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We analyse and compare the classi�cation accuracies of six di	erent classi�ers for a two-class mental task (mental arithmetic and
rest) using functional near-infrared spectroscopy (fNIRS) signals. �e signals of the mental arithmetic and rest tasks from the
prefrontal cortex region of the brain for seven healthy subjects were acquired using a multichannel continuous-wave imaging
system. A
er removal of the physiological noises, six features were extracted from the oxygenated hemoglobin (HbO) signals.
Two- and three-dimensional combinations of those features were used for classi�cation of mental tasks. In the classi�cation, six
di	erent modalities, linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), �-nearest neighbour (�NN), the
Näıve Bayes approach, support vector machine (SVM), and arti�cial neural networks (ANN), were utilized. With these classi�ers,
the average classi�cation accuracies among the seven subjects for the 2- and 3-dimensional combinations of features were 71.6,
90.0, 69.7, 89.8, 89.5, and 91.4% and 79.6, 95.2, 64.5, 94.8, 95.2, and 96.3%, respectively. ANN showed the maximum classi�cation
accuracies: 91.4 and 96.3%. In order to validate the results, a statistical signi�cance test was performed, which con�rmed that the p
values were statistically signi�cant relative to all of the other classi�ers (p < 0.005) using HbO signals.

1. Introduction

Brain-computer interface- (BCI-) based systems provide a
direct communication pathway between the brain and exter-
nal devices without the need for anymuscularmovements [1].
BCI systems are based on two di	erent approaches, namely,
invasive and noninvasive. In invasive BCI systems, for the
purpose of �ne-quality brain-signal acquisition, electrodes
are directly implanted into the brain, which entails high-risk
surgery [2–4]. Noninvasive BCI systems, contrastingly, do
not require any type of surgery, on which basis they o
en are
preferred over invasivemethods. In noninvasive BCI systems,
di	erent modalities—electroencephalography (EEG) [5–9],
functional magnetic resonance imaging (fMRI) [10–12], and
functional near-infrared spectroscopy (fNIRS) [7, 13–21]—
have been used to acquire high-quality brain signals.

Although fMRI and EEG have shown positive develop-
ments for rehabilitation of patients su	ering from di	erent

motor disabilities, for example, amyotrophic lateral sclerosis
(ALS), locked-in syndrome (LIS), and other physical disabil-
ities, fMRI machines are quite expensive as well as heavy,
rendering them infeasible for the purposes of portable BCI
systems [22]. More recently, alternative fNIRS-based BCI
systems have been widely used due to their well-balanced
spatial and temporal resolution, safety, ease of use (porta-
bility), and less susceptibility to gross electrophysiological
artifacts caused by eye blinks, eyeballmovements, andmuscle
activity [23]. Indeed, over the past few decades, fNIRS-based
BCI systems have shown promising results in becoming
an e	ective medium of communication for patients with
disabilities [18].

Near-infrared spectroscopy (NIRS) functions by utilizing
the near-infrared (NI) spectrum of light (wavelength 600∼
1000 nm) to measure the hemodynamic response repre-
sented by oxygenated hemoglobin (HbO) and deoxygenated
hemoglobin (HbR), a
er which the modi�ed Beer-Lambert
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law is used to determine the changes in the HbO and
HbR concentrations (Δ�HbO(�) and Δ�HbR(�), resp.) [24–28].
Jobsis �rst introduced, in 1977, the principal of near-infrared
spectroscopy [29], which entails the use of emitters and
detectors separated by a distance of 3∼4 cm. �e distance is
critical, as a small distance (1 cm) contains only a skin-layer
contribution, while a large distance (5 cm) can result in low-
quality and undesirable signals [23].

In fNIRS-based BCI studies, various mental tasks like
motor imagery [15, 16], music imagery [17, 30–32], mental
arithmetic (MA) tasks [17, 33, 34], object rotation [34–37],
and others [38–41] have been used to acquire maximum
classi�cation accuracies that facilitate communication with
patients su	ering from LIS and ALS. In an fNIRS-based BCI
system, the prefrontal cortex of the brain plays an important
role in the acquisition of �ne signals, for two speci�c reasons:
Usually, it is not involved in motor disabilities, and its hair-
free region enhances signal strength and penetration depth
[24]. A
er acquiring brain signals using an fNIRS-based
BCI system, the �rst step is to eliminate physiological noises
using di	erent kinds of �lters [42], the next step is to extract
the features from the signals, and the �nal step is to apply
classi�cation techniques to acquire the maximum accuracy
for the speci�ed task.

