888

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 6, MARCH 15, 2011

Analysis of Dielectric Photonic-Crystal
Problems With MLFMA and Schur-Complement
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Abstract—We present rigorous solutions of electromagnetics
problems involving 3-D dielectric photonic crystals (PhCs). Prob-
lems are formulated with recently developed surface integral
equations and solved iteratively using the multilevel fast mul-
tipole algorithm (MLFMA). For efficient solutions, iterations
are accelerated via robust Schur-complement preconditioners.
We show that complicated PhC structures can be analyzed with
unprecedented efficiency and accuracy by an effective solver
based on the combined tangential formulation, MLFMA, and
Schur-complement preconditioners.

Index Terms—Multilevel fast multipole algorithm (MLFMA),
photonic crystals (PhCs), Schur-complement preconditioners,
surface integral equations (SIEs).

I. INTRODUCTION

HOTONIC CRYSTALS (PhCs) are artificial structures
P that are usually constructed by periodically arranging
dielectric unit cells [1]. They exhibit frequency-selective elec-
tromagnetic responses, i.e., their electromagnetic transmission
properties change rapidly as a function of frequency. For
example, Fig. 1(a) depicts a PhC structure involving periodic
dielectric slabs. Depending on the frequency, this relatively
simple structure can be transparent and behave like a wave-
guide, or it can be opaque and inhibit the transmission of
electromagnetic waves [2]. Due to its frequency-selective prop-
erty, this structure can be used as a filter in microwave circuits
and antenna systems. Another example, namely, a perforated
waveguide (PW), is depicted in Fig. 1(b). This structure is also
frequency selective, and it can be used to change the direction
of electromagnetic waves in a range of frequencies [3]-[7].

Numerical solutions of transmission problems involving PhC
structures are essential to test and improve existing designs
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Fig. 1. Examples of PhC problems: (a) periodic slabs and (b) perforated wave-
guide.

prior to their actual realizations. For example, analysis and
investigation of PhCs using the finite-element method and
the finite-difference time-domain method are quite common
in the literature [8]-[11]. Multiple scattering methods are
also shown to be particularly useful to analyze perforated
waveguides (PWs) [6], [7]. On the other hand, surface integral
equations (SIEs) based on the equivalence principle are rarely
applied to PhCs [12]-[14]. In particular, investigation of 3-D
structures with finite dimensions via SIEs is not common in
the literature. In fact, traditional surface formulations, such as
the Poggio-Miller—Chang-Harrington—-Wu-Tsai (PMCHWT)
formulation [15]-[17] and the Miiller formulation [18], may not
be very suitable for solving transmission problems involving
complicated PhC structures. PhCs are usually large in terms of
wavelength, and their surface discretizations lead to relatively
large matrix equations that cannot be directly solved. Hence,
iterative solvers are required for surface formulations of PhC
problems. However, the PMCHWT formulation usually leads
to ill-conditioned matrix equations, and thus, to very slow
convergence rates for iterative solutions of PhC problems. In
addition, the resonating nature of PhC structures further inhibits
the rapid convergence of iterations. The Miiller formulation
may lead to well-conditioned matrix equations, but the accuracy
of this formulation is usually very poor, especially for PhCs
with sharp edges and corners, or those having small details with
respect to wavelength. As a result, it is not surprising that SIEs
have not been very popular for analyzing PhCs.

In this paper, we present fast and accurate solutions of PhC
problems using a rigorous solver based on the combination of
novel surface formulations, the multilevel fast multiple algo-
rithm (MLFMA) [19], and robust preconditioning techniques.
Problems are formulated with the combined tangential formu-
lation (CTF) [20], the combined normal formulation (CNF)
[20], the modified normal Miiller formulation (MNMF) [21],
and the electric and magnetic current combined-field integral
equation (JMCFIE) [22], all of which have been recently

0733-8724/$26.00 © 2011 IEEE



ERGUL et al.: ANALYSIS OF DIELECTRIC PHOTONIC-CRYSTAL PROBLEMS

TABLE I
ELECTROMAGNETIC PROBLEMS INVOLVING PSS
Problem | Dimensions of Slabs | Number of Slabs | Unknowns
PS1 0.41x2X%2 cm 5 38,700
PS2 0.41x2x2 cm 10 77,400
PS3 0.41x4x4 cm 5 131,460
PS4 0.41x4x4 cm 10 262,920

developed for stable formulations of 3-D dielectric objects.
SIEs are discretized with the Rao—Wilton—Glisson (RWG) [23]
functions, and the resulting dense matrix equations are solved
iteratively using MLFMA. Iterative solutions are accelerated by
robust Schur-complement preconditioning techniques, namely,
approximate and iterative Schur preconditioners (ISPs). Com-
parisons show that transmission problems involving 3-D PhCs
can be analyzed with unprecedented efficiency and accuracy by
using an integral-equation solver based on CTF, MLFMA, and
Schur-complement preconditioners.

