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imurn likelihood estimator of the structural parameters is not

consistent as the number of groups increases, with a fixed number

of observations per group. Instead a conditional likelihood

function is maximized, conditional on sufficient statistics for
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effects rwdel, in which the distribution of the incidental par-

ameters may depend upon the exogenous variables.
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ANALYSIS OF COVARIANCE WITH QUALITATIVE DATA

by

Gary Chamberlain
Harvard University

1. Introduction

This paper deals with data that has a group structure. A simple

example in the context of a linear regression model is

E(yjtlx, , ct) = 'x + c (i=l.. . ., N; t=l, . . ., T),

where there are T observations within each of N groups. The are group

specific parameters. Our primary concern is with the estimation of ,

a parameter vector conunon to all groups. The role of the is to control

for group specific effects; i.e., for omitted variables that are constant

within a group. The regression function that does not condition on the

group will not in general flentlfy :

E(y1Jx

In this case there is an omitted variable bias.

An important application is generated by longitudinal or panel data,

in which there are two or more observations on each individual. Then the

group is the individual, and the c capture iiicH.vidual differences. If

these person effects are correlated with x, then a regression function that

fails to control for them will not identify 3. In another important application

the group is a family, with observations on two or more siblings within the

family. Then the ct. capture omitted variables that are family specific,

and t1iy give a concrete representation 10 family background.

We shall assume that observations from different groups are independent.
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Then the c. are incidental parameters (Neyman and Scott 13111, and ,

which is common to the independent sampling units, is a vector of structural

parameters. In the application to sibling data, T is small, typically

T=2, whereas there may be a large number of families. Small T and large N

are also characteristic of many of the currently available longitudinal

data sets. So a basic statistical issue is to develop an estimator for 3

that has good properties in this case. In particular, the estimator ought

to be consistent as N - for fixed T.

It is well—known that analysis of covariance in the linear regression

model does have this consistency property. The problem of finding consistent

estimators in other models is non—trivial, however, since the number of

incidental parameters is increasing with sample size. We shall work with

the following probability model: y. is a binary variable with

Prob(y = lix, ' = + ci.),

where F( ) is a cumulative distribution function such as a unit normal or

a logistic. For example, y may indicate labor force participation,

unemployment, job change, marital status, health status, or a college

degree. Section 2 considers maximum likelihood (ML) estimation of the fixed

effects version of this model. A simple algorithm is available which

involves a weighted analysis of covariance at each iteration. The ML

estimator of is not consistent (for fixed T), however, and we present a

simple example with T=2 in which the I'IL estimator of converges to 2.

Section 3 presents one solution to this problem by working with a

conditional likelihood function that conditios on sufficient statistics

for the incidental parameters. This likelihood function does not depend

upon the incidental paraneters, and hence standard asymptotic theory for

maximum likelihood estimation applies. This approach is applied to a
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multinomial logit model for grouped data and to the inultivariate log—linear

probability model. Section 4 develops an alternative approach, based on

a random effects model in which the incidental parameters are assumed to

follow a distribution. The important point here is that the distribution

of the c is not assumed to be independent of x; otherwise the problem of

omitted variable bias would be assumed away from the beginning. Throughout

the paper we shall use the familiar linear regression case to guide the

exposition.

2. Fixed Effects: Maximization of the Joint Likelihood Function

We shall begin with a brief review of the linear regression case.

Let

= + a. +

where is i.i.d. N(O, So in addition to assuming independence across

the groups, we are assuming that observations within a group are independent

as well, conditional on the group effects. The dependence of different

observations within a group is assumed to be due to their common dependence

on the group specific aj. More general forms of dependence are, of course,

possible; for example, there could be serial correlation in addition to

the c in the longitudinal case.

Maximum likelihood for this model is simply a multiple regression of

y on x and a set of group indicator dummy variables. A useful computational

simplification is that the ML estimator of can be obtained from a

regression of y—y. on iti' where y. and . are group means Iy1/T).