In recent decades, various classi�cation schemes have
been used in the fNIRS-based BCI area to classify di	erent
mental tasks and, thus, acquire maximum classi�cation
accuracies, thereby improving the quality and e	ectiveness
of communication with patients su	ering a�ictions such as
ALS and LIS [30, 33, 34, 43–45]. In this study, we acquired
mental arithmetic (MA) task versus rest signals from the
prefrontal cortex of the brain, a
er which we removed the
signals’ physiological noises using the 4th-order Butterworth
band-pass �lter [18, 19, 46]. Subsequently, those �ltered
signals were utilized to calculate the di	erent combinations
of the statistical properties of the time-domain signals. �en,
a
er obtaining the features, we employed, to acquire maxi-
mum classi�cation accuracies across all of the subjects usingΔ�HbO(�) signals, di	erent types of classi�ers, that is, linear
discriminant analysis (LDA), quadratic discriminant analy-
sis (QDA), �-nearest neighbour (�NN), Näıve Bayes, sup-
port vector machine (SVM), and arti�cial neural networks
(ANN). By using 2-dimensional Δ�HbO(�) feature combina-
tions with those classi�ers, the classi�cation accuracies were
71.6 ± 1.1, 90.0 ± 1.3, 69.7 ± 0.5, 89.8 ± 1.4, 89.5 ± 1, and 91.4 ±
0.8, respectively, and using the 3-dimensional feature combi-
nations, the classi�cation accuracies were 79.6 ± 1.5, 95.2 ± 1,
64.5 ± 0.3, 94.8 ± 1.2, 95.2 ± 0.7, and 96.3 ± 0.3, respectively.

2. Materials and Methods

2.1. Subjects. Seven healthy subjects participated in the
experiment. All of them had normal vision and no his-
tory of any physical, mental, or psychological disorder. �e
experiments were conducted in accordance with the latest
Declaration of Helsinki, and verbal consent was obtained
from all of the subjects a
er explaining the experimental
paradigm.

2.2. Experimental Paradigm. �e subjects were seated in a
quiet room on a comfortable chair in front of a computer
monitor. �ey were asked to relax and to restrict their motor
motions before the start of the experimental paradigm. �e
subjects were asked to rest and then to perform a mental
arithmetic task, as shown in Figure 1(a). Speci�cally, each sub-
ject �rst rested for 44 s to adjust the baseline correction of the
signals, and then he/she performed a mental arithmetic task
for 44 s, of which paradigm was repeated �ve times.�e total
length of the experiment was 440 s for each subject. �e 44 s
task-rest periods are rather longer than the conventionally
used 20 or 30 s task-rest periods [47–51].�e reason for using
a longer duration was to get more data to extract statistical
features for the purpose of training the classi�ers. Of course,
the statistical features are more reliable if the number of data
points is larger. Since the main objective of this work was
to determine the best performing classi�er, training with the
reliable and large amount of data was desirable. In the mental
arithmetic task, the subjects performed a mental calculation
consisting of the subtraction of a two-digit number (10∼
20) from a three-digit number with successive subtraction
of another two-digit number from the result of the initial
subtraction (e.g., 300 − 14, 286 − 11, and 275 − 16) [19, 43, 52].

2.3. Optodes Placement. A total of 4 emitters and 10 detectors
were positioned on the prefrontal cortex for the detection of
mental arithmetic and rest signals, of which con�guration
included 16 channels. In fNIRS-based BCI systems, the
prefrontal cortex is the brain region most widely used, as
the hairlessness incurs fewer and less slippage-relatedmotion
artifacts and signal attenuation, respectively. �e distance
between the emitter and the detector plays an important role
in the acquisition of �ne-quality signals and the obtainment
of maximum information therefrom [53]. Usually in fNIRS-
basedBCI systems, the emitter-to-detector distance is 3∼4 cm
[54]; in our research, the distance was set to 2.8 cm, as shown
in Figure 1(b).

