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Abstract

This manuscript deals with fractional differential equations including Caputo–Fabrizio

differential operator. The conditions for existence and uniqueness of solutions of

fractional initial value problems is established using fixed point theorem and

contraction principle, respectively. As an application, the iterative Laplace transform

method (ILTM) is used to get an approximate solutions for nonlinear fractional

reaction–diffusion equations, namely the Fitzhugh–Nagumo equation and the Fisher

equation in the Caputo–Fabrizio sense. The obtained approximate solutions are

compared with other available solutions from existing methods by using graphical

representations and numerical computations. The results reveal that the proposed

method is most suitable in terms of computational cost efficiency, and accuracy

which can be applied to find solutions of nonlinear fractional reaction–diffusion

equations.
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1 Introduction

Nowadays, the mathematical models involving fractional order derivative were given no-

ticeable importance because they are more accurate and realistic as compared to the

classical order models [22, 26, 28]. Motivated by the advancement of fractional calcu-

lus, many researchers have focused to investigate the solutions of nonlinear differential

equations with the fractional operator by developing quite a few analytical or numerical

techniques to find approximate solutions [6, 10, 19, 29, 30]. These differential equations in-

volves several fractional differential operators like Riemann–Liouville, Caputo, Hilfer etc.

[4, 15, 32].

However, these operators possess a power law kernel and have limitations in modeling

physical problems. To overcome this difficulty, recently an alternate fractional differential

operator having a kernel with exponential decay has been introduced by Caputo and Fab-

rizio [9]. This novel approach of fractional derivative is known as the Caputo–Fabrizio

(C–F) operator which has attracted many research scholars due to the fact that it has a

non-singular kernel. Also the C–F operator is most appropriate for modeling some class
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of real-world problem which follows the exponential decay law. With the passage of time,

developing a mathematical model using the C–F fractional order derivative became a re-

markable field of research. In recent times, several mathematicians were busy in develop-

ment and simulation of CFFDE.One can read the articles of the aforementioned derivative

to see further characteristics and applications [3, 8, 11, 16–18, 20, 25, 34].

In the present study, we analyze the following Caputo–Fabrizio fractional differential

equations (C-FFDE) to obtain uniqueness and existence criteria of solutions [5, 7, 35]:

⎧
⎨
⎩

CFD
γ
t u(t) = f (t,u(t)), 0 < γ < 1,

u(0) = u0.
(1)

Here CFD
γ
t is for the CFFDE. f : [0, 1]×R →R is continuous and u0 ∈R, t ∈ [0, 1].

Fractional reaction–diffusion equations have been broadly examined as of lately. These

equations emerge normally as descriptionmodels of numerous evolution processes in var-

ious branches of science [12, 21, 33]. Furthermore by continuation to the above literature,

we demonstrate the utility of the C–F operator on one- and two-dimensional reaction–

diffusion equations, namely the Fitzhugh–Nagumo (FN) equation and the Fisher equation,

respectively given by

CFD
γ
t u(t) = βuxx + g(u) + h(x, t), (2)

CFD
γ
t u(t) = β(uxx + uyy) + g(u) + h(x, t), (3)

where the nonlinear function g(u) represents the reaction kinetics, h(x, t) is a source term

and β denotes the diffusion coefficient.

By considering g(u) = λuα(1 – uν)(u – θ ) and h(x, t) = 0, Eqs. (2) and (3) reduce to

CFD
γ
t u(t) = βuxx + λuα

(
1 – uν

)
(u – θ ), (4)

CFD
γ
t u(t) = β(uxx + uyy) + λuα

(
1 – uν

)
(u – θ ), (5)

If we put λ = 1, β = 1, α = 1 and ν = 1, then Eq. (4) reduces to a time fractional FN equa-

tion which is one of the most significant reaction–diffusion equation, used to display the

transmission of nerve driving forces [14]. The mathematical model of population genetics

is also described by using the FN equation [1]. Next, if we take λ = 1
2
, β = 1, α = 1, ν = 1

and θ = 0, then Eq. (5) becomes a time fractional Fisher equation in an infinite domain as

suggested by Fisher [13] as a model for the spatial transient propagation of a virile gene.