Solution techniques presented in this paper are demonstrated
on two different types of PhC structures. Our main aim is to
solve complicated PhC problems, such as the PW depicted in
Fig. 1(b). Hence, we present our efforts on various PWs with
different sizes. At the same time, as a major advantage of this
study, the developed solvers are not limited to the shape of the
PhCs, hence, they can be applied to arbitrary PhC structures.
Therefore, we also present the solution of transmission prob-
lems involving periodic dielectric slabs, such as the one depicted
in Fig. 1(a), which have relatively simple shapes but involve
multiple bodies.

The rest of the paper is organized as follows: In Section II, we
briefly present the basic properties of the PhC problems inves-
tigated in this paper. Surface formulations and their solutions
with MLFMA are summarized in Section III. Section IV is de-
voted to Schur-complement preconditioners, which are essential
for efficient solutions of PhC problems. Numerical results are
presented in Section V, followed by our concluding remarks in
Section VI. All solutions are performed in the frequency domain
involving time-harmonic electromagnetic fields with the e~*
time dependence.

II. PHC STRUCTURES

Table I lists the details of the periodic-slabs (PSs) problems,
involving periodically arranged rectangular slabs with a relative
permittivity of 4.8 located in free space. The slabs have dimen-
sions of either 0.41 cm X2 cm x 2 cm or 0.41 cm x 4 cm x 4
cm, and there are either 5 or 10 slabs, depending on the problem.
The distance between the slabs is fixed at 0.09 cm. With the
given dimensions, PSs resonate at around 30 GHz and become
opaque to electromagnetic waves. The resonance also causes the
ill-conditioning of the resulting matrix equations. Hence, we an-
alyze the iteration counts and solution times, particularly at 30
GHz. PSs are illuminated by a Hertzian dipole. Discretizations
with the RWG functions on A /10 triangles, where A is the
wavelength in free space, lead to matrix equations involving 38
700-262 920 unknowns.

Table II lists the details of the PW problems. Each problem
involves a dielectric slab with a relative permittivity of 12.0 in
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TABLE II
ELECTROMAGNETIC PROBLEMS INVOLVING PWS
Problem | Size of Structure | Number of Holes | Unknowns
PWI1 0.6x5x10 cm 38 27,798
PW2 0.6x15%20 cm 272 162,420
PW3 0.6x26x34 cm 828 475,782
PW4 0.6x29x38 cm 1042 597,462

free space. The holes are arranged on each slab such that electro-
magnetic waves can be transmitted from one of the short edges
to a neighboring long edge. As depicted in Fig. 1(b), some of
the holes in the regular grids are missing to allow the propaga-
tion of waves inside the structures. The size of the slabs varies
from 5 cm x 10 cm to 29 cm x 38 cm with a constant thick-
ness of 0.6 cm. The total number of holes changes accordingly,
from 38 to 1042. The distance between the centers of the holes
is 1 cm, whereas the radius of each hole is 0.29 cm. With these
dimensions, transmission is high between 7 and 9 GHz. Specif-
ically, the smaller problems PW1 and PW2 are solved at 8.25
GHz, whereas PW3 and PW4 are solved at 7.6 GHz, i.e., when
the transmission is maximized according to numerical results.
Similar to the PSs, PWs are excited with Hertzian dipoles. Dis-
cretizations with the RWG functions on A /20 triangles lead to
matrix equations involving 27 798-597 462 unknowns. These
fine triangulations are required for accurate modeling of the cir-
cular holes.

III. INTEGRAL EQUATIONS AND SOLUTIONS

In this section, we summarize recently developed integral-
equation formulations and their solutions with MLFMA.

A. Formulation

SIEs are based on the equivalence principle, where equivalent
currents J(r) = x H(r) and M(r) = —n x E(r) are defined
on the surface of the object. Using the boundary conditions,
equivalent currents, hence the electromagnetic fields inside and
outside the object, can be calculated. Depending on the tested
field (electric or magnetic), the location (from inside or outside),
and the method (direct or rotational) of testing the boundary
conditions, eight different integral equations can be obtained
[24]. Combining these integral equations, one can derive various
dielectric formulations, such as PMCHWT [15]-[17], Miiller
[18], CTF, CNF, MNMF, and JIMCFIE [20]-[22], to solve elec-
tromagnetics problems. Efficiency and accuracy of the solutions
naturally depend on the formulation in addition to various prop-
erties of the problem, e.g., the shape and dielectric constants
of the object as well as the excitation. For example, in earlier
studies, we showed that JMCFIE is superior to other formula-
tions for relatively simple objects, such as the PhC structure in
Fig. 1, when simple preconditioners are used [24]. The same
formulation is also very successful in terms of accuracy and
efficiency for smooth and large objects. On the other hand, as
demonstrated in this paper, JMCFIE may not be the most ap-
propriate formulation for more difficult problems, such as a PW,
that require robust preconditioners.