2.4. Signal Acquisition. Amultichannel continuous-wave sys-
tem (DYNOT: DYnamic Near-infrared Optical Tomography;
two wavelengths: 760 and 830 nm; sampling rate: 1.81Hz)
obtained from NIRx Medical Technologies was used for the
detection of brain activity. �e near-infrared (NIR) light has
been transmitted to the scalp from the source with the above-
speci�ed wavelength and then scattered through the cortical
region of the brainwhere chromophores ofHbO andHbR are
present, which absorb some of theNIR light, the rest of which
has been detected by the detectors.

2.5. Signal Processing. �e modi�ed Beer-Lambert law
(MBLL) is used to calculate the concentration changes of
HbO and HbR (Δ�HbO(�) and Δ�HbR(�)) in the microvessels
of the cortex:

[Δ�HbO (�)
Δ�HbR (�)]

= 1
	 × 
 [�HbO (�1) �HbR (�1)�HbO (�2) �HbR (�2)]

−1
[Δ� (�, �1)Δ� (�, �2)] ,

(1)
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Figure 1: (a) Schematic of the experimental paradigm: the blue blocks represent the 44 s rest periods at the beginning and at the end; the
second, green block represents the 44 s mental arithmetic task; (b) optode placement and channel location on the prefrontal cortex. Fp1 and
Fp2 are the reference points of the international 10-20 system.

where Δ�(�; ��) (� = 1, 2) is the absorbance (optical
density) measured at two points of wavelength ��, �HbX(��)
is the extinction coe�cient of HbX (i.e., HbO and HbR) in�M−1mm−1, 
 is the di	erential path length factor (DPF),
and 	 is the emitter-detector distance (in millimetres). �e
signals obtained a
er conversion to Δ�HbX(�) contain phys-
iological noises; so, we used a notch �lter with band-reject
ranges of 1∼1.2Hz, 0.3∼0.4Hz, and below0.01Hz tominimize
the e	ects of such heartbeat-, respiration-, and Mayer-wave-
related noises, respectively.

2.6. Feature Extraction. In this study, we used the following
statistical properties of time-domain signals as features: sig-
nal mean [18, 36, 45, 52, 55, 56], signal peak [33, 45, 57], signal
slope [18, 58], signal variance [45, 59], signal kurtosis [45, 59],
and signal skewness [45, 59]. Two- and three-dimensional
combinations of those features were used for classi�cation
of the signals extracted from Δ�HbO(�). �ese features were
calculated across all 16 channels spatially during the entire
task and rest periods. All the features were normalized
between 0 and 1 by the following equation [42]:

�� = � −min (�)
max (�) −min (�) , (2)

where �� represents the feature values rescaled between 0
and 1, � ∈ �� are the original values of the features, and
max(�) and min(�) represent the largest and smallest values,
respectively. Figure 2 shows the 3D feature space of themental
arithmetic and rest tasks for mean, speak, and skewness.

2.7. Classi�cation

2.7.1. Linear Discriminant Analysis. LDA has been most
frequently used for pattern recognition in fNIRS-based BCI
systems, thanks to its low computational cost and high speed
[46, 55, 60–62]. Basically, LDA �nds the projection to a line
such that the samples from the classes are well separated from
each other, thus achieving its main objective, dimensionality
reduction. LDA does this, speci�cally, by maximizing the
ratio of between-class variance and minimizing the ratio
of within-class variance. �e Matlab� command “classify
linear” was used with 10-fold cross-validation to extract the
classi�cation performance.

2.7.2. Quadratic Discriminant Analysis. QDA, likewise, max-
imizes the ratio of between-class variance and minimizes
the ratio of within-class variance; however, it also allows



4 Computational Intelligence and Neuroscience

0.476
0.478

0.48
0.482

0.484

0.475
0.48

0.485
0.49

0.495
0

0.2

0.4

0.6

0.8

1

Peak

Mean

Sk
ew

n
es

s

MA

Rest

Figure 2: 3D scatter plot of the signal mean, signal peak, and signal
skewness values of HbO (subject 2).

quadratic decision boundaries between classes, thereby
enabling the classi�er to perform more e	ectively and
enhancing classi�cation accuracy [17, 63]. �e Matlab�
command “classify quadratic” was used with 10-fold cross-
validation to extract the classi�cation performance. In the
present work, normal LDA andQDA, that is, without shrink-
age or regularization, are used.