In [2], Atangana studied a nonlinear Fisher reaction–diffusion equation.

In [24] Khan et al. used the homotopy analysis method (HAM) to find approximate

analytical solutions of fractional reaction–diffusion equations. The residual power series

method (RPSM) was applied by Tchier et al. [31] to find a numerical solution of fractional

reaction–diffusion equations. The series solutions of reaction–diffusion equations were

obtained byMerdan [27] by using a fractional variational iteration method (FVIM). Moti-

vated by this, in the present manuscript, we compute approximate solutions of nonlinear

fractional reaction–diffusion equations by using a reliable and efficient approach known

as the iterative Laplace transformmethod (ILTM). The proposed technique is an amalga-

mation of the Laplace transform and the new iterative method (NIM) proposed by Jafari

et al. [23].
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In the light of the above examined writing, the present study concentrates on establish-

ing the uniqueness and existence criteria of solutions of the nonlinear C-FFDE. Also, we

demonstrate the effectiveness of the iterative Laplace transform method by obtaining the

approximate solutions and 3D plots of the time fractional reaction–diffusion equations.

2 Preliminaries of fractional calculus

Definition 2.1 ([9]) Let u ∈ H1(0,b), b > 0, 0 < γ < 1, then the time fractional Caputo–

Fabrizio fractional differential operator (C-FFDO) is defined as

CFD
γ
t u(t) =

(2 – γ )M(γ )

2(1 – γ )

∫ t

0

exp

[
–

γ (t – s)

1 – γ

]
u′(τ )dτ , t ≥ 0, 0 < γ < 1, (6)

with a normalization functionM(γ ) which is depending on γ ∋M(0) =M(1) = 1.

Definition 2.2 ([8]) The C-FFDO of order 0 < γ < 1 is given by

CFJ
γ
t u(t) =

2(1 – γ )

(2 – γ )M(γ )
u(t) +

2γ )

(2 – γ )M(γ )

∫ t

0

u(τ )dτ , (7)

like the usual Caputo derivative, this new operator gives CFD
γ
t u(t) = 0, if u is a constant

function.

The main advantage of the Caputo–Fabrizio operator over the old operator of Caputo

is that there is no singularity for t = s in the new kernel.

Definition 2.3 ([9]) The Laplace transform for the C-FFDO of order 0 < γ ≤ 1 andm ∈N

is given by

L
(
CFD

m+γ
t u(t)

)
(s) =

1

1 – γ
L

(
u(m+1)(t)

)
L

(
exp

(
–

γ

1 – γ
t

))

=
sm+1

L(u(t)) – smu(0) – sm–1u′(0) – · · · – u(m)(0)

s + γ (1 – s)
. (8)

In particular, we have

L
(
CFD

γ
t u(t)

)
(s) =

sL(u(t))

s + γ (1 – s)
, m = 0,

L
(
CFD

γ+1
t u(t)

)
(s) =

s2L(u(t)) – su(0) – u′(0)

s + γ (1 – s)
, m = 1.

Lemma 2.1 The IVP

⎧
⎨
⎩

CFD
γ
t u(t) = f (t), t ≥ 0, 0 < γ < 1,

u(0) = u0 ∈ R,
(9)

has a solution in terms of the integral given by

u(t) = u0 +
2(1 – γ )

(2 – γ )M(γ )

(
f (t) – f (0)

)
+

2γ

(2 – γ )M(γ )

∫ t

0

f (τ )dτ . (10)
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3 Main results

Prior to expressing and demonstrating the fundamental outcomes, we present the follow-

ing lemma and notations.

Let μ = [0, 1] and C(μ) denote the space of all continuous functions on μ.