Surface formulations and their solutions are extensively dis-
cussed in [20] and [24]. In this paper, we will consider only their
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discretized forms. Each formulation involves a distinct combi-
nation of discrete versions of three surface operators, i.e.,

TAX)) = ik [ dr'X()our.r)
S
+kL / dr'V'- X (r")Vgu(r,7') (D)
u JS

Kev,u{X}(r) = /

JPV,S
Z{X}(r) = X(r) 3)

dr' X(r") x V'g.(r,7) 2)

where X is either the equivalent electric current J or the equiv-
alent magnetic current M. In (1) and (2), PV indicates the prin-
cipal value of the integral, k, = w,/Jty €, is the wavenumber,
and

exp (tky R)

gu(r> "J) = T 5

R (R=|r—7)) 4

denotes the homogeneous-space Green’s function associated
with the outside (v = O) or inside (u = T) of the object.

B. Discretization

Discretizations of surface formulations for homoge-
neous dielectric objects using a set of basis functions
b, (n = 1,2,...,N) and a set of testing functions ¢%,,
(m =1,2,...,N) lead to 2N x 2N dense matrix equations

in the form of
FEEI
Zy Zo ays vy

where Z11, Z19, Zo1, Zos € CN*V. Solutions of (5) via
Krylov-subspace algorithms provide expansion coefficients a s
and a,; for equivalent electric and magnetic currents, respec-
tively. Then, using the coefficients, scattered electric and mag-
netic fields can be calculated everywhere.

There are infinitely many surface formulations for electro-
magnetics problems involving dielectric objects. Some of these
formulations are known to be stable and provide accurate re-
sults, although the efficiency and accuracy of the solution may
vary significantly, depending on the formulation and the dis-
cretization. In this paper, we first consider four recently devel-
oped formulations, namely, CTF, CNF, MNMF, and JMCFIE.
Considering the initial experiments, CTF and JMCFIE are also
employed to solve PhC problems.

CTF is a tangential formulation [20], where boundary condi-
tions are tested directly by sampling the tangential components
of the electric and magnetic fields on the surface. Matrix ele-
ments are derived as follows:

A A a1 ©
Ziy " = =05 Kpv.o —ny Koy,

- % (o' =) 1Y ™
Z;rF = 7IOK£V7O + 7IIK£V7I

+ l(770 — ) I" ®)

2

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 29, NO. 6, MARCH 15, 2011

where
T, [m,n] = (£ (r), T{ba} (1)) ©)
Kpy [m,n] = (tn(r), Kpy.u{bs }(r) (10)
IV [m,n] = (b(7), 7 X by(r) (11)
and 7, = /pu/cy foru = O and v = I. In terms of the

stability and the conditioning of the resulting matrix equations,
CTF is an improved version of the well-known PMCHWT for-
mulation.

CNF is a normal formulation [20], where fields are tested after
they are projected onto the surface by using the outward normal
vector. Matrix elements can be written as follows:

~CNF ~CNF T

Zy, =2y = I_(gv,o - I_(gv,l ~1 (12)
B g ') 1
Zg " = —noTy +mTy (14)
where
T [m,n] = (tm(r), 2 x T {by}(r)) (15)
Kpy o [m,n] = (tu(r), 5 x Kpy.u{b}(r))  (16)
1 m,n] = (En(r), ba(r)) a7

MNMF is another normal formulation [21] obtained by
changing the scaling of the integral equations in CNF such that

I = s (koK v o — wiK i) - 2
(s)
Zy; " = m (hong'T& = i ' T7 ) (19)
ZINE _ﬁ (conoTs — T} (20)
25N = s (coKivo— k) - 517D

We note that the matrix equations obtained with MNMF involve
nonidentical diagonal blocks, as opposed to those obtained with
CTF and CNF. Both CNF and MNMF are improved versions of
the well-known Miiller formulation.

Finally, JMCFIE is a mixed formulation [22], which can be
obtained by combining CTF and CNF, i.e.,

-JMCFIE 5JMCFIE 5CTF  5CNF

Z1; =27y =Zun t+Zu (22)
=IJMCFIE CTF 5CNF

Zis = Z12T + 77, (23)
—JMCFIE  5CTF  5CNF

Zo =Zy +Zy (24)

Applying a Galerkin scheme and using the same set of RWG
functions as the basis and testing functions, CTF involves
weakly tested identity operators. Hence, CTF is practically
a first-kind integral-equation formulation, and it produces
ill-conditioned matrix equations without preconditioning.
Nevertheless, CTF is usually more accurate than the normal
and mixed formulations. CNF, MNMF, and JMCFIE involve
well-tested identity operators and produce better conditioned
matrix equations than CTF. Unfortunately, due to the excessive
discretization error of the identity operator [25], the accuracy
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of CNF, MNMF, and JMCFIE can be poor, especially when the
contrast of the object is high and/or the object involves sharp
edges and corners.