2.7.3. �-Nearest Neighbour. �NN is the simplest classi�cation
technique used in fNIRS-based BCI systems for machine-
learning algorithms [64]. �e �NN algorithm works by
determining which of the points from the training data are
close enough to be considered when selecting the class to
predict for a new observation. In the present research, the
value of � was set to 1 in order to allow for the closest
training samples of the class. �e Matlab� command “�NN
classify” was used with 10-fold cross-validation to extract the
classi�cation performance.

2.7.4. Naı̈ve Bayes Classi�er. In addition to LDA, QDA, and�NN, the Näıve Bayes approach was also implemented in
our study, due to its simplicity and transparency in machine-
learningmodalities.�is approach is fundamentally based on
the Bayes theorem with assumptions of strong independence
among the features [65, 66]:

� (� | �) = � (� | �) � (�)
� (�) , (3)

where �(� | �) is the feature probability of the class (target)
of a given feature, �(�) is the prior probability of the class,�(� | �) is the likelihood which is the probability of feature
given class, and �(�) is the prior probability of the feature.
2.7.5. Support Vector Machine. SVM is a widely employed
classi�cation modality in fNIRS-based BCI systems due to

its high classi�cation performance, relatively good scalability
to high-dimensional data, and explicit control of errors [19,
34, 44, 59, 67, 68]. �e main idea of SVM is to create the
hyperplanes that maximize the margins between the classes
that can be obtained by minimizing the cost function and,
thereby, enablemaximum classi�cation accuracy.�e vectors
that represent the hyperplanes are known as support vectors.
�e optimal solution �∗ that maximizes the distance between
the hyperplane and the nearest training point(s) can be
obtained by minimizing the cost function:

Minimize
1
2 ‖�‖2 + � �∑

�=1
��

Subject to �� (���� + !)3 ≥ 1 − ��, �� ≥ 0,
(4)

where ��, �� ∈ �2 and ! ∈ �1, ‖�‖2 = ���, � is the trade-
o	 parameter between error and margin, �� is the measure of
training data, and �� is the class label for the $th sample. �e
main advantage of SVM is that it can be used as both a linear
and a nonlinear classi�er. In order to make SVM a nonlinear
classi�er, one of various types of kernel functions (i.e.,
polynomial, radial basis, and sigmoid functions) can be used.
In our present research,we utilized a third-degree polynomial
kernel function with � = 0.5. Tenfold cross-validation was
then used to estimate the classi�cation accuracies.�e reason
for using nonlinear SVM is that it has been shown to yield
better classi�cation accuracies than the linear classi�ers [19].

2.7.6. Arti�cial Neural Networks. ANN is a classi�cation
techniquewidely used for deepmachine-learning and pattern
recognition in fNIRS-based BCI system [35, 69, 70]. �e
ANN classi�cation modality plays an important role in the
rehabilitation of patients su	ering from a�ictions such as
ALS and LIS by decoding useful information. In our research,
we used a three-layer perceptron consisting of an input, a
hidden layer, and an output. �e numbers of hidden neurons
are speci�ed by the following equation:

% = [(& + ')
] , (5)

where & is the number of input neurons, ' is the number
of output neurons, and 
 is a constant with 
 ∈ (0, 1]. For
ANN classi�er, the Matlab toolbox was used with 10 hidden
neurons, 70% of the total data was used for training, 15% data
was used for validation (measure of network generalization),
and 15% data was used for testing (independent measure of
network performance during and a
er training) [71].

3. Results and Discussion

In this study, we analyse and compare the performance of
LDA, QDA, �NN, Näıve Bayes, SVM, and ANN classi�ers
in order to determine the best classi�er for fNIRS-based
BCI system using mental arithmetic tasks and rest. �e
classi�cation accuracies for mental arithmetic task and rest
were calculated for all possible 2- and 3-feature combinations
of six di	erent features. �e extracted features include the
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Table 1: Classi�cation accuracy using LDA among all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean & slope 53.2 49.2 50.1 58.3 59.8 55.8 59.6