Considering the set B = {u(t)|u(t) ∈ C(μ)}, endowed with the norm ‖u(t)‖B =

maxt∈μ |u(t)|, is a Banach space. By Lemma (9), IVP (1) is expressed as an integral equation

given by

u(t) = u0 +
2(1 – γ )

(2 – γ )M(γ )

(
f
(
t,u(t)

)
– f

(
0,u(0)

))
+

2γ

(2 – γ )M(γ )

∫ t

0

f
(
τ ,u(τ )

)
dτ . (11)

Let the operator T : B → B be defined by

Tu(t) = u0 +
2(1 – γ )

(2 – γ )M(γ )

(
f
(
t,u(t)

)
– f

(
0,u(0)

))

+
2γ

(2 – γ )M(γ )

∫ t

0

f
(
τ ,u(τ )

)
dτ , (12)

then the fixed point of operator T is equivalent to the solution of IVP (1).

In this article, let us denote A =
2

M(γ )
. (13)

Theorem 3.1 Let f : μ × R → R be a continuous function. Assume that at least one of the

following conditions is fulfilled:

(H1) A non-negative function g(t) ∈ L[0, 1] exists, such that |f (t,x)| ≤ g(t) + c0|x|δ , where
c0 ≥ 0, 0 < δ < 1.

(H2) The function f satisfies |f (t,x)| ≤ c0|x|δ , where c0 > 0, δ > 1. Then IVP (1) has a solu-

tion.

Proof We make use of the Schauder fixed point theorem. For this purpose, assume that

condition (H1) is satisfied.

Define G = {u(t)|u(t) ∈ B,‖u(t)‖B ≤ K , t ∈ μ}, where K ≥ max{(2Ac0)
1

1–δ , 2l} and

l = max
t∈μ

(
u0 +

4(1 – γ )

(2 – γ )M(γ )
g(t) +

2γ

(2 – γ )M(γ )

∫ t

0

∣∣g(τ )
∣∣dτ

)
.

Obviously, in the Banach space B, G is a ball. Next, we show that T: G → G.

For all u ∈G, we have

∣∣Tu(t)
∣∣ =

∣∣∣∣u0 +
2(1 – γ )

(2 – γ )M(γ )

(
f
(
t,u(t)

)
– f

(
0,u(0)

))
+

2γ

(2 – γ )M(γ )

∫ t

0

f
(
τ ,u(τ )

)
dτ

∣∣∣∣

≤ u0 +
2(1 – γ )

(2 – γ )M(γ )

∣∣(f
(
t,u(t)

)∣∣ + 2(1 – γ )

(2 – γ )M(γ )

∣∣(f
(
0,u(0)

)∣∣

+
2γ

(2 – γ )M(γ )

∫ t

0

∣∣f
(
τ ,u(τ )

)∣∣dτ

≤ u0 +
4(1 – γ )

(2 – γ )M(γ )

(
g(t) + c0K

δ
)
+

2γ

(2 – γ )M(γ )

∫ t

0

(∣∣g(τ )
∣∣ + c0K

δ
)
dτ
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≤ u0 +
4(1 – γ )(g(t) + c0K

δ)

(2 – γ )M(γ )
+

2γ c0K
δt

(2 – γ )M(γ )
+

2γ

(2 – γ )M(γ )

∫ t

0

∣∣g(τ )
∣∣dτ

≤ u0 +
4(1 – γ )

(2 – γ )M(γ )
g(t) +

2γ

(2 – γ )M(γ )

∫ t

0

∣∣g(τ )
∣∣dτ

+

(
4(1 – γ )

(2 – γ )M(γ )
+

2γ t

(2 – γ )M(γ )

)
c0K

δ

≤ u0 +
4(1 – γ )

(2 – γ )M(γ )
g(t) +

2γ

(2 – γ )M(γ )

∫ t

0

∣∣g(τ )
∣∣dτ +

2c0K
δ

M(γ )
.

Therefore,

∥∥Tu(t)
∥∥
B
= max

t∈μ

∣∣Tu(t)
∣∣

≤ l +
2c0K

δ

M(γ )
= l +Ac0K

δ ≤
K

2
+
K

2
= K .

Here Tu(t) is continuous on μ.