C. Solutions With MLFMA

Dense matrix equations obtained from integral-equation for-
mulations can be solved efficiently with MLFMA [19]. Using
this algorithm, matrix—vector multiplications, i.e., interactions
between basis and testing functions, are performed in a group-by-
group manner. A multilevel tree structure is obtained by placing
the object in a cubic box and recursively dividing the computa-
tional domain into subboxes. Then, only O(N) near-field inter-
actions are calculated directly and stored in memory, whereas the
rest of the interactions (far-field interactions) are calculated in
three stages, called aggregation, translation, and disaggregation.
During the aggregation stage, the radiation patterns of boxes are
calculated from the bottom to the top of the tree structure. Then,
the incoming fields for all boxes are obtained through transla-
tion and disaggregation stages. Due to the oscillatory nature of
the Helmholtz equation, the sampling rate for the radiation and
receiving patterns depends on the size of the boxes, with respect
to the wavelength associated with the medium. Hence, local La-
grange interpolation and anterpolation methods are employed to
match the different sampling rates of the consecutive levels. In
addition, two versions of MLFMA, i.e., with different sampling
rates, are required to perform the matrix—vector multiplications
related to the inner and outer media. The application of MLFMA
to surface formulations of dielectric objects is detailed in [24]
and [27].

IV. SCHUR-COMPLEMENT PRECONDITIONING

Approximating the dense matrix in (5) by a sparse near-field
matrix involving only the near-field interactions, precondi-
tioning techniques developed for sparse systems can be adapted
to solve integral-equation formulations. However, standard
algebraic preconditioners, such as the methods based on in-
complete LU (ILU) factorizations, often fail for indefinite
partitioned systems that are not diagonally dominant [26], [28].
A similar behavior is observed for linear systems obtained from
surface formulations [29]. Nevertheless, it is possible to obtain
robust preconditioners using the Schur-complement reduction.
This method decomposes the solution of the 2 x 2 partitioned
near-field system

?NF,ll ZNF,IZ T - f
ZNk21 4NF,22 y g

into solutions of two subsystems. First, y is found by solving

(25)

S y=9g—Zxro- Znr1) ' f (26)

where
S =Znro2— Znror - (Znea1) ™ Znw e 27
is the Schur complement. Then, x can be found by solving

Zxparx=f — Znpa2 -y (28)
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In a variety of applications that yield partitioned systems, pre-
conditioners developed with some approximations to (26) and
(28) have been shown to demonstrate successful results [26].

The reduced systems (26) and (28) can be solved in two dif-
ferent ways, leading to two preconditioning approaches. In the
first approach, systems are solved directly, but the inverses of
Z NF,11 and S are approximated during solutions. The resulting
preconditioner is called the approximate Schur preconditioner
(ASP). We note that the approximate inverse of Z NF,11 is used
also on the right-hand sides of (26) and (27), in addition to the
solution of (28). In the second approach, (26) and (28) are solved
iteratively, and the resulting preconditioner is called the ISP. For
ISP, we refer to iterative solutions related to the two reduced
systems as “inner solutions” and the solution related to the ac-
tual system (5) as the “outer solution.” If the numbers of inner
iterations for the reduced systems are not fixed at a constant, a
flexible solver, such as the flexible generalized minimal residual
(FGMRES) method, should be used for the outer solution [26].
Since the near-field system usually inherits the inconvenient fea-
tures of the dense system, it is vital to use inner preconditioners
to accelerate the solutions of the reduced systems for robustness.

ASP and ISP have some pros and cons in terms of precon-
ditioning cost and efficiency. Because of the inner solutions,
ISP has a higher application cost than ASP. However, in the
case of ASP, high-quality approximate inverses should be con-
structed for both Zr 11 and the Schur complement S. This can
be tough, particularly for the Schur complement S. As an impor-
tant advantage of ISP, when the approximate inverses are used
as preconditioners to the inner solutions of ISP, the high-quality
requirement can be relaxed. Additionally, with inner iterative
solutions, it is easier to balance the solution accuracy of the
two reduced systems and, thus, eliminate redundant computa-
tion [30].

Since the success of ASP and ISP will depend on the quality
of the approximate inverses (which can be used as inner pre-
conditioners for ISP), we need to analyze possible approaches
to approximate the inverses of Zxp 11 and S.