In the case of T=2, this is equivalent to a regression of y.2—y11 on

x —x. . Since we have
..i2 -.il

i2 — y11
= i2 — il + —

£11,
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with the 's independent of x, it is clear this provides a consistent

estimator of as N - (provided that there is sufficient variation in

-

There is a comparable computational simplification for the probability

models. We shall discuss ML estimation using either a Newton—Raphson or

a scoring algorithm, and shall show that each iteration reduces to a weighted

analysis of covariance. The binary y are assumed to be independent

(conditional on x, , and a) both between and within groups, with

Prob(yi = lix, , a) = F('x. + a.). Let O'z. = 'x. ÷ a.. Then
it 1 -'it - - it 1

the log—likelihood function is

L = E hF(6'z. ) + (1it - lnIl — F(Ezj)]}.
i,t

Note that if y = 1 for all t then the ML estimate of a is °, and ifit i

y 0 for all t then the ML estimate of a is —no. Hence the observationsit i

on such groups do not affect the ML estimate of , and we can simplify by

only including in L the groups within which y varies.

We have the following score vector and Hessian:

y l—y 2

(it it)
i,t F 1—F F'it OOT = ih1

where F and its derivatives are evaluated at Oz
, and- it

it l—y y l—y
_____ at ith = —i + - it] (F')2 + —

1—F ) F".it
(1—F)

Pu dr/]It is well—known that L is concave for probit [F(u) J e

or for logit IF(u) eU/(l + eU)]. Hence a Newton—Raphson algorithm is

expected to be effective:

—1 L
AU = —(,) -

Also of interest is a scoring algQrithm which replaces
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by its expectation:1

= E(h1)

where

E(h ) — (F')2
it

—
F(l—F)

In either case the computational burden at each iteration comes from

inverting where s1 is either h.t or E(h.). Simplifying

the partitioned inverse gives the following formulas for up-dating

13 and a.:— 1

= s - E
Si '*)

it it - S

Aa = —(L13)' . (i=1,. . ., N),

where

it = — F)/F'

— 1 —* 1= . , = — . . , p. = — . p.i it -'-1 S. it -it 1 S. t it it1 '- 1

At each iteration, F and its derivatives are evaluated at the current values

for 13'x. + a..— it 1

This iterated, weighted analysis of covariance algorithm is computationally

effective. 2 Unfortunately, the consistency property (for fixed T) of the NL

estimator of 13 in the linear regression model does not carry over to this

case. That maximum likelihood need not be consistent in the presence of

incidental parameters can be illustrated in the linear regression model.

The ML estimator of a2 doe; not adjust for degrees of freedom, and hence

plim a2 = T-l

For T=2, the ML estimator is inconsistent by a factor of two.3
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Ano thexampl e is a. tour egJi on

it = i,t_i + + Ei.

We shall condition on y10. In that case the likelihood function with

6it i.i.d. N(O, a2) is formally identical to the previous case. The log—

likelihood function is quadratic in 13 and a (given a2), and the ML estimator

of 13 is analysis of covariance. With T=2, it can be obtained from a least

squares regression of y12y1 On Y1i—Yo. Given that the log—likelihood

function is quadratic, it is rather surprising that the ML est:finator

for 13 is not consistent. The inconsistency follows immediately since

i2 — = 13(y.1 —
y.0) + i2

and is correlated with y1. If the joint distribution of
(y0. y1, y2)

is stationary, then the estimator converges to (13—1)12 as N-°.

As an example of the inconsistency of maximum likelihood in the probability

models, consider the following logit model: F(u) = e'I(l + eU), T=2,

x.1=O, x.2=l, i1, . . ., N. So the "treatment" is administered only to

the second observation in the group. Assume that the sequence of a1ts is

such that the following limits exist:

llm* E[y.1(l—y2)Ja.] m1
N-°° 1

1im E[(l—y.1)y.2a.] =
m2

where E1y11(1—y.2) a] = F(ai)F(—ct1 —13) and E[(l_y11)y12Ia] F(_a)F(a + ).
Then Andersen 11973, P. 66] shows that the ML estimator of 13 almost surely satisfies

13
= 213

as N-'°°. A simple extension of his argument shows that if F is a distribution

function corresponding to a symmetric, continuous, non—zero probability

density, then

1 m.)
13 = 2F'( L

m1+m2
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almost surely as N-. The logit case is special in that m2/m1 = e1,

independently of the sequence of ctj's. In general the limiting

depends on this sequence; but if all of the c = 0, then once again we

obtain = 2 almost surely as N-oo.

We conclude that the linear regression model is very special. The

consistency of the ML est:imator of does not carry over to other models.