Mean & peak 94.5 96.7 90.3 92.0 91.1 92.2 94.9

Mean & variance 86.8 87.6 81.7 82.9 82.8 76.4 83.4

Slope & peak 87.3 83.6 80.8 85.9 83.8 83.6 81.2

Slope & variance 87.5 88.3 83.2 82.6 81.5 76.4 79.9

Peak & variance 89.7 89.8 83.7 87.5 87.3 83.7 81.2

Peak & skewness 89.1 83.6 80.4 86.5 81.6 83.2 81.2

Mean & skewness 49.6 50.6 48.6 53.3 53.6 53.5 50.1

Slope & skewness 50.5 51.2 50.3 53.8 54.0 53.1 50.9

Kurtosis & skewness 47.7 51.2 50.6 53.2 50.4 53.8 51.6

Variance & skewness 88.0 89.0 82.3 83.4 81.4 78.2 84.4

Peak & kurtosis 86.8 82.4 80.9 85.9 83.9 82.6 81.2

Mean & kurtosis 47.4 49.7 52.2 54.8 50.4 52.1 48.6

Slope & kurtosis 45.7 46.2 54.3 54.6 52.1 50.1 47.7

Variance & kurtosis 87.6 88.5 82.1 83.2 82.4 82.2 86.3

Table 2: Classi�cation accuracy using QDA among all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean & slope 95.5 96.5 95.5 96.6 96.0 95.4 96.9

Mean & peak 97.0 98.4 97.7 98.2 97.4 98.4 98.4

Mean & variance 97.4 98.0 96.0 96.5 96.1 95.4 97.2

Slope & peak 94.4 95.0 88.5 95.7 95.1 93.6 96.1

Slope & variance 98.0 98.2 94.0 95.5 94.4 93.0 95.0

Peak & variance 97.0 98.1 93.7 97.4 96.0 94.1 96.9

Peak & skewness 90.6 89.8 83.8 92.6 89.7 88.8 86.8

Mean & skewness 91.0 91.5 90.5 91.8 89.1 87.6 93.2

Slope & skewness 89.3 89.7 84.2 88.0 90.0 86.6 91.2

Kurtosis & skewness 48.3 53.7 51.4 52.8 50.2 56.1 52.1

Variance & skewness 97.5 97.9 90.7 95.6 94.7 90.7 92.1

Peak & kurtosis 89.6 88.2 82.7 92.1 88.1 88.2 86.2

Mean & kurtosis 89.2 91.1 88.8 90.8 88.8 87.5 93.9

Slope & kurtosis 89.5 89.6 84.3 87.7 89.8 86.6 91.0

Variance & kurtosis 97.6 97.9 90.6 95.4 94.4 90.6 91.7

signal mean, signal peak, signal skewness, signal slope, signal
variance, and signal kurtosis.�ese features are calculated for
thewhole task and rest periods. It was found that the presence
of signal mean and signal peak in both 2- and 3-feature
combinations yielded maximum classi�cation accuracies.
�is �nding is an endorsement to our previous �nding in [21].

Tables 1, 2, 3, 4, 5, and 6 show the classi�cation accuracies
among all of the subjects for the respective classi�ers. �ose
accuracies were extracted from 2-dimensional combinations
of features derived from Δ�HbO(�) signals. �e average clas-
si�cation accuracies of the LDA, QDA, �NN, Näıve Bayes,
SVM, and ANN classi�ers for the 2-dimensional feature

combinations were 71.6 ± 1.1, 90.0 ± 1.3, 69.7 ± 0.5, 89.8 ±
1.4, 89.5 ± 1, and 91.4 ± 0.8, respectively. To further examine
the performances of the classi�ers used in our study, we
also employed 3-dimensional combinations of features and
extracted the corresponding classi�cation accuracies, which
were 79.6 ± 1.5, 95.2 ± 1.0, 64.5 ± 0.3, 94.8 ± 1.2, 95.2 ± 0.7,
and 96.3 ± 0.3, respectively. In both (2- and 3-dimensional)
cases, it was found that the ANN classi�er has the highest
classi�cation accuracies: 91.4 and 96.3% formental arithmetic
task and rest. Figure 3 shows the averaged HbO and standard
deviation for mental arithmetic and rest task. Tables 7 and 8
provide the comparison of all classi�ers—in terms of average



6 Computational Intelligence and Neuroscience

Table 3: Classi�cation accuracy using �NN among all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean & slope 94.4 94.6 95.5 95.1 94.4 93.5 94.6