A. Approximate Inverse of Zxr 11

For efficiency and to limit the memory requirement, the
approximate inverses should be sparse. For VA NF,11, a sparse
approximate inverse SAI{Z;} can be constructed by retaining
the nonzero pattern of the partition. To demonstrate the effec-
tiveness of SAT{Z1;}, we iteratively solve (28) for the PhC
problems PS4 and PW?2 listed in Tables I and II, respectively.
In Figs. 2 and 3, we compare the generalized minimal residual
(GMRES) solutions without preconditioning (no precondi-
tioner: NP) and with SAI{Z;;}. We analyze convergence for
the first ten iterations since a rough solution, generally up to
0.1 residual error, is shown to be sufficient to yield a successful
preconditioner for ISP [26]. We observe that SAI{Z;} signif-
icantly accelerates the solutions, except for the only case when
MNMF is applied to the PW. In this case, the preconditioner
slightly increases the number of iterations. Nevertheless, it
becomes possible to obtain 0.1 residual error quite rapidly (e.g.,
in fewer than ten iterations) in all cases when SAI{Z1;} is
employed, proving the effectiveness of this preconditioner for
the reduced system (28).
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Fig. 2. Iterative solutions of (28) without preconditioning and with SAT{Z, }
for the problem PS4 involving 262 920 unknowns.
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Fig. 3. Iterative solutions of (28) without preconditioning and with SAT{ Z, }
for the problem PW2 involving 162 420 unknowns.

Finally, we note that, in the case of ASP, SAI{Z;} is used
to approximate Z1; in the direct solution of (28). In the case of
ISP, however, SAI{Z 11} is used as an inner preconditioner for
the iterative solution of (28). For both ASP and ISP, the reduced
system (26) can be modified as follows:

S y=g—Znra SA{Zn} f (29)

where

S =Zxr2 — Znwo1 SAH{Z11} - Znro. (30)

In other words, we approximate the inverse of Z NF,11 on the
right-hand sides of (26) and (27).

B. Approximate Inverses of the Schur Complement S

We investigate three different approaches to approximate the
inverse of the Schur complement S. First, it is possible to ap-
proximate S with block-diagonal partitions, which consist of the
self-interactions of the lowest level clusters in MLFMA. The in-
verse of S can be approximated as follows:

BDI{S} = (Bsz — Bsy - (B11) ™' - B12)™* (31)
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where B;; represents the block-diagonal part of Z;; for ¢ =
1,2 and 5 = 1, 2. In (31), inverse operations can be performed
directly without the need for an approximation, and the resulting
matrix BDI{S} is also block diagonal.

A second approach is to omit the second term in the
right-hand side of (30), and to approximate the inverse of S
with the sparse approximate inverse of ZNF)Qz, i, SAI{Zss).
Since Z NF,22 — ZNF711 for all formulations except MNMF,
SAI{Z;:} can be used to approximate the inverse of S. This
approach has the advantage of devising a preconditioner for
the dense system (5) by constructing only one sparse approx-
imate inverse. Despite this important advantage, SAI{Z;;}
fails to provide an accurate approximation to the inverse of S,
particularly for high-contrast dielectric objects. Hence, a better
approach is to approximate S via approximate matrix—matrix
multiplications as follows:

S =Znr 22 — Znr21 O SA{Z11} @ Znr a2 (32)
where © represents the approximate matrix—matrix multiplica-
tions. Then, the sparse approximate inverse of S ,l.e., SAI{S’ 1,
can be calculated efficiently by preserving the near-field pattern.

In the case of ASP, the aforementioned approximate inverses,
i.e., BDI{S}, SAI{Z5,}, and SAI{S}, can be used directly to
approximate the inverse of S in (29). In the case of ISP, however,
they are used as preconditioners for the iterative solution of (29).
We note that S is not generated explicitly using (30) even when
(29) is solved iteratively. Instead, sparse matrix—vector multi-
plications with Zxr 21, SAI{Z11}, and Z Ny 12, are performed
efficiently.

In order to compare the different approaches to approximate
the inverse of S, Figs. 4 and 5 present the solution of (29) with
GMRES for the PhC problems PS4 and PW2 listed in Tables I
and II, respectively. We consider the NP case in addition to three
preconditioned solutions when the approximate inverses are em-
ployed as preconditioners. First, we observe that the solution of
(29) is more difficult than the solution of (28). In particular, it is
not possible to attain fast convergence for the normal formula-
tions CNF and MNMF. Among the three approximate inverses,
SAI{S‘ } performs the best. This preconditioner significantly ac-
celerates the solutions for the PSs problems formulated with
CTF and JMCFIE. On the other hand, for the PW problem in-
volving a high-contrast object, attaining fast convergence is dif-
ficult even with SAT{S}, and all solutions start to stagnate after
the first five iterations. Hence, it is wise to set a low threshold
for the maximum number of inner iterations to avoid wasted ef-
forts in ISP.