The next section interprets this result by introducing a conditional

likelihood function that conditions on sufficient statistics for the

incidental parameters. In the linear regression case, the conditional ML

estimator of is identical to the ML estimator based on the original joint

likelihood function. Then we show that the idea of using such a conditional

likelihood function can be applied to other models.

3. Fixed Effects: Lhe Conditional Likelihood Function

We have seen that maximization of the fixed effects likelihood

function can give seriously inconsistent estimators if there are only a

small number of observations per group. This section will develop an

alternative approach using a conditional likelihood function. The key idea

is to base the likelihood function on the conditional distribution of the

data, conditioning on a set of sufficient statistics for the incidental

4
parameters.

We shall begin by applying this idea to the familiar linear regression

case. Let

yit = + +

with i.i.d. N(0, 02). Then a sufficient statistic for a is

It is straightforward to check that the conditional density for y1, . . .,
conditional on is
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• ' =

(2S-(T-l)/2(T-J) exp{-
22 (Yft

- - '(X -

Note that this conditional density does not depend upon .. Hence the conditional

lo;—likclihood function depends only upon and a:

L - N(T-l) Thu - [(y. - y.) - '(x. -.fl2;
i it 1 it L

there is no incidental parameter problem, and so maximum likelihood will

give consistent estimates provided that the usual regularity conditions are

satisfied. The conditional ML estimator of is the analysis of covariance

estimator that results from maximization of the joint likelihood function.

Hence the consistency of that estimat:or, which was surprising given the

incidental parameter problem, follows immediately from the coincidence of

the joint and the conditional ML estimators.

The advantage of the conditional likelihood approach can be seen in

the conditional ML estimator for a

2 1 — — 2=
N(T—1)

Unlike the joint ML estimator, here there is a correction for degrees of

freedom which ensures that â2 isa consistent estimator of cY2.

The conditional likelihood approach can be applied directly to the

fixed effects logit probability model, since is again a sufficient

5
statistic for ct.. Consider first the case of T=2. If1

then y and y.2 are both determined given their sum.

interest is y11 + y2 = 1. Then the two possibilities

il' y12) (0,1) and w. = 0 if (y.1, 'i2 = (1,0).

il + = ( or 2,

So the only case of

are w1 = 1 if
The conditional
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density is

Prob(w = 1 ÷ = 1) Prob(w1 = l)/[Prob(w1 = 0) + Prob(w 1)1

' i2il
= e

, = F['(x —x.
-.12 -.il

l+e

which does not depend upon c. The conditional log—likelihood function is

L =
J1 {w1 lnF[8'(x12—x1)] + (l_w) lnF[—8'(x.2—x.1)]},

1

where I = {ijy11 + y12 = l}.

This conditional likelihood function does not depend upon the incidental

parameters. In fact, it is in the form of a binary logit likelihood function

in which the two outcomes are (0,1) and (1,0) with explanatory variables

x,,—x1.
This is the analog of differencing in the two period regression

model. The conditional ML estimate of 8 can be obtained simply from a standard

ML binary logit program.

The conditional ML estimator of B Is consistent provided that the conditional

likelihood function satisfies regularity conditions, which impose mild

restrictions on the a. These restrictions, which constrain the rate at

which the sequence of a1's is allowed to become unbounded, are discussed in

Andersen [1], [2]. Furthermore, the inverse of the information matrixbased

on the conditional likelihood function provides an a9ymptotIc (as N-*)

covariance matrix for the conditional ML estimator of 8 6
In deriving this

information matrix, one must be careful to note that I is a random set

of indices. This can be made more explicit by defining d1 = 1 if

+ = 1 and d1 = 0 otherwise. Then we have

= _dF(l_F) izn i2il
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where F and its derivatives are evaluated at (x.2.-xii). The

information matrix is

J = LP1F(l-F)(x.2-x11)(x12-x11,

where

= + il(1 + F(—ci. i?(c +

This information matrix fs difficult to evaluate since we do not have

a consistent estimator for e., which appears in Moreover, a standard

ML binary logit program will be evaluating

2 2
- ___ ___E

(since the Hessian of the logit log—likelihood function is non—stochastic),

which depends only upon (given d). In fact, is an appropriate asymptotic

covariance matrix for the conditional ML estimator of , since we can apply

the strong law of large numbers to establish that

a. s.

