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Abstract: In this paper we examine closely a new mode of the Data Encryption 

Standard (DES), which is included in a new chip called SuperCrypt. This mode al

lows for a 112-bit key which encrypts at the same speed as DES. Initially, we give some 

background on the development of the cipher, and then proceed to cryptanalyse it 
using differential cryptanalysis and a combination of linear and differential cryptanal

ysis. We present results for the four, six and eight-round versions and comparisons 

with the DES. We theoretically extend this to the full sixteen-round version. Finally, 
we look at exhaustive key search in light of the fact that it has been proven feasible 

to construct a machine at realistic cost to find the DES key in a matter of hours. 

1 INTRODUCTION 

Three recent attacks on the DES algorithm over the past four years have raised 

serious doubts about the security of this algorithm. 

The first of these attacks uses the method of differential cryptanalysis by Biham 
and Shamir [1]. Using this method it was shown that it may be possible to derive the 
56-bit DES key using 247 chosen plaintext pairs of blocks. 

The second attack uses the method of linear cryptanalysis by Matsui [2]. At 

CRYPT0'94 [4] Matsui reported the first experimental, publicly reported cryptanal

ysis of the DES algorithm using 243 known plaintext blocks. This attack recovered the 
entire key in fifty days using twelve HP9735/PA-RISC 99mhz computers operating 
in parallel. 

The final method is a brute force attack by Wiener. At SAC'94 [5] Wiener proposed 

the construction of special DES hardware consisting of many DES chips operating in 

parallel using 1993 technology. This device could conduct an exhaustive key search 

requiring on the average testing 255 keys and a couple of known plaintext-ciphertext 

block pairs. The estimated time required for this attack varied according to how many 

chips were used. Wiener's estimate for the costs in US $ and the time to complete 

the attack are given in Table 1. 

Machine Cost Time 

$100,000 35 hours 

$1,000,000 3.5 hours 

$10,000,000 21 minutes 

Table 1: Wiener's Time-Cost Tradeoffs 
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Recently, a new high speed encryption chip called SuperCrypt has been designed by 

the company Computer Elecktonic Infosys from Germany [7]. This chip incorporates 

the DES algorithm and allows for high speed encryption rates at twelve megabytes 

per second for the various standard modes of operation of the DES algorithm. As 

well, this chip allows for a special extended mode of operation of DES using a 112-bit 

key in place of the standard 56-bit key. 

Briefly, the 112-bit mode key operation used in the SuperCrypt chip consists of the 

standard DES algorithm with two 56-bit keys, Key 1 and Key 2, which operate on 
odd and even rounds respectively. Each of these 56-bit keys is expanded into sixteen 
subkeys of length forty-eight bits using the DES key schedule. On the odd rounds 

forty-eight bits of Key 1 are used as per the odd round DES key schedule, and on 

the even rounds forty-eight bits of Key 2 are used as per the even round DES key 

schedule. All the other operations are as per the DES algorithm. Figure 1 shows 

the algorithm. We shall call this encryption procedure the double-key mode of DES. 

This procedure allows the SuperCrypt chip to encrypt at the same speed of twelve 

megabytes per second using a 112-bit key, as with a 56-bit key. 

The natural question to ask is how much have we increased the security of the 

standard DES algorithm by using a 112-bit key in place of a 56-bit key as described 

above? In this paper we will examine this question in relation to differential and 
linear cryptanalysis as well as exhaustive key search. 

2 DIFFERENTIAL CRYPTANALYSIS 

Differential cryptanalysis is a powerful cryptanalytic tool developed by Biham and 

Shamir [I]. The method applies a chosen plaintext attack on many ciphers which use 

an iterated round operation as originally proposed by Feistel [6]. The attack is based 
on using chosen plaintext pairs of blocks whose difference is fixed. This difference 
is called the characteristic. On this basis, it is possible to approximate the round 

operation, F, of the cipher by determining, probabilistically, the output differences of 
the F-function for any given input difference. This can be done for each round of the 
cipher and thus for a given plaintext difference the output difference of any number 

of rounds can be determined probabilistically. 