V. SOLUTIONS OF PHC PROBLEMS

Initial experiments show that CTF and JMCFIE are more ap-
propriate than CNF and MNMF for the solution of PhC prob-
lems. As discussed in Section III, CTF is more accurate than
the other three formulations. In addition, as demonstrated in
Section IV, Schur-complement preconditioners works well for
CTF. Hence, CTF is a good candidate for the fast and accu-
rate solution of PhC problems. JMCFIE is another formulation
that seems to be accelerated easily with Schur-complement pre-
conditioners. In fact, this formulation provides more accurate
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results than CNF and MNME, and it is also superior to these
formulations in terms of efficiency with simple preconditioners
[24]. Hence, IMCFIE can be considered as an alternative for-
mulation to CTF.

For the solution of PhC problems, we use GMRES with ASP
and FGMRES with ISP, without a restart in both the cases. Using
GMRES-type solvers, the number of matrix—vector multipli-
cations via MLFMA is the same as the number of iterations.
For ISP1 and ISP2, there are also inner solutions involving ma-
trix—vector multiplications with sparse near-field matrices. We
note that these multiplications are much faster than the ordinary
multiplications by MLFMA for the outer solutions. GMRES
stores a sequence of orthogonal vectors to span the Krylov sub-
space; hence, its memory requirement increases linearly with
the number of iterations. In order to provide the required flexi-
bility, FGMRES has to store two sets of vectors, which increase
the memory requirement. Nevertheless, the memory required
for GMRES or FGMRES is usually negligible compared with
the memory required for MLFMA and preconditioners. Except
for PW3 and PW4, all solutions are performed sequentially on
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TABLE III
SOLUTIONS OF PHC PROBLEMS INVOLVING PSS USING ALGEBRAIC
PRECONDITIONERS

NP 1ILU(0) ILUTP
CTF Nol | TST | Nol | TST | Nol | TST
PS1 473 1.6 186 0.6 409 2.2
PS2 T T 335 2.7 702 8.4
PS3 T T 353 5.1 t T
PS4 T T *237 7.0 NA
4PBDP 1LU(0) ILUTP
JMCFIE | Nol | TST | Nol | TST | Nol | TST
PS1 149 0.5 87 0.3 124 1.2
PS2 107 0.9 175 1.4 205 4.3
PS3 276 4.0 197 2.9 244 17
PS4 698 21 408 12 i i
Nol: Number of iterations. TST: Total solution time in
hours. §: Iterations do not converge. : Memory limit is
exceeded. *: False convergence.

an Intel Xeon 5355 processor with 16 GB memory. PW3 and
PW4 are solved on an Intel Xeon E5345 processor with 32 GB
memory. In all problems, near-field and far-field interactions are
calculated with maximum 1% error [24]. In iterative solutions,
we set the initial guess as the zero vector, and stop the iterations
when the residual error is reduced to less than 10~2 or when the
number of iterations exceeds 1000. For the inner solutions of
ISP, we set the residual error to 0.1 and the maximum number
of inner iterations to 3 or 5, depending on the problem.

A. Solutions of the PSs Problems

First, we compare algebraic preconditioners, namely, the
four-partition block-diagonal preconditioner (4PBDP) [24] and
two ILU-type preconditioners for the solution of PhC problems
involving PSs. 4PBDP is constructed from the diagonal blocks
corresponding to the self-interactions of the lowest level clus-
ters. This preconditioner is not used for CTF since it decelerates
the convergence of this formulation. Instead, CTF is solved
without preconditioning (NP). From the family of ILU-type
preconditioners, we use ILU(0) and ILU with threshold and
pivoting (ILUTP) [31], [32]. For ILUTP, we use a special set of
parameters such that its memory requirement is approximately
the same as that of ILU(0) [32]. We achieve this by using a
low threshold value, i.e., 10~%, and by setting the maximum
number of nonzero elements per row to the average number of
nonzero elements per row of the near-field matrix.

Table III presents the number of iterations and the total so-
lution time (including the setup of the preconditioner and iter-
ations) for the PSs problems listed in Table I. When the prob-
lems are formulated with CTF, convergence cannot be achieved
in 1000 iterations without preconditioning for the larger three
problems PS1, PS2, and PS3. For this formulation, ILU(0) sig-
nificantly accelerates the iterative solutions, but this precondi-
tioner leads to a false convergence for the largest problem PS4.
In fact, for this problem, the condest value, which can be used
to estimate the condition number of the incomplete factors, is
1.2 x 10, indicating the instability of the factorization. ILUTP
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TABLE IV
SOLUTIONS OF PHC PROBLEMS INVOLVING PSS USING SCHUR-COMPLEMENT
PRECONDITIONERS

57" | sa{zu} | sasr | sais) |
ISPI1(5) ASP ISP2(3)