Now, assume that condition (H2) is satisfied. Select 0 < K ≤ ( 1
Ac0

)
1

δ–1 .

Similarly, repeating the above arguments we get

∥∥Tu(t)
∥∥
B

≤ Ac0K
δ ≤ K .

Consequently, we get T :G →G.

Obviously, the operator T is continuous because of the continuity of f . �

Further, we set up the complete continuity of the operator T . Let R = maxt∈μ |f (t,u(t))|,
for any u ∈G, let t1, t2 ∈ μ be such that t1 < t2.

Also, let U1 =
2(1–γ )

(2–γ )M(γ )
and U2 =

2γ
(2–γ )M(γ )

, then we get

∣∣Tu(t2) – Tu(t1)
∣∣ =

∣∣∣∣u0 +U1

[
f
(
t2,u(t2)

)
– f

(
0,u(0)

)]
+U2

∫ t2

0

f
(
τ ,u(τ )

)
dτ

– u0 –U1

[
f
(
t1,u(t1)

)
– f

(
0,u(0)

)]
–U2

∫ t1

0

f
(
τ ,u(τ )

)
dτ

∣∣∣∣

=

∣∣∣∣U1

[
f
(
t2,u(t2)

)
– f

(
t1,u(t1)

)]
+U2

∫ t2

t1

f
(
τ ,u(τ )

)
dτ

∣∣∣∣

≤ U1

∣∣f
(
t2,u(t2)

)∣∣ +U1

∣∣f
(
t1,u(t1)

)∣∣ +U2

∫ t2

t1

∣∣f
(
τ ,u(τ )

)∣∣dτ

≤ 2RU1 + RU2

∫ t2

t1

dτ

= R
(
2U1 +U2(t2 – t1)

)
.

In view of the uniform continuity of the function (t2 – t1) on the interval μ, we see that

TG is an equicontinuous set. Also, this function is uniformly bounded as TG ⊆ G; hence

T is completely continuous. As a result of Schauder’s fixed point theorem, there exists a

solution of IVP (1) in G.
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Corollary 3.1 Suppose the function f is continuous and bounded on μ ×R, then IVP (1)

has a solution.

Proof As f is continuous and bounded on μ ×R, there exists L > 0 which satisfies |f | < L.

Let g(t) = L, c0 = 0 in condition (H1) of Theorem 3.1, then IVP (1) has a solution.

Next, we establish the uniqueness criteria for solutions of IVP (1)with the help of Banach

contraction principle. �

Theorem 3.2 Let f : μ×R →R be continuous function and let the conditions given below

be satisfied:

(H3) There exists a non-negative function η(t) ∈ L[0, 1] which gives

∣∣f (t,x) – f (t, y)
∣∣ ≤ η|x – y|, t ∈ [0, 1],

also the function f satisfies f (t, 0) = 0.

(H4) Suppose that σ = maxt∈μ | 2(1–γ )
(2–γ )M(γ )

η(t) + 2γ
(2–γ )M(γ )

∫ t

0
η(τ )dτ | < 1, then IVP (1) has

a unique solution.

Proof We denote the operator T by

Tu(t) = φ +
2(1 – γ )

(2 – γ )M(γ )
f
(
t,u(t)

)
+

2γ

(2 – γ )M(γ )

∫ t

0

f
(
τ ,u(τ )

)
dτ ,

where φ = u0 –
2(1–γ )

(2–γ )M(γ )
f (0,u0). For u(t) ∈ B, we get

∣∣Tu(t)
∣∣ =

∣∣∣∣φ +
2(1 – γ )

(2 – γ )M(γ )
f
(
t,u(t)

)
+

2γ

(2 – γ )M(γ )

∫ t

0

f
(
τ ,u(τ )

)
dτ

∣∣∣∣

≤ |φ| +
2(1 – γ )

(2 – γ )M(γ )

∣∣f
(
t,u(t)

)
– f (t, 0)

∣∣

+
2γ

(2 – γ )M(γ )

∫ t

0

∣∣f
(
τ ,u(τ )

)
– f (τ , 0)