2.1 Differential Cryptanalysis of DES 

Differential cryptanalysis is a chosen plaintext attack which firstly defines the 'dif

ference' of two plaintext blocks P and P* as P ffi P*(= P'), where ffi indicates the 
bitwise exclusive-or (XOR) operation. In any round of this cipher, the inputs to the 

round function, F, will be PL; ffi K; and P},; ffi K;, where PLi is the right-most 32-bits 

of the plaintext block, PH; is the left-most 32-bits of the plaintext block and K; is 

the secret key used in Round i. The input 'difference' to any round is independent of 

the key, since (PL; ffi K;) ffi (P},; ffi K;) = (PL; ffi P[,;). 
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Figure 1: Double Key Mode DES, where KJil is the jth round schedule of key K; 
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The round function in DES is a series of eight substitution boxes (S-boxes). Into 

each of these is passed six bits, and four bits are outputted. Biham and Shamir 

[1 J were able to show that, if the input 'difference' to each S-box was known, then, 

by an exhaustive search, the possible output differences and the regularity of their 
occurrence (i.e. their probability) could be determined. These results were published 

by Biham and Shamir in their so-called XOR tables [1]. There are eight such tables, 
one for each S-box. Table 2 is an extract from the XOR table for S-box 1. 

Input Output XOR 

XOR 0., 1., 2., 3., 4., 5., 6., 7., 8., 9., A., B., C., D., E., F., 

0., 64 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
1,, 0 0 0 6 0 2 4 4 0 10 12 4 10 6 2 4 

2., 0 0 0 8 0 4 4 4 0 6 8 6 12 6 4 2 

3., 14 4 2 2 10 6 4 2 6 4 4 0 2 2 2 0 

4., 0 0 0 6 0 IO 10 6 0 4 6 4 2 8 6 2 

5., 4 8 6 2 2 4 4 2 0 4 4 0 12 2 4 6 

6., 0 4 2 4 8 2 6 2 8 4 4 2 4 2 0 12 

7., 2 4 10 4 0 4 8 4 2 4 8 2 2 2 4 4 

8,, 0 0 0 12 0 8 8 4 0 6 2 8 8 2 2 4 

9., 10 2 4 0 2 4 6 0 2 2 8 0 10 0 2 12 

A,, 0 8 6 2 2 8 6 0 6 4 6 0 4 0 2 10 

B., 2 4 0 10 2 2 4 0 2 6 2 6 6 4 2 12 

C., 0 0 0 8 0 6 6 0 0 6 6 4 6 6 14 2 

D,, 6 6 4 8 4 8 2 6 0 6 4 6 0 2 0 2 

E., 0 4 8 8 6 6 4 0 6 6 4 0 0 4 0 8 

Fx 2 0 2 4 4 6 4 2 4 8 2 2 2 6 8 8 

30., 0 4 6 0 12 6 2 2 8 2 4 4 6 2 2 4 

31., 4 8 2 10 2 2 2 2 6 0 0 2 2 4 10 8 
32., 4 2 6 4 4 2 2 4 6 6 4 8 2 2 8 0 
33., 4 4 6 2 10 8 4 2 4 0 2 2 4 6 2 4 
34,, 0 8 16 6 2 0 0 12 6 0 0 0 0 8 0 6 

35., 2 2 4 0 8 0 0 0 14 4 6 8 0 2 14 0 

36,, 2 6 2 2 8 0 2 2 4 2 6 8 6 4 10 0 

37., 2 2 12 4 2 4 4 10 4 4 2 6 0 2 2 4 

38,, 0 6 2 2 2 0 2 2 4 6 4 4 4 6 10 10 

39., 6 2 2 4 12 6 4 8 4 0 2 4 2 4 4 0 
3A,, 6 4 6 4 6 8 0 6 2 2 6 2 2 6 4 0 
3B., 2 6 4 0 0 2 4 6 4 6 8 6 4 4 6 2 

3C,, 0 10 4 0 12 0 4 2 6 0 4 12 4 4 2 0 

3D,, 0 8 6 2 2 6 0 8 4 4 0 4 0 12 4 4 

3E,, 4 8 2 2 2 4 4 14 4 2 0 2 0 8 4 4 

3F., 4 8 4 2 4 0 2 4 4 2 4 8 8 6 2 2 

Table 2: Partial Pairs XOR Distribution Table of Sl 

There are sixty-four possible input differences PtffiPt =Pf, where Pt and Pt are the 
six bits of P and P* respectively which go into S-box numbered t. There are sixteen 

possible output differences. Thus for a given input difference, Pf, the regularity of each 
of the possible output differences is in the row corresponding to P'. Since there are 
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sixty-four possible input differences the probability of any particular output difference 

occurring is obtained by dividing that particular entry in the table by sixty-four. For 

example, an input difference of 34., (hexadecimal) will given an output difference of 

