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Abstract: This work investigates the performance of five depth cameras in relation to their poten-
tial for grape yield estimation. The technologies used by these cameras include structured light
(Kinect V1), active infrared stereoscopy (RealSense D415), time of flight (Kinect V2 and Kinect Azure),
and LiDAR (Intel L515). To evaluate their suitability for grape yield estimation, a range of factors
were investigated including their performance in and out of direct sunlight, their ability to accurately
measure the shape of the grapes, and their potential to facilitate counting and sizing of individual
berries. The depth cameras’ performance was benchmarked using high-resolution photogrammetry
scans. All the cameras except the Kinect V1 were able to operate in direct sunlight. Indoors, the
RealSense D415 camera provided the most accurate depth scans of grape bunches, with a 2 mm
average depth error relative to photogrammetric scans. However, its performance was reduced in
direct sunlight. The time of flight and LiDAR cameras provided depth scans of grapes that had about
an 8 mm depth bias. Furthermore, the individual berries manifested in the scans as pointed shape
distortions. This led to an underestimation of berry sizes when applying the RANSAC sphere fitting
but may help with the detection of individual berries with more advanced algorithms. Applying an
opaque coating to the surface of the grapes reduced the observed distance bias and shape distortion.
This indicated that these are likely caused by the cameras’ transmitted light experiencing diffused
scattering within the grapes. More work is needed to investigate if this distortion can be used for
enhanced measurement of grape properties such as ripeness and berry size.

Keywords: grapes; yield estimation; depth cameras; RGB-D

1. Introduction

Accurate and timely yield estimation can have a significant effect on the profitability
of vineyards. Among other reasons, this can be due to better management of vineyard
logistics, precise application of vine inputs, and the delineation of grape quality at harvest
to optimise returns. Traditionally, the process of yield estimation is conducted manually.
However, this is destructive, labour-intensive and time-consuming leading to low sampling
rates and subjective estimations [1]. Automating yield estimation is therefore the focus of
ongoing research in the computer vision field [2].

Current 2D camera techniques predominantly rely on distinct features of grapes, such
as colour or texture, to identify and count individual berries within RGB (Red, Green, and
Blue) images [3,4]. However, the accuracy of yield estimations from these approaches is
greatly restricted by the proportion of grapes visible to the camera. Hence, occlusion of
grapes is an issue. Additionally, errors in the sizing of grapes can occur unless the distance
between the camera and the grapes is known.

An alternative technique, which has been reported to provide improved yield accuracy,
has been to incorporate 3D information. Grape bunch 3D architectonic modelling has been
performed from high-resolution 3D scans of grape bunches within lab environments. These
have been achieved using commercial laser scanners [5,6] and blue LED structured light
scanners [7–10]. These scans can be used to estimate volume, mass, and number of berries
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per bunch. However, these 3D scanners are costly, require significant time to capture viable
point clouds, and their use is yet to be demonstrated within field environments.

High-resolution 3D scans of grapes and vines have also been achieved using multiple
RGB images captured from different positions using structure from motion photogram-
metry techniques [11–13]. This method can be used with inexpensive equipment [14] and
data collection can be automated by mounting cameras on platforms such as robots or
drones [15]. However, generating photogrammetry scans requires significant computation
load and time. Rose et al. [12] quoted 8 h to generate a point cloud for one 25 m length
of vine.

An alternative approach that has been investigated is to identify within an RGB image
the location and size of individual berries within a bunch and use this information to model
the 3D grape bunch architecture using spheres or ellipsoid shapes. Liu et al. [16–19] used a
backing board behind the grape bunch when capturing the RGB images to aid with the
segmentation of individual berries. Berry size was estimated by placing a chequerboard
pattern on the board. This allowed the distance between the camera and the backing
board to be measured using camera calibration techniques. However, this requirement
for a backing board means it can only be used for handheld applications. Ivorra et al.
demonstrated/developed a novel technique that utilised a stereoscopic RGB-D (Red, Green,
Blue—Depth) camera to obtain berry size without having to use a chequerboard pattern.
They combined the depth information with 2D image analysis to achieve 3D modelling of
the grape bunches.

The potential real-time benefits of RGB-D cameras for grape yield estimation have
encouraged researchers to investigate their use for grape yield estimation. A range of
low-cost RGB-D cameras that can generate 3D scans in real-time has become available on
the market in recent years. This has been driven by their use in a wide range of applications
including gaming, robotics, and agriculture. The main technologies used are stereoscopy,
Active Infrared Stereoscopy (AIRS), Structured Light (SL), Time of Flight (ToF), and Light
Detection And Ranging (LiDAR). Stereoscopy is similar to human vision and uses parallax
and disparity between featured in images from cameras that are spatially separated. Active
infrared stereoscopy is similar but projects an Infrared (IR) pattern into the scene to assist
with finding correspondences. This is particularly useful for cases where objects being
scanned have low visible texture and/or are in low light conditions. Structured light
detects distortions in a known projected IR pattern. Time of flight and LiDAR cameras both
operate by measuring the time taken for emitted IR light to be reflected back to the camera.
ToF cameras typically emit this light in a single pulse, while LiDARs typically measure
by sweeping a laser. RGB-D cameras have been used for 3D imaging a range of different
fruits [20]. This includes several studies related to imaging grapes.