J - J - 0 asN-Nd N
if m.m/i2 <

i -.J--,1

wherein., replaces each element of (x-x) by its square. This follows

since the d are independent with Ed. = P., and both F and the variance of
1 1 1

d1 are uniformly bounded. The condition for convergence clearly holds if the

are uniformly bounded.7

For general T, conditioning on 11, . . ., i, gives the following

conditional log—likelihood function:

L = ln [exp('x i )/ exp('x. d )],
I t

dEB1
t' t
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where B1 = {d =
(d1, . . ., d)1d 0 or 1 and td = yft}. L

is in conditional logit form with the alternative set
(B1) varying

across the observations.8 There are T+l distinct alternative sets corresponding

to yft = 0, 1, . . ., T. Groups for which it: = 0 or T contribute zero

to L, however, and so only T—l alternative sets are relevant. The alternative

set for groups with it = s has () elements, corresponding to the distinct

sequences of T trials with s successes. For example, with T=3 and s=l

there are three alternatives with the following conditional probabilities:

—x )
Prob(l,0,0jy. = 1) = - —il i3

tit D

e' i2j3
Prob(O,1,0Jy. = 1) =it

3'(x11—x.3) '(x.2—x.3)Prob(0,0,lJy. = 1) = , D = e + e + 1.it

Since L is in the form of a conditional logit log—likelihood function,

it can be maximized by standard programs. The information matrix evaluated

by such a program will Implicitly condition on the alternative sets, which

are random in our problem. So the program will evaluate B = —E(2L/'IB).
Since the Hessian of the log—likelihood function in conditional logit is

non—stochastic, we have B = —2L/'. Hence is an appropriate asymptotic

covariance matrix for the conditional ML estimator of provided that

JB/N converges to its expectation. This ili follow from the strong
law of large numbers if, for example, the are uniformly bounded.
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In the remainder of this section we :ha1l first extend our conditional

likelihood approach from the binary to the multinomial case; then we shall

apply our approach to the multivariate lcg-lincar probability model, thereby

relaxing the assumption that the observations within a group are independent.

Multinomial Logit for Grouped Data. Say that it can take on three values:

a, b, c. Then we have

a.. + 3'x
1J - - itj

e
Prob(y. = j) = a + (j = a, b, .ii -itj

We assume that the y's are independent both within and between groups. We

shall condition on the number of occurrences within the ith group of each of

the three events.

If T=2, then the only cases of interest are those in which two of the

three events each occurs once, for otherwise there is no stochastic variation.

Conditioning on a and b each occurring once gives (suppressing the i subscript):

-

PfObka,b)I (a,b) or (b,a)] = 1 + e'

where z = (x —x ) — (x —x ). Hence we have a binary logit problem.2b .2a -lb .la

with (a,b) and (b,a) as the two alternatives and with z as the explanatory

variables. The incidental parameters do not appear in this conditional probability.

There is a similar result when we condition on a and c each occurring once,

and also when b arid c each occur once.
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In the general case of T independent observations on each group with

y. taking on J values, we define w. . = 1 if y. = j and w. . = 0 otherwise.it it] it it]
We condition on 5.. = j=l, . . ., J. This gives the following

conditional log—likelihood function:

L =

where

Bi = {d =
(d11, . . ., d,.)1d1 = 0 or 1, dt. 1, s r1

This is in the form of a conditional logit log—likelihood function and can

be maximized by standard programs.

The Log—Linear Probability Model. We shall relax the assumption that the

are independent within a group by extending the conditional likelihood

9
approach to the general log—linear model. We begin by illustrating the log—

linear model for the binary case = 0 or 1) with T=3 (the i subscripts

are suppressed):

ln Prob(y1, y2, y3) = p + y1y + y2y +

+ 112y1 + + 23yy + 123yyy,
where y* = 1 if y = 1 and y* = —1 if y = 0. This is a saturated model

since there are 2—l = 7 independent probabilities, and there are seven

free parameters with p determined by the constraint that the probabilities

sum to one.

A common way to impose structure on this model is to specify the main

effects in terms of a set of explanatory variables: 1jt = and to assume

that the interaction terms are constant: = for s, t=1, 2, 3, and

il23 l23 Additional structure can be imposed by specifying that the
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lnteraction terms beyond some order arc zero; for example, that = 0.

