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Abstract 

The energy at sixth-order Mnller-Plesset (MP6)  perturbation theory is given and dissected into 36 size- 
consistent energy contributions resulting from single ( S ) ,  double zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( D), triple (T  ), quadruple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( Q ) ,  pentuple 
(P), and hextuple (H) excitations. It is shown that MP6 is an O ( N 9 )  method, but less costly approximations 
to M P ~  are possible. M P ~  is used to analyze and compare coupled cluster (cc ) and quadratic configuration 
interaction (QCI) methods, namely CCD, CCSD, CCSD(T), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACCSD(TQ), CCSDT, CCSDT(Q), CCSDT(QQ), 
QCISD, QCISD(T), and QCISD(TQ). For larger molecules and molecules with distinct T contributions, 
CCSD is significantly better than QCISD because CCSD covers a relatively large number of T contributions 
and in particular T,T coupling effects at sixth order. Differences between the two methods become larger 
at higher orders of perturbation theory. If T and Q excitations are included in QcisD and CCSD in a 
noniterative way-thus leading to QCISD(T ), CCSD(T ), QCISD(TQ), and ccsD(TQ)-then differences 
between QCI and cc decrease. Hence, if a given molecular problem depends on the inclusion Of T effects, 
improved calculational results will be obtained in the following order: MP4(SDTQ) < QCISD(T) < 
CCSD(T) < QCISD(TQ), CCSD(TQ) < CCSDT. None of the methods investigated is correct in sixth order. 
Only ifCCsDT is extended to CCSDT(QPH), which is also an O(N9) method, are all MF6 energy contributions 
then covered. 

Introduction 

Nowadays electron correlation methods are routinely applied for many chemical 
problems with generally available computer packages. Most work has been done 
in the framework of many-body perturbation theory ( MBPT ) using the Msller- 
Plesset ( MP) perturbation operator [ 11. MP perturbation theory offers a hierarchy 
of well defined methods that allow one to calculate correlation corrections in single, 
noniterative steps with increasing accuracy the higher the order of perturbation 
theory applied. Today computer programs are available to calculate second-order 
( M P ~ )  [ 21, third-order (MP3)  [ 31, fourth-order ( M P ~ )  [ 4,5 1, and fifth-order ( M P ~  ) 
[ 6,7] correlation corrections to the energy. At MP2 and MP3, double (D) excitations 
are included; at MP4 and MP5, single ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS) , D, triple ( T ) , and quadruple ( Q) excitations 
are included. MP methods yield large parts of dynamical correlation corrections; 
they are economical to use; and they are size-consistent [ 3,8] or, even more gen- 
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erally, size-extensive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 221. Furthermore, with MP2, MP3, and MP4 methods, mo- 
lecular geometries, vibrational frequencies, and many response properties can be 
calculated using available gradient techniques [ 9- 13 1. 

Because of the advantages of MP methods and their many successful applications, 
there is a wide-spread belief among the average user of MP correlation methods 
that M P ~  calculations, in particular if the T excitations are included [ MP4( SDTQ) 1, 
provide sufficiently accurate results in those cases in which electron correlation 
corrections are required. This hope is certainly not justified, as has been pointed 
out many times [ 14,15 1. If high accuracy is needed, MP methods fail even in those 
cases in which the single-determinant description is adequate [ 151.  Of course, they 
have to lead to erroneous results when the problem in question can only be handled 
by a multireference approach [ 141.  

The insufficient accuracy of lower-order MP methods can be easily explained in 
the following way. Even-order methods always introduce a new correlation effect 
into the MP approach. For example, MP2 brings in D excitations, while MP4 in 
addition brings in s, T, and Q excitations, and MP6 in addition pentuple ( P )  and 
hextuple ( H )  excitations, and so on. Accordingly, the MP correlation energy is sub- 
stantially increased at even-order levels. However, at odd-order MP levels the ex- 
citations previously introduced are coupled. For example, at MP3 the D excitations 
interact, at MP5, the S, T, and Q excitations couple, etc. Hence, the increase in 
correlation found at the even-order level as a result of the new excitations is sig- 
nificantly reduced at the following odd-order level. In other words, at one level a 
newly introduced correlation effect is described in a somewhat exaggerated way 
while at the next level it is probably underestimated because of strong direct coupling. 
As a consequence, many calculated MP properties oscillate between two boundaries 
that are often given by the HF ( =MP1) and the MP2 result. This has been observed 
for (among others) relative energies, charge distributions, dipole moments, quad- 
rupole moments, electric field gradients, geometries, vibrational frequencies, and 
infrared intensities [ 15,161.  

The question is how fast oscillations in MP results damp out and converge to a 
limiting value. All the available results show that this is not the case at M P ~  [ 15,16  1. 
MP5 will reduce MP4 results in the direction of MP3 results, but probably without 
coming close to the limit value. Most likely, MP6 will change results again in the 
direction of MP4, and so on. This is indicated in Figure 1, where the ozone dipole 
moment has been taken as an example. Because of this there is a need for more 
accurate correlation corrected methods. These could be higher-order MP methods, 
as, for example, MP6, MP7, or MP8. We will investigate in the next section this 
possibility and look at the feasibility of high-order MP calculations. 

Alternatively, one could take a different approach for calculating correlation 
corrections. Most promising are the coupled cluster (cc ) methods [ 17,181. The 
cc approach also leads to a well-defined hierarchy of methods, which become more 
accurate as more excitations are included (D, SD, SDT, etc). Due to the exponential 
representation of the wave function, cc contains infinite-order effects, which make 
cc results more accurate than either MP or configuration interaction ( CI) methods 
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Figure 1. Dependence zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the value of the ozone dipole moment on the order of pertur- 
bation theory. Calculations up to MP4 are done with the 6-31G(d) basis set. Predictions 

for higher order MPn results are indicated. 

being based on the same excitations. Furthermore, cc methods are size-consistent 
(size-extensive ) . Since for CCD [ 19 1, CCSD [ 201, and CCSDT [ 2 1 ] routine calculations 
can be done nowadays, the cc approach is and will continue to be applied more 
and more to problems of chemical interest [ 8,221. 

Recently, Pople et al. [ 23 ] have introduced the quadratic CI ( QCI) method. The 
QCI equations are obtained by either simplifying the corresponding cc equations 
or by extending the CI equations in such a way that CI becomes size-consistent 
(size-extensive). Pople et al. [ 23,241 have chosen to take the latter view. QCISD is 
size-consistent ( size-extensive ) , contains infinite-order effects, and treats correlation 
for a two-electron system correctly. The same properties apply to QCISD( T ), where 
( T ) indicates that the triple excitations are handled in a noniterative way using 
converged QcIsD amplitudes [ 23 1. 