Marinello et al. [21] used a Kinect Version 1 (V1) camera, which operates using IR
structured light, to image grapes in a lab environment for yield estimation. Their results
showed that the scanning resolution decreased significantly with the increased distance of
the sensor from the grapes. Hacking et al. [22,23] also used the Kinect V1 for yield estimation
in both lab and vineyard environments. They showed that the Kinect V1 gave a good
correlation with grape bunch volume in the lab but struggle in the field environment. They
suggested that this could be due to sunlight and the presence of leaves. They recommended
that future work should investigate the performance of the Kinect V2, since it is a ToF
camera and hence is more robust to sunlight conditions compared with SL cameras, such
as the Kinect V1, which project IR patterns [24]. An alternative approach could be to take
measurements at night. This technique has been used by studies capturing traditional RGB
images in vineyards [3,25].

Kurtser et al. [26] used an Intel RealSense D435 RGB-D camera, which operates using
AIRS technology, for imaging grapes bunches in an outdoor environment. They used
neural networks for detecting grape bunches from the point clouds [27]. Basic shapes (box,
ellipsoid, and cylinder) were fitted to the point clouds. However, they reported relatively
large (28–35 mm) errors in the length and width of these fitted shapes compared with the
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physical measurement of the grape bunches. These errors were reported to be affected by
sunlight exposure. It would appear that in sunlight conditions, the projected IR pattern
would not be viable meaning this camera would be acting as a stereo camera.

Ivorra et al. [28] used a stereoscopic RGB-D camera (Point Grey Bumblebee2) for
imaging grapes, as mentioned above. However, the 3D scans of the grapes from this camera
were of poor quality. They suggested that this was due to difficulty in making the correct
correspondence between the stereo image pairs. Yin et al. [29] also used a stereoscopic
camera (ZED) for imaging grapes. However, this was used to measure the pose of grape
bunches for automated robotic picking rather than yield estimation.

This article presents the first benchmarking of the performance of multiple RGB-
D cameras for use in grape yield estimation applications. This includes ToF cameras,
which have not been used before in a grape yield estimation study. The benchmarking
performance analysis was obtained by calculating error maps between high-resolution
scans obtained using photogrammetry and those obtained by the RGB-D cameras. This
includes an analysis of the cameras’ performance in and out of direct sunlight.

Previous studies [21–23,26–28] have only looked at volume errors for a grape bunch
as a whole. However, in this work, depth map errors in the RGB-D scans of grapes are
analysed at an individual grape berry scale, which has not been done before.

The ability to identify individual grapes from 3D scans would provide additional
information for the yield and crop load estimation process. This could inform viticultur-
ists of metrics such as berry size distribution and berry count per cluster. There is also
the potential for more accurate volume estimates by 3D modelling of the grape cluster
architecture. This has been explored by several researchers [5–10,16–19,28] but not for
RGB-D cameras. This might be because it has been thought that these cameras did not have
sufficient precision [5].

In this work, the ability of RGB-D cameras for detecting individual grape berries using
Random Sample Consensus (RANSAC) is investigated. We are not aware of any reported
works that have applied an algorithm such as RANSC with RGB-D camera scans for grape
berry detection.

The remainder of the article is organised as follows. Section 2 describes the experi-
mental setup and data processing used. The results are presented in Section 3. Section 4
provides a discussion on the results. Finally, a conclusion is provided in Section 5.

2. Methodology
2.1. Hardware and Measurement Procedure

The RGB-D cameras used in this work were chosen to cover the main technologies
available. The cameras used were the Kinect V1 (SL), Intel RealSense D415 (AIRS), Microsoft
Kinect V2 (ToF), Microsoft Kinect Azure (ToF), and Intel L515 (LiDAR). Table 1 provides
some specifications on these cameras. Additionally, a Sony Alpha A6300 mirrorless RGB
camera was used to obtain high-resolution scans of the grapes using photogrammetry.
Note that the Kinect V1 and Kinect V2 are discontinued. However, the Kinect V2 is still
very commonly used in research and both are used or mentioned in the related literature.
Including the results from these two cameras also provides benchmarking of the newer
with older camera technologies.

The RGB-D cameras were mounted on a 2D gantry (CNC machine). The gantry had a
2D travel range of 1400 × 1400 mm and a resolution of 0.025 mm. A bunch of green table
grapes was suspended in front of the cameras at one end of the gantry. The gantry system
was used to move the camera under investigation directly in front of and at the desired
distance from the grapes, see Figure 1.
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Table 1. List of RGB-D cameras used with the depth measurement technologies they use and their
resolution and field of view specifications.

Camera Technology Resolution [Pixels] Field of View [Deg]

RealSense D415 AIRS 1280 × 720 65 × 40

Kinect V1 SL 640 × 480 57 × 43

Kinect V2 ToF 512 × 424 70 × 60

Kinect Azure ToF 1024 × 1024 120 × 120

Intel L515 LiDAR 1024 × 768 70 × 55

Figure 1. Diagram showing setup of camera and grapes mounted onto the CNC machine for capturing
RGB-D images.

Figure 2 provides photos of the experimental setup. Figure 3 shows photos of the
grapes used in this work for both indoor and outdoor measurements. These are cropped
versions of the images captured by the Intel L515 camera, which was located 600 mm from
the grapes.

(a) (b)

(c)

Figure 2. Photos of the experimental setup. Photo (a) shows the front view of the cameras mounted
onto the 2D gantry. Photos (b,c) respectively show the setup located inside and outdoors.
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(a) (b)

Figure 3. Coloured images of the grape bunches used in this work for scans captured (a) indoors and
(b) outdoors.