Mean & peak 95.9 96.2 97.2 97.6 97.6 97.1 96.7

Mean & variance 89.1 92.6 91.5 91.3 90.7 89.6 94.0

Slope & peak 92.5 91.1 91.7 95.9 93.1 93.6 92.6

Slope & variance 95.0 95.1 94.0 93.7 93.2 92.5 93.6

Peak & variance 88.2 88.7 86.8 93.5 88.6 90.2 86.3

Peak & skewness 64.4 66.9 64.5 65.4 62.5 58.0 61.0

Mean & skewness 53.7 57.7 55.6 54.1 53.7 52.2 58.6

Slope & skewness 50.8 47.8 51.4 50.1 49.9 51.3 53.8

Kurtosis & skewness 47.3 50.7 55.0 51.3 54.3 60.1 54.8

Variance & skewness 50.6 48.1 51.2 49.7 49.3 51.4 54.7

Peak & kurtosis 65.4 63.4 59.2 65.7 62.7 55.0 60.7

Mean & kurtosis 53.5 55.0 52.9 52.1 52.2 51.3 53.7

Slope & kurtosis 52.1 49.8 50.7 48.6 50.9 48.8 50.7

Variance & kurtosis 51.9 50.4 50.6 48.9 50.6 48.8 50.7

Table 4: Classi�cation accuracy using Näıve Bayes among all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean & slope 95.6 96.9 95.2 96.1 96.4 94.7 96.9

Mean & peak 96.5 98.1 97.1 97.9 96.0 97.9 98.0

Mean & variance 97.5 98.1 96.0 96.6 96.4 95.7 97.1

Slope & peak 94.4 95.0 89.2 95.2 95.0 93.6 96.4

Slope & variance 98.0 98.0 92.0 95.2 94.9 92.0 94.4

Peak & variance 96.9 98.1 92.9 96.9 96.2 92.4 95.4

Peak & skewness 89.6 88.6 82.8 91.8 87.2 88.0 86.0

Mean & skewness 89.3 91.1 89.1 90.6 89.3 87.7 93.2

Slope & skewness 89.5 89.6 83.9 87.8 90.0 86.5 91.3

Kurtosis & skewness 51.1 50.8 51.1 52.7 51.8 55.8 51.9

Variance & skewness 97.7 97.9 90.3 95.6 94.7 90.6 92.1

Peak & kurtosis 89.6 88.2 82.8 92.0 87.1 88.2 86.2

Mean & kurtosis 89.1 91.2 88.8 90.7 89.0 87.6 93.9

Slope & kurtosis 89.6 89.6 83.9 87.7 89.6 85.8 91.2

Variance & kurtosis 97.6 97.9 90.5 95.4 94.5 90.6 92.0

classi�cation accuracies, precision, and recall—across all
subjects for 2- and 3-feature combination, respectively. In
order to validate that our ANN classi�cation accuracies were
statistically discriminant, we applied Student’s �-test. �e *
values obtained using the ANN values versus those of all of
the other classi�ers were less than 0.05 for all of the Δ�HbO(�)
signals, thus establishing the statistical signi�cance of ANN’s
performance.

Several previous studies have used multiple types of
classi�ers to extract the classi�cation accuracies for fNIRS-
based BCI system. For example, Naseer et al. [19] have used

LDA and SVM to acquire the classi�cation accuracies for
a two-class BCI system, the classi�cation accuracies were
74.2 and 82.1% respectively. Moreover, Khan and Hong [72]
used LDA and SVM classi�ers for a two-class BCI system;
the classi�cation accuracies were 84.6 and 85.8%. In the
present study, the six di	erent classi�ers were used to obtain
the highest average classi�cation accuracies for a two-class
(metal arithmetic and rest) BCI system. �e ANN classi�er
showed the maximum average classi�cation accuracies 91.4
and 96.3% for 2- and 3-dimensional combinations of features
derived from Δ�HbO(�) signals, respectively. Figure 4 plots the
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Table 5: Classi�cation accuracy using SVM among all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean & slope 93.2 95.5 92.5 95.7 95.2 93.0 94.2