2., with probability of 0.25. Thus, the round function of DES can be approximated 

by these expressions. This can be done for all the rounds of DES and thus we get 

a string of approximations for the rounds of DES. These approximations, together 

with the initial plaintext difference and the final ciphertext difference constitute what 

is known as a characteristic. If the probability of this characteristic (which is just 

the product of the probabilities of the round approximations) is not too small, then 

for a given number of chosen plaintext-ciphertext pairs, key bits in the last round 

can be determined. By using two or more different characteristics more last round 

key bits can be determined until it is possible to find the remaining unknown bits by 

exhaustive search. 

2.2 Differential Cryptanalysis of Double-Key Mode 

Because this version of DES uses two distinct keys, variation of the traditional 

differential cryptanalysis attack on DES must be employed. Our technique is to use 

differential cryptanalysis to find all the last round key bits and then strip away the 

last round and perform the traditional attack on the double-key mode of DES with 

one less round. This technique is not new. Biham and Shamir [1] suggested it as a 

method for attacking a version of DES that employed independent keys in each round. 

The results of our attacks on the four-round, six-round and eight-round versions of 

the double-key mode are presented in Table 3, together with the theoretical extension 

to sixteen rounds. 

The method used was to find enough different characteristics to completely deter

mine the last round key, and then, as explained earlier, attack the second-last round 

(and hence the other key) using standard differential techniques. To find a number of 

different characteristics we used the dynamic programming algorithm as introduced 

by Matsui [3). We adapted this algorithm in that, instead of finding the character

istic with best probability, characteristics whose probabilities were above a certain 

threshold were determined. As well sufficient characteristics were required in order 

that the six key bits for each of the eight S-boxes could be determined. 

In the four-round version, we were able to determine all forty-eight bits of the 

last (even) round key with two characteristics (see Table 3). The second-last (odd) 

round key was determined completely by a single characteristic (see Table 3). In 

all, forty-eight plaintext-ciphertext pairs were used to find ninety-six bits of the 112-

bit key. We were then able to find the remaining eight bits of the odd-round key 

and the eight remaining bits of the even-round key by exhaustive search. Such an 

attack on the DES would yield forty-eight bits of the 56-bit DES key with thirty-two 

plaintext-ciphertext pairs. 

We noted that, in the four-round version, each key was used twice. If the DES key 

scheduling algorithm is employed not all fifty-six bits of either key are used, so the 

effective length of each key will shorten. However, this could be easily overcome by 

altering the key schedule to ensure that all key bits are used by the fourth round. 
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To break the six-round version, three characteristics (see Table 3) were used to 

determine the last round key. In each case, one hundred and sixty pairs were required. 

All forty-eight bits of the penultimate round key were found using two characteristics 

(see Table 3), each with one hundred and sixty pairs. Thus in six rounds of the 
double-key mode, ninety-six bits of the 112-bit key were found using eight hundred 

plaintext-ciphertext pairs. Once again, the sixteen remaining unknown bits were 

found by exhaustive search. The forty-eight bits of the last round key can be found 

using four hundred and eighty plaintext-ciphertext pairs. 

The eight-round version was broken using three characteristics (see Table 3) to 

determine the complete last round key. Since each has a different probability, different 

numbers of pairs were required. The maximum required was three million. To attack 

the seventh round key three characteristics (see Table 3) were used. This retrieved 

forty-two bits used in the seventh round key. Hence, for eight rounds of the double-key 

mode, ninety bits of the 112-bit key were found using 6.65 million plaintext-ciphertext 

pairs. The twenty-two remaining key bits were found by exhaustive search. For eight 

rounds of DES forty-two bits of the 56-bit key can be found using 2.15 million pairs. 