There has been considerable dispute on how QCI compares with cc methods 
computationally [ 24-27 1. Considerable work has been put in a comparison of the 
two approaches. In principle, such a comparison could be done (a) on formal 
grounds [ 23-25], (b) on the basis of computational requirements [ 261, (c) on the 
basis of the accuracy of calculated results, or (d) in form of an analysis in terms of 
perturbation theory [ 7,28 1. 

We will consider here only the last aspect; the others have been dealt with in 
previous work. For example, Paldus et al. [ 251 have stressed that from a formal 
point of view QCISD is a simplified CC approach that is closely related to the 
CPMET( c ) method of Paldus, Ciiek, and Shavitt [ 181 as well as the CCSD- 1 method 
of Purvis and Bartlett [ 201. The QCI approach does not lead to a hierarchy of well 
defined methods as cc does. As a matter of fact, higher QCI methods such as QCISDT 

are no longer size-consistent (size-extensive) [ 251. Scuseria and Schaefer [ 261 have 
found that the computational needs are similar if QCISD and CCSD are programmed 
carefully. Using the T~ criterion [ 291, Lee et al. [ 271 have stressed that QCI might 
be less stable in the case of molecular systems that require a multireference treatment. 
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We will base our investigation of cc and QCI methods on a perturbational analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

[ 301. Such an analysis has been camed out before up to fifth order by Kucharski 
and Bartlett [ 61 and by Raghavachari and co-workers [ 7,281. Here, we will extend 
this analysis to sixth-order MP (MP6) perturbation theory. For this purpose, we Will 
derive formulas for the determination of the M P ~  energy. Also, we will discuss some 
properties of MP6. Then we will present a comparison of cc and QCI methods in 
terms of MP6. In particular, we will investigate CCD, CCSD, QCISD, CCSD( T ) [ 281, 
QCISD ( T ), CCSD ( TQ ), QCISD ( TQ ) [ 7 1 ,  CCSDT, and some possible noniterative ex- 
tensions of CCSDT by Q and higher excitations. Results of the sixth-order perturbation 
analysis are helpful to look at infinite-order effects covered by the different cc and 
QCI methods. By doing so we want to answer the following questions. 

1 .  How do cc and QCI methods compare at sixth order? 
2. Which is the simplest cc or QCI method that is correct to sixth order? 
3. How do cc and QCI methods compare at infinite order? 
4. Is there a possibility to predict which method is best suited for a given com- 

putational problem in quantum chemistry? 

M P ~  Perturbation Theory 

In standard MP perturbation theory [l] ,  the Hamiltonian is split into a zero- 
order operator and a perturbation operator P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

E i = E j o +  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAv ,  ( 1 )  

where and Pare given by 

If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa0 is the Hartree-Fock ( HF) ground-state wave function and Q the true ground- 
state wave function, then the wave operator 6 is defined by [ 31,321 

I*) = f w o )  3 ( 4 )  

which means that the action of the wave operator on a0 produces the exact wave 
hnction. The wave operator can be expressed in terms of powers of the perturbation 
operator for each order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn if all hem) with m < n are known. 

n- I 

L m= I 

where the reduced resolvant is given by 
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With b(') the M P ~  energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE'") can be written as 

E(")  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvb('-')l cpo) , (7) 

where vb("-" is the reaction operator of order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn - 1. Using Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 ) ,  it is straight- 
forward to write down M P ~  energies E'") for n up to 6. The number of terms in 
each order is given by 

(2n  - 2)! 
n ! ( n  - l ) !  * 

Thus the number of terms rapidly increases with the order of perturbation: 

n 1 2 3 4  5 6 s . .  

# 1 1 2 5 14 42 * . *  (9) 

At sixth order, the MP energy is given by the principal term and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 1 terms that make 
up the renormalization part. 

E ( M P ~ )  = ( aO1 t G o ~ ~ o ~ ~ o ~ ~ o ~ ~ o ~ ~  ao) + renormalization terms. ( 10) 

Considering the possible excitations that can occur at MP6, the 42 terms can be 
condensed to four terms that contain different sums over s, D, T, Q, P, and H 

excitations: 

E(MP6) = A  + B +  C +  D ,  ( 1 1 )  
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with 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A contains the principal term plus 15 renormalization terms, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB ,  C, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD 
contain 16, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, and 2 renormalization terms, respectively. For reasons of simplicity, 
we will consider the sum of B, C, and D as the renormalization part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 1. 

It has been shown for M P ~  [ 4,5] and MP5 [ 6,7] that it is advantageous to dissect 
the MP perturbation theory into contributions from specific excitations; for example, 

E(MP4) = E4(S)  -k E4(D)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- E4(T)  -k E4(Q)  

+ 2E5(DQ) 4- E5(TT)  -k 2E5(TQ) -k E5(QQ) ,  

(16)  

E(MP5) = E5(SS) + 2E5(SD) 4- 2E5(ST) + E5(DD) + 2E5(DT)  

(17 )  

where the fact that E5(SD) = E5(DS), etc., is considered by a factor of 2. 
In Eqs. ( 16)  and ( 17) the renormalization terms ER have also been dissected 

into contributions from specific excitations and then summed into the appropriate 
partial energies. For example, E i  leads to a contribution to E4(Q)  and E i  to 
E5(  DQ), E5(QD), and E5( QQ). By taking correct account of these contributions, 
all terms that are not proportional to the number of electrons cancel. Accordingly, 
each partial energy in Eqs. ( 16)  or ( 17)  is size-consistent (size-extensive) [ 3,8,22]. 
This, of course, is the essence of the linked diagram theorem, i.e., correct cancellation 
of the renormalization terms according to the linked diagram theorem can be used 
to check whether the formulas derived are correct. 