Mean & peak 97.0 98.5 98.5 98.7 97.7 98.5 98.7

Mean & variance 97.7 98.0 97.7 98.0 97.7 97.0 97.2

Slope & peak 92.7 92.7 88.9 96.0 94.2 90.2 91.7

Slope & variance 98.0 98.0 97.5 97.7 96.2 95.2 96.0

Peak & variance 98.0 98.7 97.5 97.5 98.0 96.7 98.5

Peak & skewness 92.7 85.2 83.9 93.7 90.5 86.9 83.4

Mean & skewness 89.5 88.9 84.9 88.2 88.4 86.2 87.7

Slope & skewness 82.4 86.4 84.9 84.7 86.4 82.7 86.7

Kurtosis & skewness 54.5 54.8 51.3 52.5 54.8 52.8 50.8

Variance & skewness 98.0 98.0 97.0 97.5 96.2 95.7 96.2

Peak & kurtosis 90.2 83.4 81.2 94.0 86.2 84.2 83.2

Mean & kurtosis 87.7 89.2 85.4 89.2 88.9 84.4 87.7

Slope & kurtosis 82.7 86.7 83.9 83.2 86.4 81.2 86.2

Variance & kurtosis 98.5 98.5 97.2 97.7 96.7 95.7 96.7

Table 6: Classi�cation accuracy using ANN among all subjects.

Feature combination S1 S2 S3 S4 S5 S6 S7

Mean & slope 95.6 97.4 94.9 97.1 96.6 96.0 95.6

Mean & peak 96.9 98.5 98.1 98.7 97.9 98.4 98.4

Mean & variance 98.0 98.4 98.1 97.7 98.2 96.4 98.2

Slope & peak 95.4 92.3 95.9 96.1 95.5 90.2 92.7

Slope & variance 97.9 98.4 97.7 98.2 98.0 97.0 98.0

Peak & variance 98.1 97.9 97.4 97.2 98.0 97.4 98.4

Peak & skewness 92.8 89.0 84.2 94.1 91.6 88.5 84.7

Mean & skewness 92.0 94.0 90.6 92.8 89.8 88.7 92.7

Slope & skewness 90.8 88.0 88.2 90.7 90.0 91.6 90.6

Kurtosis & skewness 54.5 55.7 53.6 55.6 56.2 55.7 51.6

Variance & skewness 98.4 98.5 97.6 98.4 97.2 97.0 98.0

Peak & kurtosis 90.1 88.5 81.4 94.1 87.8 87.5 84.9

Mean & kurtosis 90.1 93.5 89.0 91.6 90.7 89.8 91.5

Slope & kurtosis 91.3 88.1 88.2 90.0 90.6 91.9 90.3

Variance & kurtosis 98.4 98.4 97.1 97.4 97.6 96.6 95.5

average accuracies of all of the classi�ers used in this study for
2- and 3-dimensional combinations of features derived fromΔ�HbO(�) signals. One of the limitations of the current work is
the small number of subjects. Analysis with large number of
subject can yield to well establishing of the results. Another
limitation of our current study is that we used the two-
class mental task (metal arithmetic and rest) for an fNIRS-
based BCI system. For three- and more-class BCI problems,
other classi�er modalities might yield better results. In any
case, further research entailing the examination of the results
of multiple mental task classi�cations using di	erent types
of classi�cation modalities for fNIRS-based BCI systems

is required. Furthermore, inherent delay in fNIRS systems
can be removed by detection of initial dips to improve BCI
accuracy [73].

4. Conclusion

In this study, we examined the e	ects of using di	erent
classi�cation modalities for the classi�cation of a two-
class functional near-infrared spectroscopy- (fNIRS-) based
brain-computer interface (BCI) according to a mental arith-
metic task and rest experimental paradigm. It was shown
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Table 7: Averaged values of the classi�cation accuracies, precisions, and recalls of 2-feature combination across all subjects.