Python code was used to move the gantry so that a camera under investigation was
directly in front of the grape bunch and then capture RGB-D images with the camera at a
number of distances from the grapes. Most of the measurements shown in this work were
with the camera located at a distance of 600 mm from the grapes. This distance was used as
it was a distance that worked well for all cameras tested. For example, the Kinect V1 and
V2 struggled to capture images at distances much closer than this. The newer cameras were
able to image at closer ranges. In addition to this, it was felt that this distance was likely to
be a practical separation distance of the cameras from the grapes if the camera was mounted
onto a farm vehicle driving between vine rows. This process was then repeated for all the
RGB-D cameras. The Sony Alpha A6300 mirrorless RGB camera was then used to capture
RGB (6000 × 4000 pixel) images of the grapes at a range of positions for high-resolution
photogrammetry scans. The above measurement process was performed first in the lab and
then outdoors in direct sunlight using a different grape bunch. This was done to evaluate
the effect of sunlight on the performance of each RGB-D camera.

Measurements were also performed to evaluate if diffused scattering within the grapes
was causing distortions in the ToF and LiDAR cameras. This was achieved by obtaining
scans before and after spraying the grapes with white primer paint. The paint aimed to
make the grapes opaque and hence stop diffused scattering within the berries. Figure 4
shows the setup used for a single grape positioned inside a ring before and after it has been
sprayed with paint. Needles were used to secure the grape and ensure that the front face
of the grape was flush with the front surface of the ring. Care was taken to not pierce the
grape so as not to disrupt the internal optics of the grape.

(a) (b)

Figure 4. Photos of the setup of scans for a single grape which is first unpainted (a) and then painted
(b). This was performed to analyse the effect of diffused scattering within the grape for the RGB-D
cameras, which use ToF and LiDAR technologies.
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2.2. Processing Data

The software Agisoft Metashape v1.5.2 was used to obtain high-resolution photogram-
metry scans of the grape bunches using the RGB images captured by the Sony A6300 from
a number of positions. These provided a baseline scan that could be used to evaluate
the accuracy of the RGB-D cameras. The point clouds obtained using both the RGB-D
and photogrammetry scans were then processed using CloudCompare. This is a widely
used 3D point cloud and mesh processing open-source software. It has a range of point
cloud processing tools including cropping, filtering, alignment, distance measurement, and
comparison of multiple point clouds.

It was observed that the raw ToF and LiDAR camera scans had a significant number
of flying pixels around the edges of the grape bunch. A significant portion of these was
therefore filtered out using CloudCompare. This was done by rejecting points that had
normal angles greater than a set value. This was empirically chosen to be 85 degrees.
Isolated points were then discarded using statistical outlier rejection, which compared
distances between its six nearest neighbours and used one standard deviation of the entire
point cloud distribution as the rejection threshold [30].

2.2.1. Alignment of Scans and Generating Error Maps

The RGB-D camera scans needed to be aligned with the photogrammetry scan in
order to allow benchmarking to be performed. Let Xi be a [3× N] coordinate vector of
the N selected points on the RGB-D scan and Yj be the corresponding coordinates of the
selected points in the photogrammetry scan. Alignment of the RGB-D scan scans can then
be achieved by finding the [3× 3] rotation matrix R and the [3× 1] translation vector T such
that when the RGB-D scan undergoes a ridged body translation the distance between the
selected RGB-D and photogrammetry scan points are minimised. This can be expressed as

[R∗, T∗] = argmin
R,T

∑
i,j
||Yj − R Xi − T ||2. (1)

Rather than aligning the two scans using manually selected points, the alignment can
also be performed automatically using cropped RGB-D and photogrammetry scans and
solving Equation (1) using a process referred to as the Iterative Closest Point (ICP) algorithm.
Refer to Zinßer et al. [31] for more details on the ICP algorithm used by CloudCompare [32].
The optimised values of R and T can then be used to perform the ridged body translation

X = R∗ X + T∗. (2)

on the RGB-D scan to align it with the photogrammetry scan.
The alignment process described above was initially performed using CloudCompare

and manual selection of points on the chequerboard image for both scans. The point clouds
were then cropped to just include the grape bunch. An error scan for each RGB-D camera
was then obtained. This was calculated by measuring the distance from each point in an
RGB-D camera’s scan to the closest point in the photogrammetry scan [33]. Refer to Figure 5
for a block diagram summarising the processing steps used to obtain the depth error maps.

An alternative error analysis method was also used, which aligned the depth camera
and photogrammetry scans of the grape bunch using the ICP algorithm, rather than using
the chequerboard image. The raw scans were cropped in CloudCompare to just include the
scans of the grape bunch. Scaling was also performed on the RGB-D camera scan to correct
for projection if this scan was located behind the photogrammetry scan, due to any diffused
scattering within the berries. Alignment between the RGB-D scan and the photogrammetry
scan was performed using an ICP algorithm. The error in the RGB-D scan was obtained by
finding the distance from each point in the ICP aligned RGB-D scan to the closest point in
the photogrammetry scan.
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Figure 5. Diagram showing the processing steps used to calculate error depth maps for the RGB-D
cameras.