To get for the MP6 energy a similar dissection into partial energies, which are all 
size-consistent (size-extensive) , one must first write down the renormalization part 
in the appropriate form. For this purpose, we start from Eq. ( 18), 

(18 )  E: = B +  C +  D ,  

in which the terms B, C, and D can be rewritten in the following form: 

D SDTQ 

B = -E(MP4) c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAlail’ - E(MP2) l f l ; 1 2  

d zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
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with 

af zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= (Eo - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd)-'vd/do, 

D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U f  = (Eo - El)-' 2 Ffdaf, ( t  = S, D, T, ' . .) . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

d 

Further expansion of Eqs. ( 19), (20), and (21) leads to the final form of the re- 
normalization term, 

E i  = -[ 2Ei(SDQ) i- 2Ei (DDQ)  + 2Ei (TDQ)  -I- Ei (QDQ) 

-I- 2Ei (STQ)  2Eg(DQQ) + 2E$(TPQ) -k Ei (QHQ) 

+ E%QTQ) + E%QQQ) + E~(QPQ)  + E%STS) 

+ Ei (QDQ) 4- E i ( T P T ) ] .  (22) 

Performing a similar dissection for the MP6 energy and summing the various con- 
tributions of the renormalization term given in Eq. (22) into the appropriate terms 
of the MP6 energy, one obtains the sixth-order perturbation energy in its final form, 

E(MP6) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 6 ( S S S )  + 2E6(SSD) + 2E6(SST) -k E6(SDS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4- 2E6(SDD) 

-k 2E6(SDT) 4- 2E6(SDQ) -k E6(STS) + 2E6(STD) 

-I- 2E6(STT) -k 2E6(STQ) + E6(DSD) -k 2E6(DST) 

-I- E6(DDD) -k 2E6(DDT) 4- 2E6(DDQ) -k E6(DTD) 

-k 2E6(DTT) -k 2E6(DTQ) + E6(DQD) 4- 2E6(DQT) 

+ 2E6(DQQ) -k E6(TST) + E6(TDT) 4- 2E6(TDQ) 

+ E6(TTT) -k 2E6(TTQ) + E6(TQT) -k 2E6(TQQ) 

+ E6(TPT) + 2E6(TPQ) + E6(QDQ) + E6(QTQ) 

+ E~(QQQ) + EYQPQ) + E ~ Q H Q ) .  (23) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A pictorial way of deriving this equation from the fifth-order perturbation energy 
is given in Scheme I. The MP6 energy can be characterized in the following way. 
It contains 55 contributions, which can be reduced to 36 because of symmetry. 
Each of the partial energy terms given in Eq. (23) is size-consistent (size-extensive) . 
Therefore it is possible to group the various contributions as indicated in Scheme 
I by dashed lines. There are 12 different terms that contain just S, D, or Q excitations. 
They constitute what may be called the SDQ space at sixth order. The T excitations 
can interact with all other but the H excitations. By interaction with S, D, and Q 

excitations they yield 20 terms including the TTT part. This may be called the T 

space. Finally, there are four terms that arise from P and H excitations that first 
appear at sixth-order perturbation theory. They form the PH space. 

In previous work, it has been shown that MP4 calculations require zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0(N7) and 
MP5 calculations 0 ( N 8 )  operations where Ndefines the size of the basis set [ 6,7]. 

A detailed analysis of Eq. (23) shows that MP6 calculations lead to 0 ( N 9 ) .  The 
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TTT 
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sss 
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.-__-._-___.._ 
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S D S  
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DDQ, QDD 

QDQ 
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TDT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. Dissection of the MP6 correlation energy into partial energies that result from 
specific excitations. In the first column the 14 MP5 energy terms are given, which lead to 
the 55 M P ~  terms by correct combinations with S, D, T, Q, P, and H excitations. Note that 
a combination zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( s q ,  qs)  not present at MP5 has to be included in the first column to take 
account of the coupling with D and T excitations. Dashed lines indicate the grouping of 

the M P ~  terms discussed in the text. 

most expensive terms that appear at MP6 are given in Table I. For small basis sets, 
it will probably be possible to carry out MP6 calculations. After computer programs 
for calculating M P ~  energies have successfully been implemented [ 6,7], it is only 
a question of time when the same will be done for MP6. This could be done by first 
considering approximations to MP6 such as MP6( SDQ) . 

TABLE I. MP6 energy contributions that 
require high calculational costs. 

Energy contribution costsa 

In some cases only an upper bound to 
the costs are given since two-electron inte- 
gral formulas have not been worked out. 
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5 

s 
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Q - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P 

H 

S ( 7 )  

O(8)  

It is clear that at present any method that requires zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( N 8 )  steps or even more is 
too costly to be used for larger molecules. But even for small molecules it is the 
question how far one can go beyond MP5. For example, is MP7 or MP8 possible? 
The number of terms arising from combinations of the various excitations increases 
dramatically at these orders as can be seen from Scheme 11. At MP7, a coupling 
between the SDTQPH excitations becomes possible and, therefore, one encounters 
221 terms, which by symmetry reduce to 141 terms. At MP8, septuple [ s(7)] and 

S D T Q  

1 1 1  

D 1 1 1 1  
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6 1 s  D T Q 
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4 1  5 5  65 6 0  
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4 1  6 0  7 8  8 4  

P 

H 

S ( 7 )  

O(8)  
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D(10) 

U(11) 

U(12) 

68 8 0  

52  6 8  

35  5 2  

2 0  35  

10  2 0  

4 10 

1 4  

1 

Scheme 11. Number of contributions resulting from specific excitations at the MPn level zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( n  = 5,  6, 7, and 8) .  In the heading of each diagram the type and the number of energy 
contributions at MPn is shown. Numbers in parentheses give total number of energy terms 
after and before symmetry reduction. In the upper half of each diagram the number of all 
s.s, S..D, D..S, etc., terms that contribute to the MPn correlation energy is depicted. The 
lower half of the diagram is used to calculate the number of energy contributions at MPm 

with m > zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. 
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octuple zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo( 8 )  ] excitations are introduced as new contributions thus increasing the 
number of unique contributions to 573. 

Considering that the computational work increases by one power of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN at each 
order of perturbation theory, one has to face O(N'O) and O(N" )  operations at 
M P ~  and MP8, respectively. Hence, it seems to be impossible at the moment to go 
beyond MP6. Progress in this direction can only be expected if the speed of present 
computers is improved significantly. Also, the derivation of the appropriate two- 
electron integral formulas at MP7 or MP8 will require computer software that helps 
to automate this process to a high extent. 

Analysis of the CCSD and QcIsD Equations 

The CCSD equations [ 20,23,25] are given in Eqs. (24), (25), and (26). 