We shall introduce group specific effects by letting = ç +it i -Sit
It is straightforward to check that

Prob(y.1 = ly.2, y13) * * * *in
l—Prob(y11=1jy12, •3)

=
2a1 + 2'x + 2'y12y12 + 2l3i3 + 2il23Yf2vfl.

So If the interaction terms = = 0, then y1 is independent of

and y3, and the probability of y1=l takes the logistic form that we have

been using (except for a scale factor of 2).

For the general case of T binary variables we have (suppressing the i

subscripts):

T
in Prob(y1, +

k=l tEM
• •Y

where Mk = {(t1, . . ., t)} is the set consisting of the () groups of

k integers that can be formed from the integers 1, . . ., T. We shall

specify the first order terms asy = a + 'x . Th interaction terms
it I - =it

may depend upon x but with coefficients that do not vary in i, so that the

incidental parameters are confined to the first order terms.

Since 1.yft is a sufficient statistic for a., we form the following

conditional density:

exp[(a. + f'x. )y + g(y.)]
Prob(y.1, . 'IT't = 1 —it it

exp[(a. + )d* + g(d)]
dEB1

it t

exp[B'Ex.y+ g(y.)]

+ g(d)I

where B. = {d =
(d1, . . ., dT)Idt = 0 or 1 and tdt =

= . and g( ) does not depént upon a.. We see that

the conditional density does not depend upon a.. The corresponding

log—likelihood function differs from the one for independent y's
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only in the g( ) terms. For example, with T=3 and = 1 we have

g(l, 0, 0) = l2 - l3 + 23 + l23 g(O, 1, 0) = l2 + l3 -

+ 123 g(0, 0, = l2 — l3 — 23 + l23 Rescaling all the coefficients

by one—half, we can write the conditional probabilities as

Prob(l, 0, 0Iy = 1) = expt'(x.1 — i3 + 23 12

Prob(O, 1, OIy = 1) = exp['(x12 — j3) + 113 — 1121

Prob(0, 0, ly = 1) =

with D determined so that the probabilities sum to one. So this differs

from the independence case by introducing alternative specific constants

into the conditional probabilities.

We have seen that it is fruitful to base the likelihood function on a

conditional distribution that conditions on sufficient statistics for the

incidental parameters. It is not always possible, however, to find a sufficient

statistic for such that the conditional distribution is sufficiently informative

about The next section examines a random effects model in which a consistent

estimator for can be obtained without relying upon sufficient statistics for

the cz1.

4. Random Effects: the Marginal Likelihood Function

An alternative approach is to assume thai: the incidental parameters

follow a distribution. Then the likelihood function can be based on the

density for y, given x, , and G, the distribution function for ct. If

we specify a parametric family for C, indexed by a fthite parameter vector

T, then we have the following log—likelihood function for , i:
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L inff(yj, , )dG(cx, i).

So the density function for y conditional on has been replaced by a

density function that is marginal on c. The maximization of this i.ikeiThood

function will, under weak regularity conditions, give consistent. (as N -

estimators for and • 2

This approach introduces additional information and is most naturally

formulated in Bayesian terms. A potentially appealing prior distribution

specifies that the ci's are independent and identically distributed.

This can often be justified bydeFinetti's 116] exchangeability criterion.

If (for arbitrary N) the distribution of the a.'s is not affected by

permuting them, so that the subscript is purely a labeling device with no

substantive content, then the joint distribution of the &s must be ex—

pressable as random sampling from a univariate distribution. This criterion

will often be satisfied when i indexes individuals (longitudinal data) or

families (sibling data).

The main point I want to make here is that the random sampling

on is appropriate only as a marginal distribution for a. We

must, however, specify a distribution for a conditional on x. The convent1uiii

random effects model assumes that a is independent of x. But our interest

in introducing the incidental parameters was motivated by missing variables

that are correlated with x. If one mistakenly models a as independent of x,

then the omitted variable bias is not eliminated. So we want to specify a

13
conditional distribution for a given x that allows for dependence. A

convenient possibility is to assume that the dependence is only via a linear

regression function: c. = Tr'x. + v., withx = (x , . . ., x ), and where v
1 .i 1 -.il -iT

is independent of x. We appeal to exchangeability to argue that the v are

independent and identically distributed. A restriction on the regression

function that may be appropriate is n'x. =
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We shall illustrate this approach with a production function example

that leads to a linear regression model.14 Say that a farmer is producing

a product under the following Cobb—Douglas technology: Y = LQ'e6,

where Y is output, L is a variable factor (labor), Q is a fixed factor (soil

quality), is stochastic (rainfall), and 0 < < 1. Assume that c is

distributed independently of Q; persistent differences in average rainfall

can be incorporated into Q. We assume that the farmer knows the product

price (P) and the factor price (W), which do not depend on his decisions,

and that he knows Q. The factor input decision, however, is made before

knowing E, and we assume that L is chosen to maximize expected profit:

E(PY — WLP, W, Q).