∣∣dτ

≤ |φ| +
2(1 – γ )

(2 – γ )M(γ )
η(t)

∣∣u(t)
∣∣ + 2γ

(2 – γ )M(γ )

∫ t

0

η(τ )
∣∣u(τ )

∣∣dτ

≤ |φ| +
(

2(1 – γ )

(2 – γ )M(γ )
η(t) +

2γ

(2 – γ )M(γ )

∫ t

0

η(τ )dτ

)
‖u‖,

hence, we have

∥∥Tu(t)
∥∥
B

≤ |φ| +
(

2(1 – γ )

(2 – γ )M(γ )
η(t) +

2γ

(2 – γ )M(γ )

∫ t

0

η(τ )dτ

)
‖u‖

≤ |φ| + σ‖u‖ ≤ ‖u‖,

therefore, T : B → B. Let u(t), v(t) ∈ B, then we have

∣∣Tu(t) – Tv(t)
∣∣ =

∣∣∣∣φ +
2(1 – γ )

(2 – γ )M(γ )
f
(
t,u(t)

)
+

2γ

(2 – γ )M(γ )

∫ t

0

f
(
τ ,u(τ )

)
dτ

– φ –
2(1 – γ )

(2 – γ )M(γ )
f
(
t, v(t)

)
–

2γ

(2 – γ )M(γ )

∫ t

0

f
(
τ , v(τ )

)
dτ

∣∣∣∣
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≤
2(1 – γ )

(2 – γ )M(γ )

∣∣f
(
t,u(t)

)
– f

(
t, v(t)

)∣∣

+
2γ

(2 – γ )M(γ )

∫ t

0

∣∣f
(
τ ,u(τ )

)
– f

(
τ , v(τ )

)∣∣dτ

≤
2(1 – γ )

(2 – γ )M(γ )
η(t)

∣∣u(t) – v(t)
∣∣ + 2γ

(2 – γ )M(γ )

∫ t

0

η(τ )
∣∣u(τ ) – v(τ )

∣∣dτ

≤
(

2(1 – γ )

(2 – γ )M(γ )
η(t) +

2γ

(2 – γ )M(γ )

∫ t

0

η(τ )dτ

)∥∥u(τ ) – v(τ )
∥∥

≤ σ
∥∥u(τ ) – v(τ )

∥∥ ≤
∥∥u(τ ) – v(τ )

∥∥.

In view of σ < 1, T is a contraction. Consequently, T has only one fixed point as a result

of Banach contraction principle, hence it gives a solution of IVP (1). �

4 Applications

In this section, we shall propose an algorithm to solve a general non-homogeneous C-

FFDE and demonstrate it by solving time fractional FN and Fisher equations.

4.1 Iterative Laplace transformmethod

We take a general non-homogeneous C-FFDE of the form

CFD
m+γ
t u(x, t) = f (x, t) + φu(x, t) +ψu(x, t), n – 1 < γ ≤ n,n ∈ N , (14)

with the initial conditions

∂ku(x, 0)

∂tk
= θk(x), k = 0, 1, 2, . . . ,n – 1.

Here f (x, t) is a source term, φ and ψ are given linear and nonlinear operator, respectively.

Applying the Laplace transform (8) on two sides of (14) yields

L
(
u(x, t)

)
= χ (x, s) +

(
s + γ (1 – s)

sm+1

)
L

(
φu(x, t) +ψu(x, t)

)
, (15)

where

χ (x, s) =
1

sm+1

(
smθ0(x) + sm–1θ1(x) + · · · + θm(x)

)
+
s + γ (1 – s)

sm+1
f̃ (x, s).