2.2.2. Calculating the Proportion of Missing Scan Points

Image processing was performed to estimate the proportion of the scan that was
missing for each depth camera relative to the photogrammetry scan. CloudCompare
was used to capture 2D images of each depth camera’s scan of the grapes with a white
background. To ensure consistency between cameras, these images were obtained using
the same viewing angle and position and image size. The percentage of pixels in this image
that was white (not grapes) was then calculated using MatLab for each depth camera. The
percentage of missing scan area was then obtained by subtracting this value from that
obtained for the photogrammetry scan.

2.2.3. Identifying Individual Grapes Using RANSAC

Work was also performed to investigate the potential of identifying and sizing indi-
vidual grapes from the RGB-D camera scans. The RANSAC algorithm was chosen as it is
the method that has been used in the literature related to identifying the position and size
of grapes from high-resolution scans captured using commercial scanners. This algorithm
fits shapes such as spheres to the scan. Ideally, the size and position of each grape can be
identified from the size and position of the corresponding fitted sphere.

CloudCompare was used to apply the RANSAC algorithm to the indoor scans obtained
using both the RGB-D cameras and photogrammetry. Schnabel et al. [34] provides a
description of the RANSAC algorithm used by CloudCompare [35]. It fitted spheres to the
grape bunch scans and used this to segment the scans into a single point cloud for each
fitted sphere. Ideally, each of these segmented point clouds would correspond to a different
grape. These point clouds were then exported as separate files with the sphere radius in
the file name. However, it did not contain the location of the sphere’s centroid.

MatLab was then used to process these segmented point clouds using the least-squares
sphere fitting function provided in [36]. For a given camera, each file was loaded and a
least-squares fitting of a sphere to the segmented scan was performed to obtain the position
of the sphere’s centroid. The closest sphere in the photogrammetry scan was then identified
using a K-Nearest Neighbours (KNN) search.

The difference in the 2D position of the RGB-D camera’s sphere relative to the corre-
sponding sphere for the photogrammetry scan was then calculated. This distance calcu-
lation did not include an offset in the depth axis direction. This was done to avoid this
measurement being dominated by any distance bias that might be present for the depth
cameras. Similarly, the difference in the RGB-D camera’s fitted sphere radius relative to
the corresponding photogrammetry sphere was also calculated. This process was repeated
for all the segmented point clouds and median values obtained. Note that the median was
used rather than the average since several fitted spheres were too large relative to the size
of the grapes and would have distorted the averaged results. Spheres with a radius greater
than 20 mm were ignored when counting the number of fitted spheres.
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3. Results

Photogrammetry point clouds of the grape bunches were obtained to act as baseline
scans which could be used to evaluate the accuracy of the RGB-D camera scans. Figure 6
provides an example of a high-resolution scan obtained using photogrammetry of the grape
bunch for the indoor scans. This scan was obtained using RGB images captured by the Sony
A6300 camera. Note that the depth colour scale is relative to the minimum and maximum
depth value and has been normalised so that the closest point on the grapes is set to 0 mm.
This allows comparisons of depth maps to be made across cameras.

Figure 6. Example photogrammetry 3D depth scan of the grape bunch which was located indoors.

The photogrammetry scan was used as a ground truth to obtain error maps for depth
scans captured by the RGB-D cameras. Figure 7 shows the depth and error scans of the
RGB-D cameras, which were captured indoors with the cameras located at a distance of
600 mm from the grapes. Note that these error scans were obtained by aligning the depth
camera and photogrammetry scans using the chequerboard image and not using the ICP
alignment method. These results show that the ToF and LiDAR cameras give depth scans
of the grape clusters that had distances biased to be further away than they should be. This
effect was not observed for the Kinect V1 or the RealSense D415 cameras. It was believed
that diffused scattering in the grapes could be the cause of the distance bias for the ToF and
LiDAR cameras. The following section investigates this further.

(a) RealSense D415 depth.
(b) RealSense D415 error.

Figure 7. Cont.
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(c) Kinect V1 depth. (d) Kinect V1 error.

(e) Kinect V2 depth. (f) Kinect V2 error.

(g) Kinect Azure depth. (h) Kinect Azure error.

(i) Intel L515 depth. (j) Intel L515 error.

Figure 7. Depth and error scans (relative to the photogrammetry scans) for the RGB-D cameras
located indoors at a distance of 600 mm from the unpainted grape bunch. An error bar is provided
that shows the colour scale for the error scans and is the same for all the cameras. The colours for the
depth scans are relative to the maximum and minimum depth of the point cloud for each camera.

3.1. Investigation of Distortion Effects

The grapes were spray-painted with white paint to investigate if diffused scattering
was causing the distance bias for ToF and LiDAR cameras. Figure 8 provides examples
of the Intel L515 LiDAR depth scans for a grape bunch before and after it had been
sprayed with paint. The painted scans have the depth error bias removed and the clarity of
individual berries in the depth map appears to be slightly enhanced.
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(a) Unpainted depth scan. (b) Unpainted error scan.

(c) Painted depth scan. (d) Painted error scan.

Figure 8. Depth and error scans for the Intel L515 before and after spray painting the grape bunch
with white paint.

Table 2 provides the mean distance error for the grapes bunch for scans made before
and after the grapes were spray-painted. No significant difference in the error (only 0.5 mm)
was observed between the unpainted and painted scans for the Kinect V1 and RealSense
D415, which are SL and AIRS cameras. However, we can see that painting the grapes
reduces the distance bias for the ToF and LiDAR cameras.