CTF | Nol | TST | Nol | TST | Nol | TST

PS1 107 | 05 | 104 | 06 [ 109 | 06

PS2 210 | 2.2 | 216 22 206 2.3
PS3 358 6.3 490 7.7 386 6.7
PS4 933 33 t t 964 34

ISPI(5) ASP ISP2(5)
JMCFIE | Nol | TST | Nol | TST | Nol | TST
PS1 53 0.3 106 0.6 54 0.4
PS2 47 0.7 207 2.1 45 0.9
PS3 112 22 233 4.0 116 2.5

PS4 388 14 558 18 344 13

Nol: Number of iterations. TST: Total solution time in
hours. : Iterations do not converge.

could produce more stable factors, but for both CTF and JM-
CFIE, this preconditioner does not accelerate the solutions com-
pared to ILU(0). As expected, JMCFIE leads to faster solutions
in comparison to CTF. Specifically, using the combination JM-
CFIE-ILU(0), the largest problem can be solved in 12 h.

In Table IV, we present the solution of PSs problems using
Schur-complement preconditioners. In ISP1, we use SAT{Z;;}
as a preconditioner for the solution of the reduced systems (28)
and (29), and we set the maximum number of inner iterations to
five. In ISP2, we employ SAT{S} for the inner solution of the
system (29), whereas (28) is still accelerated with SAI{Z1;}.
For the solution of CTF with ISP2, we set the maximum number
of iterations to three since a further increase of this parameter
does not reduce the iteration counts, but only leads to higher so-
lution times. For JMCFIE, however, the optimal value is found
be five, as in ISP1! . In addition to ISP1 and ISP2, we also em-
ploy ASP, based on the approximation of the inverse of Z NF,11
with SAI{Z1,} and the inverse of § with SAI{S}.

Comparing the results in Tables III and IV, we observe that
PS4 formulated with CTF becomes solvable using ISP1 and
ISP2 without any nonconvergence or false convergence prob-
lems. In addition, the smaller PSs problems PS1, PS2, and PS3
formulated with CTF are efficiently solved by using Schur-com-
plement preconditioners. Particularly, PS1 and PS2 are solved
more efficiently compared to solutions with algebraic precon-
ditioners. For PS3, ILU(0) leads to the most efficient solutions,
but Schur-complement preconditioners also perform well. The
improvement of solutions is more visible in the case of JM-
CFIE. Specifically, ISP1 provides the fastest solutions of prob-
lems PS1, PS2, and PS3. For PS4 formulated with JMCFIE,
ILU(0) leads to the most efficient solution, but the performance
of ISP2 with a 13-h total solution time is close to the perfor-
mance of ILU(0).

IConsequently, the total number of inner matrix—vector multiplications is
equal to or less than five times the number of iterations for ISP1 and three or
five times the number of iterations for ISP2.
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TABLE V
MEMORY REQUIRED FOR THE SOLUTION OF PHC PROBLEMS INVOLVING PSs
Preconditioner (MB) MLFMA (MB)
ILU(O) & ILUT | ASP & ISP2 | ISP1 CTF | IJMCFIE
PS1 298 149 75 386 471
PS2 644 322 161 813 984
PS3 1038 519 260 1319 1608
PS4 2151 1075 538 2672 3249
TABLE VI
SOLUTIONS OF PHC PROBLEMS PW1 AND PW2 INVOLVING PW
51 | saisy |
NP TLU0) ASP
CTF Nol | TST | Nol | TST | Nol | TST
PW1 695 0.7 141 0.3 58 0.3
PW2 T T t t 217 3.6
4PBDP 1LU(0) ISP2(5)
JMCFIE | Nol | TST | Nol | TST | Nol | TST
PW1 183 0.2 32 0.2 27 0.3
PW2 593 4.3 1 1 79 3.1

Nol: Number of iterations. TST: Total solution time in
hours. f: Iterations do not converge. {: Memory limit
is exceeded.

Finally, in Table V, we compare the memory required by the
algebraic (ILU(0) and ILUT) and Schur-complement precondi-
tioners for the solution of PhC problems involving PSs. Memory
of 4PBDP is negligible and not included in the table. We ob-
serve that the memory required for the preconditioning is re-
duced by 50% using ISP2 and by 75% using ISP1, instead of
ILU(0). We also note that these savings are significant consid-
ering the memory required for the MLFMA implementation it-
self, as also listed in Table V. Hence, in addition faster solutions,
using ISP1 and ISP2 leads to more efficient solutions in terms of
the memory usage compared to the ILU-type preconditioners.

B. Solutions of the PW Problems

In Table VI, we present the solution of the PW problems PW1
and PW2 listed in Table II. When the problems are formulated
with CTEF, solutions are accelerated with ILU(0) and ASP in ad-
dition to the NP case. For IMCFIE, we use 4PBDP, ILU(0), and
ISP2, which are based on the acceleration of the inner solutions
via SAT{S}. We observe that both ASP and ISP2 effectively im-
prove the iterative solutions. For example, PW2 formulated with
CTF cannot be solved (within 1000 iterations) even when using
ILU(0). Using ASP, however, the solution can be obtained in less
than 4 h. PW2 formulated with JMCFIE also cannot be solved
with ILU(0) since the convergence is quite slow and the required
memory exceeds the limit value before the residual error is re-
duced to below 0.001. The same problem can be solved in about
3 h using ISP2.