Next, we apply the inverse Laplace transform on (15) then we have

u(x, t) = χ (x, t) +L
–1

[(
s + γ (1 – s)

sm+1

)
L

(
φu(x, t) +ψu(x, t)

)]
, (16)

where the term obtained from the source term is denoted by χ (x, t). Further, we apply the

new iterative method introduced in [10]. We consider the solution as an infinite series

given as

u(x, t) =

∞∑

j=0

uj(x, t); (17)
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since φ is linear,

φ

( ∞∑

j=0

uj(x, t)

)
=

∞∑

j=0

φ
(
uj(x, t)

)
. (18)

The nonlinear operator ψ is decomposed as

ψ

( ∞∑

j=0

uj

)
= ψ

(
u0(x, t)

)
+

∞∑

j=1

{
ψ

(
j∑

i=0

ui(x, t)

)
–ψ

(
j–1∑

i=0

ui(x, t)

)}
. (19)

In view of (17), (18) and (19), Eq. (16) is equivalent to

∞∑

j=0

uj(x, t) = χ (x, t) +L
–1

[(
s + γ (1 – s)

sm+1

)
L

( ∞∑

j=0

φ
(
uj(x, t)

)
)]

+L
–1

[(
s + γ (1 – s)

sm+1

)
L

(
ψ

(
u0(x, t)

)
+

∞∑

j=1

{
ψ

(
j∑

i=0

ui(x, t)

)

–ψ

(
j–1∑

i=0

ui(x, t)

)})]
, (20)

furthermore, we consider the recurrence relation as given by

u0(x, t) = χ (x, t),

u1(x, t) = L
–1

[(
s + γ (1 – s)

sm+1

)
L

(
φ
(
u0(x, t)

)
+ψ

(
u0(x, t)

))]
,

up+1(x, t) = L
–1

[(
s + γ (1 – s)

sm+1

)
L

(
φ
(
ur(x, t)

)
+

{
ψ

(
p∑

i=0

ui(x, t)

)

–ψ

(
p–1∑

i=0

ui(x, t)

)})]
.

(21)

The p-term approximate solution is given by

u = u0 + u1 + u2 + · · · + up–1. (22)

4.2 Illustrative examples

The efficiency of ILTM is validated by simulating time fractional reaction–diffusion equa-

tions in this section.

Example 4.1 The time fractional Fitzhugh–Nagumo equation is

CFD
γ
t u(x, t) = uxx + u(1 – u)(u – θ ), t > 0, 0 < γ ≤ 1, (23)

with initial condition

u(x, 0) =
1

1 + e
– x√

2

.
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Here x ∈R, θ ∈ (0, 1) and the exact solution of Eq. (26) for γ = 1 is

u(x, t) =
1

1 + e
(– 1

2 )(x+(
1+2θ√

2
)t)
.

Taking the Laplace transform on (8) to (23), we get

L
(
u(x, t)

)
=
u(x, 0)

s
+

(
s + γ (1 – s)

s

)
L

(
uxx + u(1 – u)(u – θ )

)
. (24)

Applying the inverse Laplace transform on (24)

u(x, t) = u(x, 0) +L
–1

[(
s + γ (1 – s)

s

)
L

(
uxx + u(1 – u)(u – θ )

)]
. (25)

In view of Eq. (21), we get

u0 =
1

e
– x√

2 + 1
,

u1 = –
(2θ – 1)e

x√
2 (γ (t – 1) + 1)

2(e
x√
2 + 1)2

,

u2 =
e

x√
2

96(e
x√
2 + 1)6

(
24θ (2θ – 1)

(
γ 2

(
t2 – 4t + 2

)
+ 4γ (t – 1) + 2

)
– 24

(
2θ2 – 3θ + 1

)

× e2
√
2x

(
γ 2

(
t2 – 4t + 2

)
+ 4γ (t – 1) + 2

)
– 12(2θ – 1)

(
–4e

x√
2 + e

√
2x + 1

)

×
(
e

x√
2 + 1

)2(
γ 2

(
t2 – 4t + 2

)
+ 4γ (t – 1) + 2

)
+ 8(2θ – 1)e

x√
2
(
3
(
2θ2 + 5θ – 5

)

+ 3γ 2
(
6θ2 + 7θ + 4

(
θ2 + θ – 1

)
t2 – 2

(
6θ2 + 7θ – 7

)
t – 7

)
+ γ 3

(
2θ2 + θ – 1

)