There are observations on il, . . ., N farms in each of t=l, . . ., T
periods. Assume that Q is constant over the period of the sample and tiat

the distribution of c conditional on Q, W, and P is i.i.d. N(0, a2).

Then we have the following production and factor demand functions:

= x1 + + 61t

1
x1 = p + + c) +

where y = mY, x = lnL, c=ylnQ, p = (ln ÷ 42)/(l_), z = ln(P/W),

and u is a random term, reflecting optimization and other errors, which is

independent of c and c. Although Q is krown to the farmer and affects his

factor demand decisions, we assume that it is not observed by the econometrician;

is included in order to capture this omitted variable. The example is

useful in showing explicitly how a correlation between x and a might arise.

We shall focus on tiiing th roduction function without using

whatever price data is available. A pooled least squares regression of y

on x, which does not allow for farm effects, is inconsistent. If a is

independent of z, then as N-° this estimator converges to
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2
aa

(l—) (Vw + VB)

where
2

— 5L) VB
plim — —

N j I

and a Is the marginal variance of

approach, a1 i.i.d. N(i, az), that

of x. Then the ML estimator of ,

least squares. This is equivalent

from fractional means: regress

This estimator converges,as N-*o, to

(l—y) 22a

(1) + (1—y) VB1

Hence It is consistent only as T-°.

So it is essential to allow for a dependence between a and x.

Let w1 = z./(l) + u1 and assume that w. is i.i.d. N(m, ). Then the

distribution of a conditional on x is given by a1 = K + 'rr'x. + v1, where

2 2
a a

- a. a -l
2 +] 2— (l-.)

i is a Txl vector of ones, and v is independent of x with v1 i.i.d. N(O, a2).

Note that assuming a stationary does no imply that IT'x1 Sx. If T > 2.

A sufficient condition is that is equic)rrelated: =
p11 + p29Q'.

The ML estimator of (, Tr), allowing or several variables in

x1 and given A = a2/a2, can be obtained From the regression of —

on — ix. and (l—y)x.. The resulting estimator for can be obtained from

the regression of —
yy1 on the residual from the regression of x1 —

on x1. This residual is — hut the regression of — —

is equivalent to the regression of —
y1 on it —

We have obtained the interesting result that a random effects

1V = plim-—- (x.
N-*° NTj,t it-

a. Now consider a random effects

incorrectly assumes that a is independent

conditional on A = a2/a2, is generalized

to ordinary least squares using deviations

— — —1/2— yy. on — ix., where y=l — (1 + AT)
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specification can give a ML estimator of 8 that is identical to the fixed

effects estimator, if we allow the distribution of the incidental parameters

to depend upon x)-50f course the linear regression case is special, since

the fixed effects estimator is consistent. This is not true for the (joint)

ML estimator of 8 in the linear autoregressive model or in the probability

models. So the random effects specification leads to new estimators In those

cases.

In the autoregressive case, let

+a +cio I Ii

i2 = il + a1 +

where, conditional on y and a , we have (c.1, c. ) i.1.d. a normal10 I i2

distribution with mean 0 and diagonal covariance matrix: d1ag{o,

Let =
Try10 + v1, where, conditional on y10,we have v1 i.i.d. N0, 02). Then

y12) = i' 62'io + (u11, u12),

where = + 2 = + IF, and u1 is i.i.d. N(0, E). This is a inultivar late

regression model in which the ML estimator
of 6 is obtained from the least

squares regressions of
y1 and y2 on y0. Then we can solve for the ML

A A Aestimator of $ from 8 =
(62

—
61)1(61

— 1). This estimator is consistent

if the y10 have sufficient variation and if 8 + IF 1. It is equivalent

to taking first differences, 2 =
8(y11

—
y10) + £12 — c, and

using y0 as an instrumental variable for y11 — If we add the

assumption that =
02 then an additional consistent estimator of 8

can be obtained from a consistent estimator of E. Now the ML estimator

of 8 will combine the estimator obtained from
the regression coefficients

with the estimator obtained from the residual covariance matrix.