Version Round Bits Characteristic No.ofPairs 

Number Found (hexadecimal) Double - Key DES 

4-round 4 42 2000 0000 0000 0000 16 16 

6 0222 2222 0000 0000 16 16 

3 48 0222 2222 0000 0000 16 n/a 
6-round 6 30 4008 0000 0400 0000 160 160 

12 0020 0008 0000 0400 160 160 

6 4000 4010 0200 0000 160 160 

5 36 4008 4000 0400 0000 160 n/a 
12 0020 0008 0000 0400 160 n/a 

8-round 8 30 405C 0000 0400 0000 150000 150000 

12 0404 0780 0020 2000 2 000000 2 000000 

6 1960 0000 0000 0000 3 000 000 n/a 
7 24 405C 0000 0400 0000 100000 n/a 

12 0200 0401 0000 0020 100 000 n/a 
6 0000 0820 0000 0006 100000 n/a 

16-round 16 18 1960 0000 0000 0000 257 257 

18 0000 1D40 0000 0000 259.3 259.3 

6 0019 6000 0000 0000 257 n/a 
6 2000 OOld 0000 0000 261 n/a 

15 48 1960 0000 0000 0000 257 n/a 

Table 3: Double-Key - DES Comparison Table 

2.3 Extension to Sixteen Rounds 

Biham's initial proposed attack on the sixteen-round version of DES required more 
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plaintext-ciphertext pairs than exhaustive search of the key space. However, in 1992 

(11), he proposed a modification to his initial sixteen-round attack and was able to 

reduce the number of pairs required from 257 to 247 , analysing these in 237 time, 

without the need for huge memory. In this theoretical attack, all fifty-six bits of the 

key were obtained. Thus, the DES was rendered theoretically vulnerable to differential 

cryptanalysis. 

However, this new attack is not feasible against a DES-like algorithm that has 

independent keys. Double-key mode DES falls into this category and, hence, remains 

out of reach of differential cryptanalysis for the time being. 

We can talk theoretically about breaking the double-key mode DES using standard 

differential cryptanalysis techniques, and compare it with the standard differential 

attack on the DES, using iterative characteristics. The entries in Table 3 which refer 

to sixteen-round attacks, reflect such a comparison. 

Using a standard differential attack, eighteen bits of the last round key of sixteen

round DES can be found using 257 plaintext-ciphertext pairs. The characteristic used 

is 1960 0000 0000 0000.,, the iterative characteristic with largest probability ( 2 ~ 4 ). An

other iterative characteristic, 0000 1D40 0000 0000.,, with probability 2 ~ 3 can be used 

with approximately 259 ·3 pairs to find another eighteen bits of the last round key. 

The remaining twelve unknown key bits could be found by exhaustive search. With 

double-key DES the remaining twelve bits of the last round key would need to be de

termined by methods other than exhaustive search. This could be done using iterative 

characteristics 0196 0000 0000 0000.,, requiring 257 pairs, and 2000 OOlD 0000 0000,,, 

requiring 261 pairs. 

Thus the total number of plaintext-ciphertext pairs required to get all forty-eight 

bits of the last round key is 261.5 . All forty-eight bits of the fifteenth round key can 
be found using the characteristic 1960 0000 0000 0000,, with 251 plaintext-ciphertext 
pairs. Thus we will require approximately 251 + 261.5 ~ 261.5 plaintext-ciphertext 

pairs to get ninety-six bits of the 112-bit key. The remaining bits can be found by 
exhaustive search. Thus the order of magnitude of additional pairs required to break 
the double-key mode of DES is ;:~:: ~ 4. · 

3 LINEAR CRYPTANALYSIS 

Linear cryptanalysis as introduced by Matsui (2] is a known plaintext attack which 

exploits probabilistic linear relationships between the plaintext P, ciphertext C and 

key K. The relationship can be expressed in the form 

where P(i1 , i2 , • • • ,ia] is the XOR sum ofplaintext bitsi1 , i2 , · · ·, ia and K(j1 ,j2 , · · • ,jb) 
and C(k1 , k2 , ···,kc] are similar XOR sums of key and ciphertext bits respectively. 