( @ o I H I ( f 2  + t f f > @ o )  = Ecom 

(@fIgl(f, + T 2  + i f f  + T l T 2  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAip ; )ao)  = afEco, 

(@.a, lHI( I  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt, + T 2  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi F :  + FIT* + if; + if? + $ f ! f 2  + & f : ) @ o )  

(24) 

(25) 

= a$EcOm, (26) 

where H = H - Eo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@o, and EO are the HF ground-state wave function and energy, 
E,, is the correlation energy, and fp  denotes cluster operators 

TI = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 a:?: (27) 
za 

which generate p-times excited configurations such as Srf (p = I ) ,  ( p  = 2), 
etc., multiplied by the corresponding cluster amplitudes af and a f .  The operator 
if and ?Gb represent elementary substitution operators. The cluster operators given 
in boldface in Eqs. (24), (25 ), and (26) appear in both the CCSD and the QCISD 

projection equations. In other words, the QcIsD equations are obtained from 
Eqs. (24), (25 ), and (26) just by dropping the cluster operators not given in bold 
print [ 23-26]. 

To compare the CCSD and QCISD equations, in Table I1 we give, for each term 
of the three CCSD equations (24) through (26 ), the lowest order of perturbation 
theory at which the cluster operators will make the first contribution to the corre- 
lation energy E,,,. Actually, such an analysis has already been given by Paldus et 
al. [ 25 ] in their careful comparison of cc and QCI methods. Here, we extend their 
analysis by explicitly identifying the corresponding contributions to E,,, in terms 
of the partial energies given in Eqs. ( 16), ( 17), and (23) (see also Scheme I). 

As has been pointed out before, CCSD and QCISD are equivalent up to fourth 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11. Analysis of the CCSD and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQcIsD equations in terms of perturbation theory. 

First contribution at MPnC 

Equationa Cluster operatorb Order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn Energy 

4 

7 

10 

E2 

E5(TS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ E5(TQ)(z) 

E5(ss) 

E4(s) 

E~(STS) + E~(STQ)(Z) 

E7(SDTS) + E7(SDTQ)(I) 

E9(STQDTS) + E9(STQDTQ)(I) 

f E9(STQPTS)(I) + E9(STQPTQ)(I) 

+ E9(STQPHQ)(I) 

E2 

E4W 
E3 

P(DTS) + E~(DTQ)(Z) 

P(TQDTS) + P(TQDTQ)({) 
E5(TS) + E*(TQ)(r) 

+ E'(TQPTs)(~) + E'(TQPTQ)(~) 
+ E'(TQPHQ)(~ 

E'(Q) 
E7(QDTS) + E7(QDTQ)(I) 

f E7(QPHQ)(I) + E7(QPTS)(I) 

+ E7(QPTQ)(I) 

a Compare with Eqs. (24) to (26). 
Boldface operators appear in both the CCSD and the QciSD equations. The corresponding energy 

contributions are covered by both CCSD and Q ~ I S D .  Operators and energies in normal print are only 
present in CCSD. 

The lowest order of perturbation theory, at which first energy contributions come in, is given. 

order [ 7,281. At the QCI level, this is achieved by including in the doubles projection 
formula (26) disconnected quadruply excited clusters 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF ;  rather than the discon- 
nected triply excited clusters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi;. This leads to some inconsistency, because 
fl f2 is included in the singles projection formula (25 ). However, Table I1 reveals 
that this choice is justified. The cluster operator 4 f ;  already contributes at fourth 
order, yielding the important E4( Q) contribution to Em,, while f, F* first contributes 
at fifth order in the doubles equation. 

Differences between QCISD and CCSD first appear at fifth order because of the 
neglect of fl f2 in Eq. (26) and 4 f ? in Eq. (24) [ 251. These terms are responsible 
for E5 (Ts) and (partially) for E5 (TQ), which arise from disconnected triple exci- 
tations. Calculations have shown that in most cases these energy contributions are 
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positive thus leading to an increase of the CCSD correlation energy zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA331. As a 
consequence, QCISD energies are more negative than CCSD energies, which of course 
does not mean that QCISD is better than CCSD, as neither of these methods is van- 
ational. 

Differences between QCISD and CCSD at sixth, seventh, eighth, and ninth order 
are also given in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 in terms of the corresponding partial energies included 
or not included in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEm*. In this article we are particularly interested in the differences 
at sixth order and at infinite order. But before discussing them in detail, it is useful 
to complete the analysis given in Table I1 by explicitly identifying for each partial 
energy up to fifth order the cluster operators in Eqs. (24) through ( 2 6 )  that lead 

TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111. Analysis of the CCSD and QcisD equations up to fifth-order perturbation theory. 

Operator that generates 
E‘(A . . .) in nth Energy 

Order contribution Equationa orderb 

2 E2 < @ o I H I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf2 

< @ t b ( H I  1 

3 E’ <@$ I HI f2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 

E’(DS) 

E’(ST) 

E’(TS) + E’(TQ)( I )  

E5 (DT)  

E’(TD) 

E’(QT) 

fl 

f2 

a Compare with Eqs. (24) to (26). 
Boldface operators appear in both the CCSD and the Qcrs~ equations. 
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to the term in question. This analysis is given in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA111, which, when inspected, 
again reveals that in the doubles equation it is better to include iFz rather than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
FIT2. The former leads to important contributions not only at MP4 but also at 
M P ~ ,  where DQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( =QD) and QQ effects are brought in. 

Analysis of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcc and QCI Methods in Terms of M P ~  

An analysis of cc or QCI methods in terms of perturbation theory up to fifth 
order has been carried out by several authors [ 6,7,28]. The results of their analysis 
are summarized in Scheme 111. Scheme 111 reveals that CCSD is not correct at fourth 
order because it is lacking the T effects. One way of extending CCSD to make it 
correct at fourth order is realized in CCSD( T ) [ 281. The same is true for QCISD( T ), 
which is the first QCISD method correct in fourth order [ 23,281. To make cc and 
QCI correct to fifth order one has to include zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ excitations. There are several ways 
to do this as has been pointed out by Kucharski and Bartlett [ 341. Actually, the 
CCSD + TQ*( CCSD) method suggested by Bartlett et al. [ 351 was the first CCSD- 
based method correct in fifth order, but we will discuss this method elsewhere [ 361. 
Here, we consider two other methods correct at fifth order, namely CCSD( TQ) and 
QCISD(TQ) [ 71 (see Scheme 111). 

For a comparison of these methods at the M P ~  level, CC and QCI correlation 
energies Ec,, have to be expanded up to sixth order. We begin by first expanding 
the CCD energy. For this purpose, we use the projection equations of CCD [ 191. 