The likelihood function for the joint distribution of
(v0, y1, y2)
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is obtained by multiplying the likelihood conditional on y0 by the

marginal density of y0. If the parameters of this marginal density are

left unconstrained, then the ML estimator of is unaffected. Imposing

stationarity on the joint distribution will, however, imply constraints.

If is i.i.d. normal with variance p, then stationarity implies

that P = /I(1rj.
In the binary data case, let Prob(y4 = lix, , a) = F('j + a.). Then

the log—likelihood function under our random effects specification is

y l-y
L = ElnfflF('x ÷ ir'x1 + v) it[1 — F('x1 +irx + v)] dH(vIp),i t — _it ——— —

wherekl( i) is a family of univariate distribution functions indexed by

the parameter vector P. For example, if F is a unit normal distribution

function and we choose H to be the distribution function of a N(0, 02)

random variable, then our specification gives a multivariate probit model:

= 1 1f + + >

i.i.d. N(O, 0vTT +

where is a T x 1 vector of ones. The novel feature of this model is

the inclusion of the term 7r'x. to capture the dependence between the

incidental parameters and x.

For example,.consider estimating the effect of ability on the

probability of attending college, controlling for family background. There

is a sample of N families with test scores (x) for each of T2 brothers

per famli, y. The family effect: Is Intended to capture omitted variables

such as family wealth and parents' s.hooling. Under this interpretation,

a is likely to be correlated with x Our procedure n the probit ce
is to fit a (constrained) bivariate robit model.for y11 and y12 on and
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x12. This provides estimates of

+ir1 r2 1

from which we obtain an estimate of by taking the coefficient of sib l's

test score in sib l's equation minus the coefficient of sib l's test score

in sib 2's equation. We can do the same with sib 2's test score and hence

the constraint on the matrix of probit coefficieits.

From the symmetry of this example (ignoring birth order effects),

it is appropriate to set = 2 Then can be consistently estimated

by taking the coefficient of sib l's test score in sib l's equation minus

the coefficient of sib 2's test score in sib l's equation. Hence we only

require y for one of the sibs provided that we have x for both. For

example, the Michigan Panel Study of Income Dynamics 1261 has extensive

information on the respondent and much less complete information on his

siblings. There is schooling data for the respondent and his oldest

brother, but earnings and occupation data only for the respondent.

Nevertheless, we can control for family backgiound In assessing the

relationship between schooling and earnings by including the schooling of

sib 2 in a regression of sib l's earnings on his schooling. Then

is estimated by the excess of sib l's schooling coefficient over that of

his brother. A probit example could arise in studying the relationship

between schooling and occupation, where occupations are classified into

two groups corresponding to production and non—production workers.

5. Conclusion

The paper has discussed three approaches t the analysis of grouped data:

the joint likelihood function, the conditional likelihood function, and the

marginal likelihood function. Throughout the paper, our concern has been with
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the parameters () that are common to all of the
groups; the incidental parameters

(a1) are intended to capture
group effects whose omission would

result in biased
estimates of . The objective has been to obtain estimators that converge
to as the number of groups (N)

increases, even if the number of observations

per group (T) is small. Important
applications include longitudinal

data,
in which there are two or more observations on each individual,

and the a. capture person effects; and sibling dnia, in which the
a1

capture family effects, such as omitted family background variables.

We have illustrated the inconsistency or the olnt ML estimator iii
the fixed effects probability model s. One solution, within the fixed

effects model, is to maximize a conditional
likelihood function that

conditions on sufficient statistics for the incidental parameters. This

conditional likelihood function does not depend upon the incidental
parameters,

and so standard asymptotic
theory can be applied. In the

(normal—theory)

linear regression model, the consistency of the joint ML estimator of

corresponds to the coincidence of the
joint and the conditional ML estimators.

In the log:Lt case, however, the conditional ML estimator of is consistent

whereas the joint ML estimator is not (for fixed T). The conditional ML

estimator for the logit case can be implemented with a standard conditional

logit program, which allows the alternative
set to vary across the observations.