Table 2. Mean depth error for RGB-D camera scans of the grapes before and after they had been
sprayed with paint. The cameras were located indoors and were positioned 600 mm from the grapes.

Camera Unpainted [mm] Painted [mm] Unpainted with ICP
Alignment [mm]

RealSense D415 2.13 1.88 1.33

Kinect V1 3.67 3.00 1.01

Kinect V2 14.7 8.28 4.73

Kinect Azure 11.9 4.19 2.66

Intel L515 10.0 3.82 2.17

ICP alignment error analysis was also performed. This method appears able to remove
the distance bias in post-processing, see the third column of Table 2. However, the errors for
the ToF and LIDAR cameras are still slightly higher than their SL and AIRS counterparts.

Figure 9 shows the error maps for the Kinect Azure and Intel L515 cameras where ICP
had been used to align their RGB-D depth scans with the photogrammetry scans. While
this appears to have removed the distance bias, it shows that shape distortion errors still
occur in the form of peaks located at the centre of each individual grape. The ToF cameras
appeared to show slightly more pronounced shape distortions compared to the LiDAR.
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(a) Kinect Azure. (b) Intel L515.

Figure 9. Kinect Azure and Intel L515 error scans for unpainted grapes after the depth camera scans
were aligned with the photogrammetry reference scan using the ICP alignment method.

This distortion effect is illustrated in Figure 10. This plot shows scans captured by the
Kinect Azure and Intel L515 of this grape before and after it was painted. These RGB-D
cameras were located at a distance of 350 mm from the grapes. This distance was chosen
as the distortion appeared slightly more pronounced at this distance, as is illustrated
in Figure 11. The unpainted grape scan points show significantly more pointed shape
distortion compared with the painted grape.

(a) Kinect Azure ToF camera. (b) Intel L515 LiDAR.

Figure 10. Scans for Kinect Azure (a) and Intel L515 (b) RGB-D depth scans of a single grape before
(green) and after (white) individual grapes had been painted with white spray paint. Note that the
Z-axis direction shown in the plots is the depth axis. The cameras were located 350 mm from the
grapes. The Kinect Azure and Intel L515 have their unpainted peaks respectively about 7 mm and
8.5 mm behind the painted peaks. The Azure scan is more heavily quantised than the L515 scan.

Figure 11 shows cross-sections in the X-Z plane of Kinect Azure scans made of a single
grape before and after it had been sprayed with paint, for a range of distances of the depth
camera from the grape. The depth has been normalised so that zero depth corresponds
to the front of the ring supporting the grape. The distance bias and shape distortion are
reduced when the grape is painted. It appears that the shape distortion is more pronounced
when the camera is closer to the grape.
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Figure 11. Plots showing cross-sections of scans made by the Kinect Azure of a single grape before
(solid lines) and after (dashed lines) the grape had been painted. The different colours represent scans
made with the camera being located at distances from the grape ranging from 350 to 600 mm.

Figure 12 provides plots of the Empirical Cumulative Distribution Functions (ECDF)
of the errors in scans captured indoors both before and after the grape bunch had been
sprayed with white paint. The ECDF plots show what percentage of the errors is below a
given value. For example, we can see that, for the unpainted grapes, the Kinect V2 has 95%
of its errors below 30 mm. In contrast, the corresponding scans for the RealSense D415 has
95% of its errors less than about 5 mm.

(a) Unpainted. (b) Painted.

Figure 12. Plots (a,b) respectively show the ECDF error measurements for the grape bunch scans
made indoors before and after the grapes had been sprayed with paint. The cameras were positioned
600 mm from the grapes.

Note that some caution is required when interpreting the ECDF plots. This error
analysis only looks at errors in scan points captured with the depth cameras. However, it
does not analyse how much of the scan was missing. For example, the ECDF plot shown
in Figure 12 indicates that the Kinect V1 produced relatively low errors. However, from
Figure 7 we can see that there was a significant proportion (about 20%) of the scan that
was missing compared with the other cameras. Additionally, the ECDF does not provide
information on how well individual grapes can be identified within a scan.

3.2. Measurements Made in Direct Sunlight

Measurements were also made using the cameras located outdoors to evaluate their
performance in direct sunlight. Note that the grapes used for the indoor scans had been
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painted in order to investigate how diffused scattering within the berries affected the
results. Hence, a different grape bunch was used for the outdoor scans. However, the
methodology was designed with the aim of providing results that were independent of
which grape bunch was used in the benchmarking by comparing the photogrammetry and
RGB-D camera scans. This means that the error analysis should be relatively independent
of the grape bunch used, though some difference in the results may occur.

Figure 13 shows examples of these depth scans with the cameras at a distance of
600 mm from the grapes. Note that no results are shown here for the Kinect V1. This is
because no measurements were able to be achieved with this camera until after sunset.
All of the other depth cameras were able to obtain scans of the grapes in direct sunlight.
However, the errors for the RealSense 415 are similar to those of the Kinect V3 and LiDAR
for outdoor measurements but are still lower than those for the Kinect V2.

(a) RealSense D415. (b) Kinect V2.

(c) Kinect Azure. (d) Intel L515.

Figure 13. Depth scans for the RGB-D cameras captured outdoors at a distance of 600 mm from the
grape bunch.