D 

D 

S 

D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O 

T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ss 

DD 

al 

Tr 

SD, DS 

w, aD 

ST, TS 

DT. TD 

TO, OT 

E(MP2)  

E(MP3)  

E(MP4)  

E(MP5)  

Scheme 111. Energy contributions to various cc and QCI methods up to fifth-order per- 
turbation theory. The energy terms are characterized by the appropriate excitations given 
in the center between the two diagrams. A yes or y denotes that the term in question is 

fully contained, (yes) or (y) that the term is partially contained [ 401. 
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(@olfil @o) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEgg?’ ( 2 9 )  

(@d lH I (  1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$p$)@o) = ad(CCD)Egg?’, ( 3 0 )  

with @d and ad denoting D excited configurations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@ Z b  and the corresponding am- 
plitudes aZb, respectively. Using the Hamiltonian in the form of Eq. ( 1 ), correlation 
energy E$p) and amplitudes ad are obtained by Eqs. ( 3 1 ) and ( 32) .  

E S ’  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA( @o I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPI fp3.0) 
D 

= c (@OlPl@d)ad ( 3 1 )  

- (a01 Plp2@O)ad(ccD) l .  ( 3 2 )  

d 

Ud(ccD) = - Ed)-’[(@dl el( 1 + F2 + f F $ ) @ o )  

Substituting Eq. ( 32) into Eq. ( 3 1 ) leads to the expansion of EFmD’ up to second 
order 

D D  

EigD’ = X2E(MP2) -t X 2  2 2 Vod(E0 - Ed)-’ 
d di 

D 
^ ^ ^  

x [ Pddlad, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf c (@dl Vltdltd2@O)adlad2 - VOdladladl. ( 3 3 )  
d2 

By repeated substitution of the D amplitudes in Eq. ( 3 3 )  the correlation energy 
is expanded to third, fourth, fifth, and finally to sixth order, 

EggD’ = X2E(MP2) + X3E(MP3) + X4[E4(D) + E 4 ( Q ) ]  

+ X5[E5(DD) -k 2E5(DQ)  + E5(QQ)(1)]  

-I- X6[E6(DDD) -k 2E6(DDQ) + E6(DQD) 

+ E ~ Q D Q )  + E~(DQQ) (O + E~(QQD>(I> 

+ E6(QQQ)( l )  + E6(QHQ)(z>l  -k 0 ( X 7 ) ,  (34) 

where E5 ( QQ)( l ) ,  E6( DQQ)( l ) ,  E6( QQD) (0, E6(QQQ) ( I ) ,  and E6 (QHQ)( 0, are 
only partially contained at CCD as indicated by ( I ) .  It has to be noted that some 
of the terms cannot directly be compared with the corresponding MP5 and MP6 

terms. They have to be divided up by means of the factorization theorem [ 371. 

(xy) - ’  = ( x  + y ) - ’ ( x - l  + y-1) (35 )  

in order to become comparable with the MP components of the energy. 
The repeated substitution of the cc amplitudes corresponds to the iterative so- 

lution of the CCD equations. In the kth iteration, the amplitude aa’( CCD) is given 
by 
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Accordingly, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa a )  is expanded to first order 

and a$ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0. The energy EiAA is given in the first iteration step by 

In the second iteration step (k  = 2) one gets 

with the coefficients zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC$ given by 

Hence, E,,, is expanded up to fourth order 

Ei,$ = X2E(MP2) + X3E(MP3) + X4(E4(D) + E 4 ( Q ) ) .  

In the third iteration step ( k  = 3 ), the amplitudes a y )  are expanded up to seventh 
order 
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with 
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abcd 

1 E’(QQHQ)(I) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ E7(QHQQ)(l) E7(QHHQ)(I)  

+ [ 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE’(ubcde)(J) + E~(DDQHQ)(I) + E~(DQHHQ)(z) 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEYDQHQQ)(I) + EYDQQHQ)(I) + WQHQHQ)(I) 
+ EYQHHHQ)(I) + EYQHHQQM + EYQHHQDW) 
+ E~(QHQQQ)(I) + E~(QHQQD)(I) + EYQHQDQ)(I) 

+ EYQHQDD)(I) + EYQQHHQIU) + EYQQHQQW) 
+ EYQDQHQ)(I) + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE’(QQHQD)(I) + E~(QQQHQ)(I) 

+ EYQDQHQW) + EYQHOHQ)(I) , (44) 

abcde 

1 
with a ,  b, c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd, and e running over all possible combinations of D and Q excitations. 
The ( J )  indicates that some of the later terms are contained only partially. 

At the kth iteration step, the CCD amplitude and energy contain perturbation 
contributions up to the order 2k  and 2 k  - 1, respectively. In the way the CCD 

iterations proceed, the CCD correlation energy is expanded to higher and higher 
orders. Since 2 increases much faster than k ,  fast convergence of the CCD correlation 
energy is guaranteed. 
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Similar expansions as described for CCD can be carried out for the QCISD, CCSD, 

and CCSDT correlation energy and the corresponding s, D, and T amplitudes. The 
expansions for the various methods differ in so far as the expansion coefficients are 
different and different orders of perturbation theory are reached at a given iteration 
step. Common to all methods is that the highest order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn of the energy contribution zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E"(ABC..) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE,,, increases rapidly with the number of iteration steps k and that 
E,,, converges faster than the S, D, and T amplitudes. 

Formulas for the expansion of the CCSD correlation energy E,,, up to sixth-order 
perturbation theory have been worked out zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 361. From these formulas, the corre- 
sponding expansions for the WISD correlation energy as well zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas the other cc- and 
QcI-based correlation energies considered here can easily be derived. Results of the 
perturbation analysis for CCD, CCSD, QCISD, CCSD( T ), QCISD( T ), CCSD( TQ), 

QCISD( TQ), and CCSDT are summarized in Scheme IV, which complements Scheme 
111. In Scheme IV, the sixth-order analysis is given in three steps (Scheme IVa, IVb, 
IVc) according to the dissection of the SDTQPH space discussed above. 

Inspection of Schemes I11 and IV leads to the following conclusions: 
( 1 ) cc and QCI methods that contain the same type of excitations are equivalent 

up to fourth-order perturbation theory, i.e., they contain the same energy contri- 
butions arising from S, D, T, or Q excitations. 

(2)  cc and QCI differ at fifth order. CCSD has in addition to the terms contained 
at QcIsD a TS and partially a TQ contribution. CCSD( T ) differs from QCISD( T ) by 
just the partial TQ term because QCISD( T ) contains the TS term. 

( 3 )  CCSDT should be substantially better than both CCSD( T ) and QCISD( T ) be- 
cause at fifth order it only lacks the QT term (QQ is partially contained). Contrary 
to CCSD(T) and QCISD(T), it contains a TT coupling term, which prevents the 
method from overestimating T effects. 