Classi�ers S1 S2 S3 S4 S5 S6 S7 Average

LDA

Accuracy 72.74 72.49 70.09 73.20 71.74 70.44 70.80 71.6 ± 1.1

Precision 79.34 79.62 79.74 68.73 67.28 66.21 66.36 72.8 ± 6.2

Recall 66.50 65.28 58.30 83.45 80.65 81.43 78.70 73.5 ± 9.2

QDA

Accuracy 90.78 91.57 87.49 91.12 89.98 88.83 90.57 90.1 ± 1.3

Precision 93.80 95.84 95.32 87.68 86.27 84.00 87.28 90.0 ± 4.4

Recall 89.63 88.80 79.53 96.50 93.65 96.82 93.65 91.2 ± 5.5

�NN
Accuracy 69.63 69.87 69.85 70.19 69.58 68.89 70.44 69.8 ± 0.5

Precision 67.97 68.73 69.90 70.31 71.24 67.16 68.18 69.1 ± 1.3

Recall 70.81 72.14 72.31 68.21 74.53 66.32 68.38 70.4 ± 2.6

Näıve Bayes

Accuracy 90.79 91.27 87.04 90.82 89.86 88.47 90.39 89.8 ± 1.4

Precision 88.52 88.01 81.73 95.69 94.88 95.93 95.48 91.5 ± 5.1

Recall 92.12 94.16 94.76 85.61 85.96 79.90 86.85 88.5 ± 5.0

SVM

Accuracy 90.18 90.17 88.16 90.96 90.25 88.02 88.99 89.5 ± 1.0

Precision 87.04 95.84 95.32 87.68 86.27 84.00 87.28 89.1 ± 4.2

Recall 93.80 88.80 79.53 96.50 93.65 96.82 93.65 91.8 ± 5.5

ANN

Accuracy 92.02 91.77 90.13 92.65 91.71 90.85 90.74 91.4 ± 0.3

Precision 94.47 89.73 93.20 90.73 86.68 88.03 87.65 90.1 ± 2.7

Recall 88.00 86.33 85.13 95.33 94.05 95.73 95.63 91.5 ± 4.4
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Figure 3: �e averaged HbO and standard deviation (subject 2) for
mental arithmetic and rest.

that ANN has the highest classi�cation accuracies among
the classi�cation modalities used in this study for both 2-
and 3-dimensional feature sets derived from Δ�HbO(�) signals
across seven subjects. �e results of this study represent a
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Figure 4: Classi�cation accuracies using di	erent types of classi�ers
from 2- and 3-dimensional combinations of features of Δ�HbO(�)
signals across all subjects.

signi�cant step forward in the on-going improvement of the
classi�cation accuracies of fNIRS-based BCI systems.
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Table 8: Averaged values of the classi�cation accuracies, precisions, and recalls of 3-feature combinations across all subjects.

Classi�ers S1 S2 S3 S4 S5 S6 S7 Average

LDA

Accuracy 81.24 81.76 78.41 80.54 79.68 77.88 77.78 79.6 ± 1.5

Precision 89.9 89.21 89.66 75.09 74.21 72.37 72.53 80.4 ± 7.8

Recall 73.94 73.98 65.79 91.33 90.09 89.88 87.48 81.8 ± 9.5

QDA

Accuracy 95.84 96.58 93.49 95.96 95.11 94.12 95.93 95.2 ± 1

Precision 97.26 98.67 98.67 93.79 92.34 90.8 93.85 95.1 ± 2.9

Recall 94.41 94.1 88.19 98.71 98.64 98.8 98.66 95.9 ± 3.7

�NN
Accuracy 63.92 65.32 64.85 64.78 64.59 63.55 65.11 64.5 ± 0.3

Precision 63.22 62.21 63.85 64.13 65.85 61.04 61.07 63.1 ± 1.6

Recall 65.28 67.56 66.15 61.67 69.49 60.13 61.54 64.6 ± 3.2

Näıve Bayes

Accuracy 95.58 96.34 92.77 95.53 94.72 93.47 95.55 94.8 ± 1.2

Precision 94.45 94.22 88.46 98.73 98.35 98.64 98.68 95.9 ± 3.6

Recall 96.98 99.12 98.95 92.22 90.89 88.1 92.29 94.1 ± 3.9

SVM

Accuracy 95.79 95.75 94.21 95.97 95.58 94.47 94.85 95.2 ± 0.7

Precision 93.22 99.03 98.67 93.79 92.34 90.8 93.85 94.5 ± 2.9

Recall 99.12 94.1 88.19 98.71 98.64 98.8 98.66 96.6 ± 3.8

ANN

Accuracy 96.48 96.49 95.78 96.87 96.4 95.97 96.41 96.3 ± 0.3

Precision 93.9 94.4 98.1 95.05 93.26 91.59 93.71 94.3 ± 1.9

Recall 91.9 92.8 91.55 93.64 98.39 98.46 98.67 95.1 ± 3.0
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