Figure 14 compares ECDF plots for these scans made outdoors with the scans made
indoors where ICP alignment has been used. Table 3 provides a comparison of the propor-
tion of missing scan points for each camera for both indoor and outdoor measurements.
It can be seen that the RealSense D415 has a 13% increase in the proportion of missing
scan points for outdoor measurements, while the ToF and LiDAR cameras are relatively
unaffected. There is a slight (2%) reduction in the proportion of missing scan points for the
Kinect V2 outdoors relative to indoors. However, this is probably within the measurement
error for this analysis method or may be due to the fact that different grape bunches were
used for the indoor and outdoor experiments.
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(a) Indoors. (b) Outdoors.
Figure 14. Plots comparing ECDF plots for scans of two different unpainted grape bunches which
were captured by depth cameras (a) indoors and (b) outdoors in direct sunlight using ICP alignment
of the depth camera scans with the photogrammetry scans. The grapes were located 600 mm from
the cameras.

Table 3. Estimate of the percentage of the depth scan that is missing for each camera relative to that
obtained using the photogrammetry scans.

Camera Indoors [%] Outdoors [%]

RealSense D415 0.9 14

Kinect V1 20 –

Kinect V2 14 12

Kinect Azure 4.2 4.6

Intel L515 2.0 3.6

3.3. Detection of Individual Grapes Using RANSAC

Analysis was performed on the grape scans that were captured indoors to investigate
if it was possible to detect and size individual grapes from the raw RGB-D camera depth
scans. The RANSAC algorithm within CloudCompare was used to fit spheres to the
depth scans. Figure 15 shows the resulting segmentation of the scans provided by the
RANSAC sphere fitting for the photogrammetry and depth camera scans. These are
overlaid over a photo of the grapes for comparison. The different colours correspond to
different segmented point clouds obtained by fitting spheres to the raw scans. Ideally, there
would be a separate colour for each grape. However, it can be seen that the results are not
perfect. The performance of the algorithm is lower for the RGB-D cameras scans compared
to that of the photogrammetry scan.

Table 4 provides the median difference in the detected 2D position and sphere radius
relative to the corresponding spheres for the photogrammetry scans. The medium sphere
radius for the photogrammetry scans was 13.7 mm. The depth information was ignored
when calculating the 2D position error since adding depth would have resulted in values
that were dominated by the distance bias for the ToF and LiDAR cameras. The median
differences in the 2D positions of the spheres are relatively low. These position errors
may be related to errors in the alignment of the depth camera scans in comparison to the
photogrammetry scan.

This table also gives the number of spheres detected for each RGB-D camera that had
radius values less than 20 mm. We can also see that the ToF and LiDAR camera scans have
smaller median sphere radius values compared to those obtained using photogrammetry
and the RealSense D415 and Kinect V1 cameras.
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(a) Photogrammetry. (b) RealSense D415.

(c) Kinect V1. (d) Kinect V2

(e) Kinect Azure. (f) Intel L515.

Figure 15. Plots showing the output of the RANSAC algorithm on the grape depth scans which were
captured indoors. This is overlaid over a greyscale photo of the grape bunch for reference.

Table 4. Information on the RANSAC algorithm fitting of spheres to individual grapes in the scans.
This shows the number of spheres detected and the median difference in the radius and 2D positions
of the spheres for the RGB-D cameras relative to the same spheres in the photogrammetry scans.

RealSense D415 Kinect V1 Kinect V2 Kinect Azure Intel L515

No. of Spheres Detected 25 22 31 26 30

Median Radius Difference [mm] 1.7 2.8 −3.7 −3.5 −3.0

Median Position Difference [mm] 1.9 2.1 3.5 2.0 2.1

4. Discussion

The RealSense D415, which uses AIRS technology, was the most accurate camera
indoors. However, it showed reduced performance outdoors. This is in line with the
findings of Kurtser et al. [26] that reported increased errors for the RealSense D435 AIRS
camera with increased sunlight exposure. The ECDF plots shown in Figure 14 indicate



Sensors 2022, 22, 4179 16 of 21

that the errors for the RealSense D415 increased outdoors but were still similar to that
of the Kinect Azure and Intel L515 (after correcting for their distance bias using ICP).
However, the RealSense D415 also had a significant increase in missing scan points when
operated in direct sunlight. This is illustrated in Table 3, where the percentage of missing
scan points relative to the photogrammetry scan increased from about 1% to 14% when
measurements were made outdoors. Additionally, the 3D shape of individual grapes was
less pronounced, which would make it harder to identify and measure the size of the grapes.
This might be because it was not able to use its projected IR pattern due to saturation by
sunlight. Saturation of the stereo IR cameras may also have occurred. Moreover, the camera
may have struggled with the dynamic range caused by direct illumination from the sun
with shadows.

The Kinect V1 SL camera also had low depth errors for measurements made indoors.
However, Table 3 shows that it had about 20% of the scan points missing, which was
the highest of any of the other cameras. This resulted in a smooth shaped scan of the
grape bunch and did not display the valleys between grapes. This phenomenon can be
seen in the plots presented by Marinello et al. and Hacking et al. [21–23]. The Kinect V1
has a significant deterioration in resolution as the distance of the grapes from the camera
increases, as reported by Marinello et al. [21]. This appears to be related to the strong depth
quantisation dependence on scan depth for this camera.

The Kinect V1 could not be used for scanning grapes outdoors in direct sunlight. This
was expected since its projected IR pattern would have been saturated by the sunlight.
Hacking et al. [22,23] had also reported issues with its performance when used outdoors.
They had therefore suggested that the Kinect V2 should be investigated for outdoor grape
bunch scanning since it would be more robust to sunlight.