(4)  CCSD( TQ ) and QCISD( TQ) are methods exact at fifth order [ 7 1. These meth- 
ods seem to be better than CCSDT, but this is only true if the analysis is terminated 
at MP5 (see below). 

( 5 )  At sixth order, QCI and cc methods are equivalent in the SDQ space, i.e., 
with regard to those energy terms that contain just s, D, and Q effects. None of the 
methods investigated is fully correct in the SDQ space because the DQQ, QQD, and 
QQQ contributions are covered just partially. 

(6) Differences between QCI and cc arise solely from T effects at MP6. Table IV 
gives an analysis of sixth-order T contributions contained in the various QCI and 
cc methods. 

From points ( 1)-(6) it becomes clear that QCI and cc methods should yield 
similar results in all those cases, in which T effects do not play an important role. 
However, if T effects become important, then CC should be superior to QCI . Table 
IV reveals that CCSD covers (at least partially) one-third of the T contributions at 
sixth order while WISD contains just zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 out of the 33 T terms in the SDTQ space. 

If T excitations are handled in a noniterative way at the CCSD( T ) and QCISD( T ) 
level of theory, then the differences between the two methods are somewhat reduced. 
However, there remains a major difference arising from T,T coupling terms (see 
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WQ 

QQQ 

STS 

STD. DTS 

STQ, (ITS 

DTD 

DTQ. QTD 

QTQ 

SST, TSS 

SDT. TDS 

STT, TTS 

DST, TSD 

DDT. TDD 

DQT, TQD 

DTT, TTD 
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TTQ, QTT 
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Q 
Q 
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k 

20 
(33)  

QCISD CCSD QCISD(T) CCSD(T) QCISD(TQ) CCSD(TQ) CCSDT CCSDT(QO) 

Scheme IV. Energy contributions to various cc and QCI methods at sixth-order pertur- 
bation theory. The energy terms are characterized by the appropriate excitations given in 
the center between the two diagrams. A yes or y denotes that the term in question is fully 
contained, (yes) or (y) that the term is partially contained. (a) SDQ space, (b) T space 

[ 411, and (c) PH space. 
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TABLE IV. Sixth-order triple contributions at ~ c r  and CC. 

T-contributionsa T, T coupling termsb 

Method Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA% TAT TTA TTT 

QCISD 

CCSD 

Q C I S ~ T )  

QCWTQ) 
C C S ~ T Q )  

CCSDT(QQ) 
Total 

CCSD(T) 

CCSDT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
12 (9) 
36 (24) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
51 (9) 
66 (24) 
82 (15) 
85 (21) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
85 (6) 

100 (10) 
I00 

- 
3 
4 
4 

- 
1 
1 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a The total number of triple contributions arising from a coupling with s, D, Q excitations is given 

where symmetric terms such as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAABC and CBA are counted separately. In parentheses, the number of 
those T contributions is given, which are only contained partially. These numbers are also given in 
percents with regard to the total number of T contributions in SDQ space. 

The number of terms with indirect (TST, TDT, TQT, TPT) or direct T, T coupling (TTS, STT, TTD, DTT, 
TTQ, QTT, and TTT) are given. Those terms, which are only partially, are given in parentheses. 

Table IV and Scheme IV). While both CCSD and CCSD(T) contain (at least partially) 
two terms that account for T,T coupling, the corresponding QCI methods do not. 
This means that T effects are exaggerated at the QCI, in particular at the QCISD( T ) 
level of theory. 

Noniterative inclusion of Q excitations leading to CCSD(TQ) and QCISD(TQ) [ 71 
decreases the difference between cc and QCI even more. Both methods contain the 
greater part of all T contributions, differing mainly in the TTQ term. Furthermore, 
both methods account in a similar way for T,T coupling effects (see Table IV and 
Scheme IV). Hence, at sixth order the two methods can be considered to be equiv- 
alent [ 381. 

CCSDT is the first of the CC and QCI methods that also contains the TTT contri- 
bution at sixth order. Furthermore, it covers 28 of the 33 T contributions in SDTQ 

space. Apart from this it accounts for effects arising from P excitations ( QPQ, TPQ, 

QPT, and TPT, see Scheme IV). Therefore, CCSDT is clearly better at sixth order 
than any of the other methods discussed so far. 

The perturbation analysis carried out up to sixth order provides a basis for a 
distinction between the different methods. If molecules are to be investigated for 
which T effects are important, more accurate descriptions can be expected in the 
following order 

MP4(SDTQ) < QCISD(T) < CCSD(T) < QCISD(TQ), CCSD(TQ) < CCSDT . 
In the same direction, the exaggeration of T effects is reduced. In other words, 

M P ~  results should be handled with care since they are definitely exaggerating T 
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Energy Contributions at MPn 

Figure 2. Graphical representation of all energy contributions at nth-order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMP perturbation 
theory ( n  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 , 6 ,  7, and 8) .  A particular energy contribution E L , .  is given by the solid 
line that starts at A = S, D, T, or Q in the E" row and connects B, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC, etc. at row n - I ,  n 
- 2, etc., until n = 4 is reached. Note that at the n th-order level also those excitations are 
included that arise from energy terms at higher order levels ( m  > n).  They are given in 

parentheses after a separator to the right of the scheme. 

effects in the correlation energy. This, of course, is well known [ 15,16,42]. However, 
less known is the fact that QCISD( T ) also exaggerates to some extent T effects since 
coupling between T excitations is not covered by QCISD( T ) at fifth- or sixth-order 
perturbation theory. 

From the analysis given in Scheme IV, it becomes also clear that CCSDT is not 
correct at sixth order. It is the question whether a noniterative improvement of 
CCSDT, for example by Q excitations [ 391 according to 

uv q I 

leads to a new method that is correct in sixth order. Therefore, we have extended 
our analysis to CCSDT( Q) . CCSDT( Q) contains at fifth order the QT term fully, but 
it is still lacking part of the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQQ term. This, however, can be explicitly included in 
the same way as done for CCSD + TQ*( CCSD) [ 351 or CCSD(TQ) [ 71. Hence, 
CCSDT(QQ) would be fully correct in fifth order [ 391. In sixth order, CCSDT(Q) 

contains all 36 energy contributions but some of them are included only partially. 
This is true both with regard to the SDQ, the T, and the PH space. CCSDT(QQ) 
contains some more terms at sixth order (e.g., DQQ and QQD fully), but it is also 
not fully correct at sixth order (see Schemes IVa,b,c) . 
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Figure 3. Graphical analysis of energy contributions at nth-order MP perturbation theory zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5,6 ,  7, and 8) covered by the CCSD correlation energy. See explanations given for 
Figure 2. Note that solid (dashed) lines denote energy terms fully (partially) contained in 

the CCSD correlation energy. 