If the above equation holds with probability p # ~ then we can exploit this linear 

relationship to determine some key bits. The further the value of p is from ! , the 
more efficiently we can find these key bits. 

For each round of a cipher an approximation similar to the one above can be 
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determined which relates the input of the round to the output. These approximations 

can be XOR summed, and if they are chosen carefully, only plaintext, ciphertext and 

key bits will remain, with bits of intermediate rounds cancelling. This then produces 

a linear expression for the cipher. 

3.1 Linear Cryptanalysis of DES 

In the DES, probabilistic linear approximations for a round are determined by 

examining the linear relationship between the XOR sum of input bits and the XOR 

sum of output bits for each S-box. Thus, we can produce a table for each S-box 

which displays this relationship and its probability. Table 4 is an extract of the S-box 

5 table. 

a/(3 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 

01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

02 4 -2 2 -2 2 -4 0 4 0 2 -2 2 -2 0 -4 

03 0 -2 6 -2 -2 4 -4 0 0 -2 6 -2 -2 4 -4 
04 2 -2 0 0 2 -2 0 0 2 2 4 -4 -2 -2 0 

05 2 2 -4 0 10 -6 -4 0 2 -10 0 4 -2 2 4 

06 -2 -4 -6 -2 -4 2 0 0 -2 0 -2 -6 -8 2 0 
07 2 0 2 -2 8 6 0 -4 6 0 -6 -2 0 -6 -4 

08 0 2 6 0 0 -2 -6 -2 2 4 -12 2 6 -4 4 

09 -4 6 -2 0 -4 -6 -6 6 -2 0 -4 2 -6 -8 -4 
10 4 0 0 -2 -6 2 2 2 2 -2 2 4 -4 -4 0 

11 4 4 4 6 2 -2 -2 -2 -2 -2 2 0 -8 -4 0 
12 2 0 -2 0 2 4 10 -2 4 -2 -8 -2 4 -6 -4 

13 6 0 2 0 -2 4 -10 -2 0 -2 4 -2 8 -6 0 

14 -2 -2 0 -2 4 0 2 -2 0 4 2 -4 6 -2 -4 
15 -2 -2 8 6 4 0 2 2 4 8 -2 8 -6 2 0 
16 2 -2 0 0 -2 -6 -8 0 -2 -2 -4 0 2 10 -20 

48 2 -2 0 -4 -6 -2 -4 4 2 2 0 0 2 2 4 
49 2 -2 0 0 -2 2 0 0 -2 -2 -4 0 2 2 4 

50 6 0 -2 -2 8 2 4 0 10 0 2 -2 4 2 0 
51 -6 0 10 2 0 -2 -4 0 6 0 -10 2 4 -2 0 
52 0 -12 4 -4 0 4 -8 -4 0 -4 0 -4 -4 0 0 
53 -8 0 0 8 -4 4 0 0 -4 -4 0 4 4 -4 4 
54 4 -2 -6 -2 -2 8 0 4 -4 -2 -2 6 2 -4 0 
55 -8 -6 -6 -6 6 0 4 12 0 2 -2 2 2 4 -4 

56 2 4 -6 0 -2 4 -2 -6 4 -6 0 6 4 -2 0 
57 -2 8 2 -4 6 -4 -6 -2 -4 2 4 -2 0 2 0 

58 6 -10 0 2 4 0 -2 6 -4 0 2 4 -2 -2 -4 

59 -2 -6 -4 -10 0 -8 -2 -10 4 4 -2 0 2 -2 4 

60 -8 -6 -2 0 -4 2 2 -6 2 4 0 10 -2 4 4 

61 4 2 2 4 4 -2 2 -2 10 0 0 2 2 4 0 
62 -4 4 -4 2 2 -2 2 2 -2 -2 -2 4 -4 0 4 

63 -4 -4 -4 14 6 -6 -2 2 -2 6 -2 0 0 -4 0 

Table 4: Partial Linear Approximate Probabilities for S-box 5 
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The entry -20 is at the conjunction of row 16 and column 15. In 6-bit binary 

notation 16 is 010000, and in 4-bit binary notation 15 is 1111. This indicates that 

the second most significant bit of input to S-box 5, XOR'd with the corresponding 

key bit, will be equal to the XOR sum of all output bits on twelve occasions out of a 

possible sixty-four. The entry -20 in the table is obtained by subtracting thirty-two 

from twelve. In fact, all entries in the table have had thirty-two subtracted. This 

gives a better appreciation of how far from~ the probability for each expression is. By 

combining approximations of this kind, it is possible to determine a linear expression 

for any number of rounds of DES, and from this, some of the key bits in the first and 

last rounds can be found. Remaining key bits can then be determined by exhaustive 

search. 