The cameras that used ToF technologies were found to be more robust to sunlight
conditions. Both the Kinect Azure and Intel L515 appeared to provide similar results
indoors and outdoors in direct sunlight. The Kinect V2 had higher errors than the Azure
and Intel L515. It was able to operate in sunlight but did have some issues with saturation
resulting in scan points being missing. This may be addressed by adjusting the exposure
in software.

The ToF and LiDAR cameras produced scans of the grapes that had a distance bias of
about 8 mm and had a distortion in the shape of the scans of the grapes, which was not
observed for the SL and AIRS cameras. The shape distortion for the ToF and LiDAR cameras
makes individual grapes within the scan more prominent and easier to identify than the
Kinect V1 and the RealSense D415. This distortion may therefore be beneficial for counting
individual grapes. The plots in Figures 8, 10 and 12 show that these distortion effects were
largely removed when the grapes were painted. This indicates that the distance bias and
shape distortions are due to diffused scattering within the berries of the transmitted light
used by these cameras.

The Intel L515 LiDAR appeared to have slightly less distance bias and distortion
compared to the two ToF cameras. The difference in distortion between the ToF and
LiDAR cameras may be due to the process they used to emit light. ToF cameras emit
light using a single wide-angle coded pulse and captures the returning light from a range
of locations simultaneously as pixels. If this light pulse enters a grape and experiences
diffused scattering, each pixel of the ToF camera corresponding to the grape will receive
some combination of light entering across the entire surface of the grape visible to the
camera. In contrast, LiDARs typically build up the point cloud in a scanning process
making measurements at a single scan point location at a time. This means that the light
detected by the LiDAR may be more localised within the grape compared with the ToF
camera. Given the different methods used by the two types of cameras, it is perhaps
understandable then that each would have a different distortion pattern.

There have been a few reports of ToF cameras having a distance bias in fruit due to
diffused scattering. Neupane et al. [37,38] reported that ToF cameras provided distance
measurements for mangoes, which were biased to be slightly too large, due to diffused
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scattering within the fruit. This distance bias increased over several days and was suggested
as a means of measuring the ripeness of the mango fruit. Sarkar et al. [39] used this
phenomenon to investigate the ripeness of apples using a ToF camera and polarisers.
However, we have not seen any previous report of a shape distortion in ToF camera scans
of fruit. The fact that the shape distortion is so pronounced for grapes may be due to
the comparatively smaller size of the berries and relatively higher translucent properties
compared to the other fruit that has been investigated previously.

This raises the question, could the distortion of RGB-D cameras that use ToF technology
be used to provide a non-destructive estimation of grape properties such as ripeness? Future
work is planned to investigate how the distortion effects vary with berry ripeness and size.
This might also give some insight into the potential of correcting the ToF and LiDAR scans
for these distortions in post-processing.

The ability to identify individual grapes from 3D scans could be beneficial. It poten-
tially could allow the number and size of berries in bunches to be measured. Additionally,
it might allow more accurate yield estimation through 3D bunch architecture modelling.
There have been several works that have used RANSAC to detect and size grapes. However,
these works used high-resolution 3D scans captured using commercial laser and structured
light scanners [5,7–10] and using photogrammetry [13], not depth cameras. Yin et al. [29]
used RANSAC to fit cylinder shapes to the ZED RGB-D camera scans of grape bunches.
However, this was related to the pose estimation of the entire grape bunch for robotic
harvesting applications and did not attempt to fit individual grapes.

The RANSAC algorithm was used in this work on both the photogrammetry and RGB-
D camera scans. The RANSAC algorithm showed some promise for detecting individual
grapes in the RGB-D camera scans. All of the RGB-D cameras gave similar median 2D
positions for the spheres/grapes relative to photogrammetry, as indicated in Table 4.
However, the RANSAC algorithm produced fitted spheres with a smaller radius for the
ToF and LiDAR cameras. This was to be expected given the shape distortion observed for
these cameras.

The ability of RANSAC to correctly segment out individual berries was lower for
the RGB-D cameras compared with that for the photogrammetry scans. As an example,
in Figure 15, it can be seen that the Kinect V1 shows multiple grapes close to each other
that have the same colour. This indicates that the algorithm has failed to separate these
particular berries out as separate spheres. In contrast, a much higher proportion of the
berries are correctly segmented for the photogrammetry scan.

The RANSAC algorithm also identified more grapes in the photogrammetry scans
compared to that in the RGB-D camera. This is particularly pronounced for the grapes
located around the edges of the bunch. However, this would appear to be mainly related to
the way the photogrammetry scans are obtained using images captured from a range of
positions relative to the grape bunch. The RGB-D camera images shown here in contrast
are captured from a single location. This means the RGB-D cameras see a lower proportion
of the surface area of the grape bunch. Improved results could be obtained by merging
multiple RGB-D camera scans taken at a range of positions and angles relative to the grapes.
This could be achieved using SLAM or a similar point cloud alignment technique [14]. This
should then make the RGB-D camera scans more comparable to the photogrammetry scans.

Future Work

More investigation is needed to ascertain the optimal method of detection and sizing
the grapes from RGB-D camera scans. Future work could look at fitting other shapes
to the grape scans such as ellipsoids or a shape that is similar to the distortions due to
diffused scattering effects for the ToF and LiDAR cameras. Additionally, custom-designed
algorithms may be needed for these cameras. This may include correction of the distortion
effects for these cameras.