To get a method that is correct in sixth order, one has to include P and H exci- 
tations, thus leading to CCSDT( QPH) . With the P excitations, all but the QHQ term 
are obtained fully. Hence, CCSDT( QP) is not fully correct at sixth order and, therefore, 
one has to go to CCSDT(QPH). Of course, CCSDT(QPH) will be as expensive as MP6 
since it will require iterative N *  steps and in addition a N9 dependence. 

Analysis of Infinite-Order Effects at the cc and QCI Level of Theory 

A perturbation analysis at higher orders than n = 6 becomes too difficult and, 
therefore, it is advisable to investigate higher-order and infinite-order effects in a 
different way. In Figure 2, the various energy contributions at nth-order perturbation 
theory are displayed in a graphical way. At each order (given by the rows in the 
diagram), the term E"(ABC ...) with A, B, c, etc. referring to s, D, T, etc., excitations 
denotes which interactions have to be considered. However, at the nth-order level 
also those excitations are included that arise from energy terms at higher-order 
levels ( m  > n). They are given in parentheses after a separator to the right of the 
scheme. 

A particular energy contribution E"(ABc..) is given by the solid line that starts 
at A in the E" row and connects B, c, etc., at n - 1, n - 2, etc. until n = 4 is 
reached. For E5( AB), there are 14 paths starting from S, D, T, or Q, that correspond 
to the 14 possible energy contributions to the MP5 energy. Similarly, there are 55 
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S D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Graphical analysis of energy contributions at nth-order MP perturbation theory 
(n zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  6 ,  7, and 8 )  covered by the WisD correlation energy. See explanations given 
for Figure 2. Note that solid (dashed) lines denote energy terms fully (partially) contained 

in the QClsD correlation energy. 

different E 6 ( ~ ~ c )  paths and 221 different E 7 ( ~ B C D )  paths that start at s, D, T, or 
Q for n = 6 and n = 7. Of these, some paths are equivalent due to symmetry leading 
to a total of 36 ( n  = 6) and 141 ( n  = 7) unique energy contributions as shown in 
Scheme 11. Hence, the extension of Figure 2 to higher n leads to an easy dissection 
of M P ~  energies. 

Using similar graphical representations as the one shown in Figure 2, the expan- 
sion of cc and QCI methods in terms of orders of perturbation theory can easily be 
visualized. In Figures 3,4, and 5, the corresponding diagrams for QcIsD, CCSD, and 
CCSDT are shown. In these diagrams, terms that are fully contained at a particular 
order of perturbation theory are given by solid lines, and those, which are only 
partially contained, are given by dashed lines. 

Figures 3 and 4 indicate that both CCSD and QCISD are correct at any order of 
perturbation theory in the truncated configuration space that is made up from s 
and D excitations, i.e., within this space all infinite-order effects are covered. In the 
same way, CCSDT is correct at all orders within the truncated configuration space 
of s, D, and T excitations (see Fig. 5 ). This, of course, is trivial since it just reflects 
the nature of the coupled cluster ansatz [ 17,18 1. More important is that for both 
CCSD and QCISD, infinite-order effects are also covered in the SDQ space with just 
the A...QQ terms being partial. Hence, it is a general observation that cc and QCI 

methods are equivalent with regard to infinite-order effects in the SDQ configuration 
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Figure 5. Graphical analysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof energy contributions at nth-order MP perturbation theory 
( n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 4, 5, 6, 7, and 8 )  covered by the CCSDT correlation energy. See explanations given 
for Figure 2. Note that solid (dashed) lines denote energy terms fully (partially) contained 

in the CCSDT correlation energy. 

space. Since disconnected H excitations are introduced at MP6 by coupling with 
the Q excitations, it is also true that cc and QCI are equivalent with regard to 
infinite-order effects in the SDQH space or in general any SDQHO( 8 ) . . x  space where 
x excitations are generated from cluster operators zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFY. 

The major difference between QCISD and CCSD is in the SDTQ space (compare zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
with Figs. 3 and 4). While in CCSD a considerable number of contributions including 
T effects is contained up to infinite order either partially or even fully, Q ~ I S D  covers 
only some of the E"(A .. T...B) contributions. However, there are no terms E"(T ... s), 
E " ( T  ... D),  E"(T ... T ) ,  or E"(T ...Q), that are (fully or partially) contained in CCSD. 

For CCSD T effects first come in at fifth order, while for QCISD they are first introduced 
at sixth order. As a consequence, one obtains with CCSD T,T or T,T,T coupling 
terms always one order of perturbation theory earlier (n = 6, n = 7 )  than with 
QCISD ( n  = 7, n = 8) .  Further differences with regard to higher excitations such P, 

s( 7 ) ,  etc., arise from coupling with T excitations. For example, TP... A terms appear 
in CCSD already at MP7 while for QcIsD they are introduced at MP8. 

The differences between CCSD and QcISD in the SDTQ configuration space are 
summarized in Tables V and VI, where the number of energy terms arising from 
the various excitations are given up to eighth order of perturbation theory. There 
are 2( l ) ,  6 ( 4 ) ,  2 6 ( 2 0 ) ,  and 9 7 ( 8 2 )  terms E"(T ... A )  (including TP terms) that are 
(partially) covered by CCSD at nth-order perturbation theory with n = 5, 6, 7, and 
8. However, none of these energy contributions is included at the QCISD level. The 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV. Energy contributions resulting from specific excitations covered by QCISD, CCSD, and CCSDT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
at MPn with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5,  6, 7, and 8." 