4 COMBINED DIFFERENTIAL AND LINEAR CRYPT-
ANALYSIS 

In this section, we use a combination of differential and linear cryptanalysis 

(Differential-Linear cryptanalysis) to break four, six and eight rounds of double-key 

DES. We also present a theoretical extension to sixteen rounds. 

Our method is to use differential cryptanalysis to determine the last round key 

and, hence, forty-eight bits of Key 2. We then use linear cryptanalysis to attack one 

fewer round. Our reason for preferring differential cryptanalysis to linear cryptanaly

sis in determining the last round key is that, in general, differential cryptanalysis will 

determine more key bits for a give characteristic than will a linear cryptanalysis ex

pression and, as we require all the key bits in the last round, the fewer characteristics 

we can use the better. 

To illustrate this, note that in the previous section all forty-eight bits of the last 
round key were found using, at most, three characteristics in the cases of four, six and 

eight rounds. If we were to use Matsui's algorithm 2-A [2], then we would require a 

minimum of four linear expressions as this algorithm finds at most thirteen distinct 

bits per expression. However, each expression rarely finds thirteen distinct bits so it 

is certain that more than four expressions will be required and, hence, more pairs will 

be needed. 

Thus, we will use linear cryptanalysis to attack three, five and seven rounds of 

double-key DES assuming that the fourth, sixth and eighth round keys respectively 

have been determined by differential cryptanalysis. 

4.1 Differential-Linear Cryptanalysis of Double Key Mode 

We attacked three rounds of the double-key DES and obtained forty-four bits of 

Key 1 using five different approximations to Round 2, and using algorithm 2-A as 

produced by Matsui. Each approximation has the form 

where X2 is the input to Round 2, F2 is the output of the S-boxes and KJ2l is the 
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second-round key. Each approximation required no more than two hundred plaintext

ciphertext pairs. The linear expression for three rounds of DES, obtained from each 

of these approximations has the form 

where PH and CH represent the left-most thirty-two bits of plaintext and ciphertext 

respectively, and PL and CL represent the right-most thirty-two bits of plaintext and 

ciphertext respectively. With the forty-eight bits of KJ4> obtained by differential 

cryptanalysis, we were able to determine ninety-two bits of the key. The other twenty 

bits were found by exhaustive search. The results are summarised in Table 5. 

Approximation m a b c d t Probability Probability 

(Round 2 approx) (Linear Expr) 

1 15 7 18 24 29 22 12/64 0.6953 

2 31 1 9 15 23 46 14/64 0.6582 

3 3 5 11 17 27 4 16/64 0.6250 

4 7 0 10 20 25 10 18/64 0.5957 

5 11 3 13 21 16 18/64 0.5957 

Table 5: Summary of Results for 3- and 5-round Double Key DES. 

An attack on five rounds of double-key DES was successful using five approxima

tions, each of which consisted of a pair of equations having the form 

X2[m] E9 F2(X2, KJ2>)[a, b, c, d] 
X4[m] EfJ F4(X4, KJ4l)[a, b, c, d) 

KJ2>[t] 
KJ4l[t] 

With this type of approximation the linear expression for five rounds of double-key 

DES is 

PL[a, b, c, d) (f) PH[m] EfJ F1 (PL, Kf!l)[m] EfJ CL[a, b, c, d) EfJ 

CH[m] E9 Fs(CL, Kf5l)[m] KJ2l[t] EB KJ4l[t], 

Again a total of forty-four bits of Key 1 was found and, together with the forty

eight bits of Key 2 found by differential cryptanalysis, a total of ninety-two bits was 

known. The remaining twenty were again found by exhaustive search. No more than 

two hundred plaintext-ciphertext pairs were required. See Table 5 for a summary. 