The ToF and LiDAR cameras had slightly higher errors compared with the other two
cameras indoors even when the grapes were painted or when the distance bias had been
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removed in post-processing. It is possible that these errors could be reduced if additional
filtering of the flying pixels was performed. However, this could potentially result in
removing real scan points partially in the valleys between individual grapes. It is also
possible that the error analysis process used here is overestimating the errors slightly for
these cameras.

Improvements in the error analysis technique used in this work could also be per-
formed. The error in the RGB-D cameras scans was obtained by comparing their depth
scans with those obtained using photogrammetry. There could be some small errors in
these photogrammetry scans. It appears that these scans had some smoothing in the valleys
between grapes in a similar manner to the RealSense D415. It would be interesting in
future work to use an alternative scanning system such as a commercial laser scanner for
obtaining the ground truth scans.

The method used to calculate the distance errors could be improved in future work,
particularly for the scans where a distance bias is present. One option could be to project a
line from the location of the RGB-D camera to a scan point in its depth scan. One could
then calculate the point on the line which is closest to a scan point on the photogrammetry
scan (or where it passes through a mesh surface obtained from the photogrammetry scan).
The distance along the line from that point to the RGB-D scan point could then be used as
the depth error.

This work was performed with green grapes. Some preliminary testing with red
grapes indicated that these also had a shape distortion and distance bias that appeared
similar to that observed in the green grapes. However, this was not investigated in detail
and more work is needed with other types of grapes.

The measurements described in this work were performed in controlled lab type
environments. This was appropriate for the type of investigations performed in this study.
However, it should be noted that achieving a fully automated system in a real vineyard
environment would be more challenging. For example, this would require segmentation
to allow automatic identification of grapes from leaves and stems [27]. There may also be
occlusions by leaves or other grape bunches. More work is needed to address these types
of challenges.

5. Conclusions

The Kinect V1 is no longer in production and hence is unlikely to be used in the
future for grape yield estimation. However, it provides a comparison of the IR structure
light technology with that used by other RGB-D cameras. The Kinect V1 was not able
to function in direct sunlight. This is likely to be due to its projected IR pattern being
saturated by sunlight. This indicates that RGB-D cameras that operate using IR structured
light would only be suitable for measurements made at night or with a cover system that
blocks out sunlight.

The Kinect V1 provided scans made indoors (out of direct sunlight) with relatively low
errors for the parts of the grapes facing the camera. However, it did not capture portions
of the grapes, particularly in the valleys between individual grapes. While this might be
adequate for rough volume estimations using a convex hull or mesh of the grape bunch
scan, it does make identifying and sizing of individual grapes within the scan difficult. This
is illustrated in the RANSAC results where the segmentation process struggled to correctly
separate out many neighbouring grapes. In addition, it appears that the depth scans for the
Kinect V1 had a relatively high quantisation compared with the other cameras.

The RealSense D415, which uses active stereoscopy, provided the lowest errors of the
cameras analysed. Its indoor scans did not have the missing scan points or quantisation
that was seen in the Kinect V1. However, it smoothed out the valleys between the grapes
making it harder to detect individual grapes from the depth scans. The scans made with
this camera in direct sunlight had slightly higher errors and missing scan points. In future
work, we would look at adjusting the exposure of this camera in software to see if this
issue can be addressed. However, it appears that sunlight was saturating its projected
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IR pattern, meaning it was acting purely as a passive stereo camera. This might indicate
that cameras that operate using the AIRS technology may not have any additional benefit
for yield estimation made in sunlight conditions compared with RGB-D cameras which
operate using just passive stereo technologies. This may be investigated in future work.

The ToF (Kinect V2 and Kinect Azure) and LiDAR (Intel L515) cameras provided the
best ability to detect individual grapes compared to the other cameras. However, they
produced 3D scans of the grapes which were biased to give depth distances that were too
large. Additionally, these cameras also produced distortions in the scans in the form of
peaks centred on each grape location.

The distance bias and shape distortion were removed when the grapes were painted.
This indicated that the distance bias and distortion were the results of diffused scattering
within the grape. Previous work such as Neupane et al. [37] had reported measuring a
distance bias for fruit using ToF cameras and have related this to the ripeness of the fruit.
However, we are not aware of any previous studies which have reported a distortion in the
shape of the scans of the fruit. It may be that this distortion is enhanced due to the small
size of grape berries and their translucent properties.

The distance bias found in the LiDAR and ToF cameras scans of the grapes may not
be an issue if one is only interested in the shape of the grape bunch. In fact, the distortion
pattern makes it easier to identify individual grapes compared with the SL or AIRS cameras.
However, more work is needed to investigate how much this distance bias and distortion
affect the accuracy of grape volume/yield estimations. In our study, it did result in smaller
detected berry diameters obtained using RANSAC compared with the other cameras. More
work is needed to understand what factors such as ripeness, berry size, and variety play in
the magnitude of the distance bias and shape of the distortion. With more understanding
of these factors, it may be possible to use these distortions to perform non-destructive
measurement of grape properties such as ripeness or possibly to correct for the distortions
in post-processing.

In future work, we plan to investigate further the potential of the ToF and LiDAR cam-
eras since they were less affected by sunlight and there is potential to utilise the distortion
present in their scans for more accurately identifying individual berries. Additionally, there
may be opportunities for using the distortion for non-destructive testing of berry properties.
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