QCISD CCSD CCSDT 

Order S D Q S D Q S D T Q 

- 5 S l  I 1 1 I 1 1 - - 
D 1  I 1 1 1 1 I 1 1 I 
T -  - - 1 - 1 ( 1 )  1 I 1 1 
Q -  I l ( 1 )  - I l ( 1 )  - 1 

6 s 3  2 2 (1 )  3 2 2(1)  3 3 3 2 

1 ( 1 )  - 

0 2  3 2 ( 1 )  3 3 3(2) 3 4 3 3 ( 1 )  
- 2 (1) 2 (1) 2(2)  3 4 4 4 (2) 

Q 2 (1) 2(1)  4 (3 )  2 ( I )  2(1)  4(3)  2 2(1)  2(1)  5 (4) 

7 S 7(1)  7 (1 )  6 (4 )  8(1 )  7(1 )  7(5)  9 I I  10 9 (3) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT -  - 

D 7(1 )  7(1)  8 ( 5 )  lO(2) 9(2)  I l ( 8 )  I 1  13(1) 12 ( I )  14(7) 
T -  - - 9(6 )  6 (4 )  l l (10) 12(1) 15(3) 14(3) 18(11)  
Q 6(4 )  8 ( 5 )  lO(9) 8 ( 5 )  8 ( 5 )  13(12) 8 ( 5 )  11(7) 9 (6 )  17(15) 

8 S 23 (8) 20(6) 25 (19) 27 (9) 22(7) 29 (23) 32 ( I )  39(4) 36 (4) 42(21) 
D 20(6) 22(7) 24(18) 35(14) 30(12) 42(35) 40(6) 50(11) 45(10) 58(36) 
T -  - - 31 (24) 26 (20) 40 (38) 46 (12) 59 (19) 54 (18) 75 (55) 
Q 25 (19) 24(18) 38 (35) 33 (25) 29 (22) 50(47) 37 (26) 45 (33) 42 (31) 75 (68) 

a The entry zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk ( l )  indicates that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI of the k energy terms are only partially included 

number of terms covered by QCISD (see Table VI) decreases rapidly from about 
50% to 24% at MP8, while at the same time the percentage of those terms that are 
covered only partially strongly increases from 14% to about 60%. Similar trends 
can be observed for CCSD (Table VI). However, at MP8, CCSD covers still 40% of 
the energy contributions. Obviously, as the difference between the two methods 
becomes the larger, the larger the order of perturbation theory is. This can be 
visualized by inspection of Figure 6, where the numbers given in Table VI are 
plotted against the order n. We conclude that CCSD and QCISD differ strongly with 
regard to infinite-order effects. 

Figures 4 and 5 and Table V confirm the superiority of CCSDT with regard to 
both CCSD and QCISD. TT and partially QQ coupling terms are covered by CCSDT 

at all orders starting at n = 5. Therefore, CCSDT represents a significant improvement 
with regard to CCSD, CCSD(T), and QCISD(T). Furthermore, Figure 6 and Table 
VI reveal that CCSDT is the only method that comes close to a complete method 
covering all infinite-order effects. Of course, some of the terms given in Figure 6 
are only partially contained (see Fig. 5 and Tables V and VI), but this number 
increases much more slowly than for CCSD and QCISD. 

The analysis given here for QCISD, CCSD, and CCSDT can be extended to methods 
with noniterative improvements by higher excitations [ 361. Results of such an 
analysis confirm that the differences between QCI and cc decrease when apart from 
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TABLE VI. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANumber of energy contributions covered by Q ~ I S D ,  CCSD, and CCSDT 

at MPn with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 5, 6, 7, and 8." 

Order Total QcISD CCSD CCSDT 
~~ ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 14 7 (1) 9 (2) 13 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) 
50 (14) 64 (22) 93 (8) 

6 55 22 (7) 30 (12) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 (9) 
40 (32) 54 (40) 91 (18) 

7 22 1 66 (31) 107 (61) 193 (63) 
30 (47) 48 (57) 87 (33) 

8 915 221 (136) 394 (276) 774 (355) 
24 (62) 43 (70) 85 (46) 

a Total gives the total number of energy contributions at MPn (not considering 
symmetry) (compare with Scheme 11). For each method the first entry k(1) gives 
the number k of energy terms contained at MPn of which zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 are only partially con- 
tained. The second entry p ( q )  gives k in percent with regard to the total number 
and, in addition, specifies by q how many percent of the k energy terms are partially 
covered. 

T also Q corrections are included [ 361. However, both CCSD( TQ) and QCISD( TQ) 

are inferior to CCSDT, even though they seem to be better at MP5 (see Scheme 111). 
While it is straightforward to analyze infinite-order effects of cc and QCI methods 

in this way, the question remains whether energy contributions at higher orders 
are large enough to decrease the correlation energy significantly. This will not be 
the case if the molecule considered is small. However, with increasing size of the 
molecule, higher-order effects will become more and more important. Also, the 
large number of energy contributions at higher orders will lead to a substantial 
addition to the correlation energy. 

Conclusion 

It has been shown that the MP6 energy can be expressed in terms of 36 partial 
contributions arising from S, D, T, Q, P, and H excitations. Each of these partial 
contributions is size-consistent (size-extensive) . An analysis of cc and QCI methods 
in terms of MP6 leads to the following conclusions. 

( 1 ) If one assumes that S, D, Q, and H, etc., excitations describe essentially orbital 
relaxation and electron pair correlation effects, then all these effects are similarly 
described by cc and QCI methods. For a relatively small closed-shell molecule with 
just single bonds one may encounter only these correlation effects. In this case, 
QCISD is the method of choice, because it is somewhat simpler to carry out 
than CCSD. 

(2 )  For larger molecules and for molecules with distinct T effects, CCSD should 
perform significantly better than QCISD, because it covers (contrary to QCISD) a 
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Figure 6. Number of energy contributions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEn( ABC..) covered by QCISD, CCSD, and cCSD7 

at M P ~ .  Numbers are given without considering symmetry. 

considerable number of higher-order T effects including important T,T coupling 
effects. 

( 3 )  A noniterative improvement of QCISD by T excitations is more important 
for QCISD than CCSD. Nevertheless, CCSD( T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) should still perform much better than 
QCISD( T ), because the latter method does not contain important T,T coupling 
terms. As a consequence, QCISD( T ) exaggerates T effects, which has to be considered 
in calculations of molecules. 

(4)  The difference between QCI and cc is considerably decreased at the CCSD( TQ) 
and QCISD( TQ) level of theory. Both methods should perform similarly in calcu- 
lations. 

(5 )  CCSDT is clearly better than CCSD(TQ) and QCISD(TQ) at higher orders of 
perturbation theory, even though this seems to be not the case at M P ~  (Scheme 
111). Furthermore, CCSDT is the only method among those investigated that comes 
reasonably close to covering all important infinite order effects (see Fig. 6). 

( 6 )  In molecular investigations that require the inclusion of T effects, the various 
cc and QCI methods should lead to improved results in the following order. 

MP4(SDTQ) < QCISD(T) < CCSD(T) < QCISD(TQ), CCSD(TQ) < CCSDT. 

In the same order, the overestimation of T effects is reduced. 
(7) To make CCSDT correct at sixth order it has to be extended to CCSDT( QPH), 

which is an iterative O ( N 8 )  method with a O(N9)  dependence. 
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