Seven round double-key DES has been successfully attacked using three approxi

mations, each of which consist of three equations which have the form 

Xa[m) E9 F3 (Xa, Kf3l)[D) 

X4(d] EB F4(X4, KJ4>)[m) 

Xs[m] EB Fs(Xs, Kf5l)[D*] 

Kf3l(t1] 

KJ4>[t2] 

Kf5l[t1] 
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where D and D* are sets of bits such that D* c D, d f D but D is not an element of 

D*. These approximations yield a linear expression for seven rounds of 

PH[D] E9 F1 (PL, KP>)[D] E9 Cn[D*] E9 F1(CL, Kf>)[D*] 

= Kf3l[t1] E9 K~ 4 l[t2] E9 Kf5l[t1]. 

A total of thirty bits can be found in this way but the number of pairs required 

varies considerably from one hundred thousand to 2.5 million. With the forty-eight 

bits of key already found in round 8, we have determined a total of seventy-eight bits. 

The thirty-four remaining bits can be found by exhaustive search. This is summarised 

in Table 6. 

Approximation m D D* d Probability Number 

(linear exp) of pairs 

1 15 7,18,24,29 7,18,24 29 0.5061 105 

2 29 9,15,23 9,23 15 0.4985 2 x 106 

3 9 3,21,28 3,21 28 0.4993 2.5 x 106 

Table 6: Summary of Results for 7-round Double Key DES. 

4. 2 Extension to Fifteen Rounds 

The extension to fifteen rounds can be made by iterating the approximations used 

in the seven-round attack. Hence each approximation consists of nine equations which 

have the form 

X3[m] E9 F3(X3, Kf3l)[D] Kf3l[ti] 

X4[m] E9 F4(X4, KJ4l)[m] = KJ4l[t2] 

Xs[m] E9 Fs(Xs, Kf5l)[D*] = Kf5l[t1] 

X1[m] E9 F1(X1, Kfl)[D] Kfl[ti] 

Xs[m] E9 Fs(Xs, KJ8l)[m] = KJ8l[t2] 

X9[m] E9 F9 (X9 , Kf9l)[D*] K~9l[ti] 

X11[m] ffi F11 (Xn, Kf11l)[D] Kf11 l[t1] 

X12[m] E9 F12(X12, KJ12l)[m] = KJ12)[t2] 

X13[m} ffi ( (13))[ ·1 F13 X13,K1 D Kf13l[t1] 

where D, D*, m, t1 and t2 are as for the 7-round version. The linear expression for 

fifteen rounds obtained from these approximations is 
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PH[D] EB F1 (Pi, Ki1l)[D] EB CH[D*] EB F15(CL, KP5))[D*] 

= Ki3l[ti] EB K~ 4 J[h] EB K/5l[ti] 

EB K~ 8 l[t2] EB KJ9l[t1] 

EB K22l [t2] EB KJ13l [t1). 

EB K;7)[t1] 

EB K/ 11 l[ti) 

Again, thirty bits of Key 2 can be found in this way and, as before, we now 
have a total of seventy-eight bits of key known. The remaining bits can be found 
by exhaustive search. These results are summarised in Table 7. Note that only the 
probabilities and number of pairs are produced in this table as the other quantities 
m, D, D* and dare as in Table 6. 

Approximation 

1 

2 

3 

Probability 

0.500000909 

0.499999987 

0.499999987 

Number of Pairs 
1.2 x 1012 (""' 240) 

6.4 x 1015 ("' 253) 

6.4 x 1015 ("' 253) 

Table 7: Summary of Results for 15-round DES. 

5 COMPARISON OF DIFFERENTIAL-LINEAR AND 
DIFFERENTIAL CRYPTANALYSIS 

Table 8 shows the comparison between the linear and differential attacks. 

Version Cryptanalysis BITS Found Number of PAIRS 

4-round Differential - Linear 92 1032 
Differential 96 48 

6-round Differential - Linear 92 1320 

Differential 96 800 

8-round Differential - Linear 78 9 750000 
Differential 90 5450000 

16-round Differential - Linear 78 "'261 

Differential 96 ,..., 261 

Table 8: Comparison between Linear and Differential Attacks. 