Finally, we discussed random effects
models which impose a (prior)

distribution on the incidental
parameters. Then the likelihood function

is based on the distribution for
y that is marginal on the incidental

parameters. The important point here is that the specification of the

conditional distribution fora. given x should allow for dependence; the

common assumption that a. is independent of x assumes away omitted varIable

bias. In the linear
regression model, the ML estimator for under our

random effects specification is
once again analysis of covariance. So

in this special case, all three of our approaches give identical estimators
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for . In the probability models, however, the marginal likelihood

specification leads to new estimators.

The marginal likelihood approach has the advantage of not requiring

simple sUfficient statistics for the incidental parameters. Furthermore,

it imposes (stochastic) restrictions on the fixed effects model, which will

lead to more precise estimators if the restrictions are valid. The dis—

advantage is that in order to specify that the c are independent of each

other (conditional on x), our approach requires a particular parametric

class of conditional distributions for . given x. Hence some sensitivity1 --

analysis is called for. The fixed effects model allows for a very general

relationship between the incidental parameters and the explanatory variables.
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Footno tes

11n the logit case the Hessian does not depend upon y, and so scoring is

identical to the Newton—Raphson algorithm.

program to implement this algorithm is described in Hall [21],

along with an example of the computational efficiency of the program.

A labor force participation application of a fixed effects probit model

is presented in Heckman [221.

3mis example is discussed in Neyrnan and Scott [31].

4The use of conditional likelihood functions for incidental parameter

problems is discussed in Bartlett [8], [9], [10], Andersen [1], [5],

Kalbfleisch and Sprott [23], and Barndorff—Nielsen [7].

5The conditional likelihood approach in the logit case is closely related

to R. A. Fisher's [17] exact test for independence in a 2x2 table. This

exact significance test has been extended by Cox [15] and others to the

case of several contingency tables. Additional references are in Cox [15]

and in Bishop et al. [111. A conditional likelihood approach was used

by Rasch [321, f 331 in his model for intelligence tests. The

probability that person i gives a correct answer to item number t is

exp(czi + )/[l + exp(ai + this is a special case in which is a

set of dummy indicator variables. An algorithm for conditional maximum

likelihood estimation in this model is described in Andersen [4].

(3

The efficiency of the conditional ML estimator is maximized by conditioning

on minimal sufficient statistics for the incidental parameters. Zy

is a minimal sufficient statistic for both in the linear regression

model and in the logit model. Even so the conditional ML estimator need

not attain the asymptotic Cramer—Rao bound as N-*oo for fixed T. It does

in the linear regression case but not in the logit model. However, I
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doubt whether there is another consistent estimator that has smaller

asymptotic variance in the fixed effects logit model. The random effec:s

model of section 4, which introduces additional (stochastic) restrictions,

can lead to a more efficient estimator of .

7An alternative justification for the use of —E(2L/B'Id) can be based on

stating the limiting distribution properties in terms of the conditionaL

distribution, in which the observed values of the sufficient statistics

are treated as parameters. This approach is pursued in Andersen [3].

8The conditional logit model is developed in McFadden 1 25].

9The log—linear model is developed in Goodman 118], [19], Haberman [20],

and Nerlove and Press 130]. Additional references are in Bishop et al. [11].

101n the probit model, for example, there does not appear to be such a

sufficient statistic.

11Kalbfleisch and Sprott [23] call this an integrated likelihood function.

A marginal likelihood function can also be useful in a fixed effects

approach, in which we consider the distribution of some function of

conditional on a.. For example, in the linear regression case with T=2,

the distribution of y12—y11 does not depend upon ct1. Hence maximizing

the associated likelihood function gives consistent (as N-oo) estimators

of and . Once again the ML estimator of is the standard analysis of

covar lance estimator.

Note that the original Kiefer and Wolfowitz [24] results were not limited

to the parametric case.

13Note that the empirical work by Chamberlain and Griliches [13], 114]

and Chamberlain [121 does allow the random effects to be correlated with

the explanatory variables. Also in the original Balestra and Nerlove

[6] model, the autoregressive component is correlated with the random effects.
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14Thjs example is discussed in Mundlak [271, [281.

15This result is discussed in Mundlak [29] for the case ir'x. =

S
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