Solutions of PW3 and PW4 using Schur-complement pre-
conditioners are listed in Table VII. These problems cannot
be solved without preconditioning or with algebraic precondi-
tioners, including ILU(0). In the case of ILU(0), convergence
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TABLE VII
SOLUTIONS OF PHC PROBLEMS PW3 AND PW4 INVOLVING PWs
5! SAI{S} SAI{S}

ASP ISP2(5)
CTF | Nol | TST JMCFIE | Nol | TST

PW3 697 37
Pw4 829 | 122

PW3 110 24
Pw4 139 34

Nol: Number of iterations. TST: Total solution time in
hours. : Iterations do not converge. i: Memory limit
is exceeded.

TABLE VIII
MEMORY REQUIRED FOR THE SOLUTION OF PHC PROBLEMS INVOLVING PWs

Preconditioner (MB) MLFMA (MB)
ILUO) | ASP & ISP2 CTF JMCFIE
PW1 643 321 764 852
PW2 4430 2215 4993 5509
PW3 | 15905 7953 17,666 19,492
PW4 | 20,288 10,144 22,417 24,734
CTF

JMCFIE

c;m.wun'unun

Fig. 6. Total magnetic field inside and in the vicinity of a 0.6 cm X 26 cm X 34
cm PW formulated with CTF and JMCFIE.
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Fig.7. Total magnetic field inside and in the vicinity of a 0.6 cm X 29 cm X 38
cm PW formulated with CTF and JMCFIE.

cannot be achieved before the limit memory of 32 GB is
exceeded. On the other hand, using ASP for CTF and ISP2
for JMCFIE, both problems become solvable on the same
computer. Specifically, the largest problem (PW4) involving
597 462 unknowns can be solved in 122 h using CTF-ASP and
in 34 h using IMCFIE-ISP2.

Announcements of memory required for the solution of PhC
problems involving PWs are listed in Table VIII. Similar to the
PSs problems, using ASP or ISP2 reduces the preconditioner
memory by 50% in comparison to ILU(0). This reduction is
significant in the context of the total memory required for the
MLFMA implementation.

Comparing the solutions for CTF and JMCFIE, one may con-
clude that JMCFIE is superior to CTF in terms of efficiency. Un-
fortunately, the accuracy of JMCFIE can be poorer compared
to the accuracy of CTF. As an example, Figs. 6 and 7 present
the normalized magnetic field inside and in the vicinity of the
two larger PWs. We observe that JIMCFIE solutions are signif-
icantly different than CTF solutions, especially toward the end
of the waveguides. In fact, JMCFIE solutions could be misin-
terpreted as the inability of the waveguides to transmit the elec-
tromagnetic waves. However, as evident from the highly accu-
rate results obtained with CTF, the waveguides operate perfectly
and the electromagnetics waves are efficiently transmitted, as
desired.
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VI. CONCLUDING REMARKS

In this paper, we present rigorous solutions of PhC problems
formulated with SIEs. Solutions are accelerated with MLFMA
and novel Schur-complement preconditioners. From our numer-
ical experiments, some of which are presented in this paper, we
reach the following conclusions.

1) Considering the accuracy of solutions, CTF is superior to
other formulations, including JMCFIE, especially for com-
plicated PhC structures, such as a PW.

2) For relatively simple PhC problems, such as PSs,
Schur-complement preconditioners are good alterna-
tives to algebraic preconditioners. When the problem size
is large, Schur-complement preconditioners are required,
especially for CTF, which may not be solved with alge-
braic preconditioners.

3) For relatively complicated PhC problems, such as PWs,
Schur-complement preconditioners are essential to accel-
erate solutions since algebraic preconditioners, including
the ILU family, fail to provide efficient solutions.

4) Schur-complement preconditioners are shown to accel-
erate the solution of dielectric problems involving diverse
permittivity values, both in this paper and more exten-
sively elsewhere [33].

5) Considering both accuracy and efficiency of solutions, the
combination of MLFMA, CTF, and Schur-complement
preconditioners seems to be an ideal choice with which to
investigate PhC problems.

To the best of authors’ knowledge, dielectric PhC problems in-
volving complicated, finite-sized (without infinite-periodicity
homogenization approximation), 3-D geometries are analyzed
for the first time with the reported levels of accuracy, efficiency,
and detail. The fast SIE solvers and preconditioners reported
herein are readily applicable to a wide variety of similarly com-
plicated PhC problems.
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