It appears that in all versions, differential cryptanalysis is better than a combina
tion of diffential-linear cryptanalysis both in terms of the number of pairs required 
and bits found. However, there may be better linear approximations which would 
improve the aspects of the combined attack. 

6 EXHAUSTIVE SEARCH 

The 56-bit DES key has long been considered inadequate. Exhaustive search at
tacks on the 56-bit key have supported the call for a longer DES key. As well, various 
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methods to extend the key length to 112 bits have been proposed. 

6.1 Proposed Hardware Attack 

As mentioned in Section 1, Wiener [5] has proposed a machine that could be built 

at reasonable cost which would determine the 56-bit key of DES in hours using 1993 

technology only. The time taken to complete the search is a function of the number 

of processors employed. It is highly unlikely that a machine along the lines of that 

described by Wiener [5] will be feasible in the near future to exhaustively search all 

2112 possible keys of the double-key mode. 

6.2 Multiple Encryption 

Multiple encryption of DES using two or more keys has been proposed. In partic

ular, two methods have been proposed using a 112-bit key, namely double-encryption 

with two 56-bit keys and two-key triple encryption also using 56-bit keys (see Figures 

2 and 3). 

key 1 key 2 

DES DES 
p c 

encrypt encrypt 

Figure 2: Double-DES Encryption 

key 1 key 2 key 1 

DES DES DES 
p c 

encrypt decrypt encrypt 

Figure 3: Triple-DES Encryption 

Both of these have been extensively studied, [5] [8] [9] [10], and the complexity of 

the attack reduced from the brute force 2112 operations to an order of 256 operations 

by 'meet-in-the-middle' type attacks using a time-memory trade-off. It should be 

noted that this method is still not very practical, in that is requires storage of 256 
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64-bit blocks. This is infeasible, even with main frame computers. 
The 'meet-in-the-middle' attacks on multiple encryption rely on the fact that each 

key is used in one complete DES encryption. The double-key mode of DES is different 
in that both keys are used alternately in the rounds of a single DES encryption. 

Thus it appears that a 'meet-in-the-middle' attack of the type described in [5] [8) 
[9) [10], is not possible on the double-key mode. 

7 CONCLUSION AND FURTHER RESEARCH 

The double-key mode of DES does indeed have increased security over that of 
the DES. This increased security is very marginal in relation to standard differential 
cryptanalysis, but quite substantial if the modified differential attack on the DES is 
used for comparison. The order of magnitude of additional pairs required to break 
the double-key mode of DES using this modified differential attack is ~ ;::::: 214·5 . 

We believe that the resistance of double-key mode DES to differential cryptanalysis 
can be further improved if the key is scheduled in a different way. 

Matsui was able to break the standard mode of DES using 243 known plaintext
ciphertext pairs. A differential-linear attack will break double-key DES with approx
imately 261 plaintext-ciphertext pairs. This represents a factor of 218 increase in the 
number of pairs required, which is very substantial. Once again it can be seen that 
double-key mode DES is far more secure than DES against this attack. 

Exhaustive search appears to be the most likely attack to succeed against the DES 
in reasonable time. Despite Matsui's efforts [4) in using linear cryptanalysis to break 
the DES in fifty days and Biham's proposed modified differential attack [11), only 
exhaustive search, at the moment, appears capable of reducing this to a matter of 
hours rather than days. Clearly, this is not the case for double-key DES. While both 
differential cryptanalysis and linear cryptanalysis are currently technically incapable 
of breaking double-key DES, they are faster than exhaustive search. 

The use of a 112-bit key either through multiple encryption or the double-key mode 
described in this paper will prevent exhaustive key attacks in the forseeable future. 

The major strengths of the double-key mode are its apparent invulnerability to 
'meet-in-the-middle', differential, linear and combined differential-linear attacks which 
have been used to reduce the complexity of attacks against other DES-like encryption 
systems, to the point where they are approaching vulnerability. As well, the double
key mode offers the same encryption/decryption speed as the standard operation of 
DES. 

It is worth noting that the key schedule of double-key DES means that not all key 
bits are used until after the seventh round of the algorithm. This is in contrast to the 
DES where all bits are used after two rounds. We are still investigating this aspect. 
However, for the time being, the double-key mode of DES appears to be very secure. 
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