)/n2 matrix-vector multiplications for Step C3,
thus leading to a total of about

m     n n2

parallel matrix-times-vector products in the entire Block Wiedemann algorithm.
This improvement has practical potential in applications where the matrix-
vector multiplication is costly, as in the polynomial factoring algorithm of
Kaltofen and Lobo [11]. Note that in such applications one also chooses m >
n.

During Step Cl, store the vector blocks

u    =BJ\N/n2]z _ßj[N/n^-ly

for all j = 1, ... , n - 1. Note that these blocks are available, since the B'y
are computed for 0 < / < N/m + N/n + 2n/m + 1. Define «o = z ■ By binary
search, we find the exponent k , where 0 < k < L/\N/n2] < n , such that

(23) Bk^N'n^w^0   but   B{k+x^N/n^w=0.

Temporarily, let / = k\N/n2~\ . The value of

B'w = Blzc(L) + Bl+xz¿L+X) + ■■■ + BD-L+'zc{D)

is found by having each processor compute the vector

a+i)r/v/«2i-i w«2i-i
V BiZC(L+i~')=       V      ß'H.c(£+'+7'Wn2l-/) _

i=j\N/n^ i=0

The latter requires no more than N/n2 parallel matrix-times-vector products
using Horner evaluation. Once an exponent k satisfying (23) is discovered,
one sequentially computes Bk^Nl" ̂ +'w for i = 1,2,... until the zero vector
is produced.
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