×
(
t3 – 6t2 + 9t – 3

)
+ 3γ

(
6θ2 + 11θ – 11

)
(t – 1)

)
+ 8(2θ – 1)e

3x√
2
(
6θ2 – 27θ

+ 3γ 2
(
6θ2 – 19θ + 4

(
θ2 – 3θ + 1

)
t2 – 2

(
6θ2 – 19θ + 6

)
t + 6

)
+ γ 3

(
2θ2 – 5θ + 2

)

×
(
t3 – 6t2 + 9t – 3

)
+ 3γ

(
6θ2 – 23θ + 6

)
(t – 1) + 6

)

+ e
√
2x

(
36

(
8θ3 – 12θ2 – 2θ + 3

)

+ 6γ 2(2θ – 1)
(
96(θ – 1)θ +

(
68θ2 – 68θ + 5

)
t2 – 192(θ – 1)θ t

)
+ 4γ 3(2θ – 1)3

×
(
8t3 – 39t2 + 54t – 18

)
+ 3γ 4(2θ – 1)3

(
t4 – 8t3 + 18t2 – 16t + 4

)

+ 24γ
(
40θ3 – 60θ2 + 6θ + 7

)
(t – 1)

))
.

Example 4.2 We consider the time fractional two-dimensional Fisher equation

CFD
γ
t u(x, y, t) =

1

2
(uxx + uyy) + u2(1 – u), t > 0, 0 < γ ≤ 1, (26)

with initial condition

u(x, y, 0) =
1

1 + e
x+y√
2

,
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for � = {(x, y) : x, y ∈ [0, 1]}. The exact solution of Eq. (26) for γ = 1 is

u(x, y, t) =
1

1 + e

x+y–( t√
2
)

√
2

.

Applying the Laplace transform on (8) to (26), we get

L
(
u(x, y, t)

)
=
u(x, y, 0)

s
+

(
s + γ (1 – s)

s

)
L

(
1

2
(uxx + uyy) + u2(1 – u)

)
, (27)

taking the inverse Laplace transform of (27)

u(x, t) = u(x, 0) +L
–1

[(
s + γ (1 – s)

s

)
L

(
1

2
(uxx + uyy) + u2(1 – u)

)]
. (28)

In view of Eq. (21), we get

u0 =
1

e
x+y√
2 + 1

,

u1 =
(γ (t – 1) + 1)e

x+y√
2

2(e
x+y√
2 + 1)2

,

u2 =
e
x+y√
2

96(e
x+y√
2 + 1)6

(
–24

(
γ 2

(
t2 – 4t + 2

)
+ 4γ (t – 1) + 2

)
+ 12

(
γ 2

(
t2 – 4t + 2

)

+ 4γ (t – 1) + 2
)(
–4e

x+y√
2 + e

√
2(x+y) + 1

)(
e
x+y√
2 + 1

)2
– 16

(
3γ 2

(
2t2 – 6t + 3

)

+ γ 3
(
t3 – 6t2 + 9t – 3

)
+ 9γ (t – 1) + 3

)
e
x+y√
2 + 8

(
3γ 2

(
4t2 – 14t + 7

)

+ γ 3
(
t3 – 6t2 + 9t – 3

)
+ 33γ (t – 1) + 15

)
e
3(x+y)√

2 +
(
–30γ 2t2 – 4γ 3

(
8t3

– 39t2 + 54t – 18
)
– 3γ 4

(
t4 – 8t3 + 18t2 – 16t + 4

)

+ 168γ (t – 1) + 108
)
e
√
2(x+y)

)
.

5 Numerical results and discussion

Figures 1 and 2 show the numerical simulations of three term approximate solutions of

(23) for γ = 1, 0.8 using ILTM from which one infers that this technique can describe

the conduct of said variables precisely for the considered region. The intervals [–10, 10]

and [0, 10] give the validity region of convergence of solutions for γ = 1 and the intervals

[–10, 10], [0, 12] for γ = 0.8. The non-integer order has negligible effect in the dynamics of

the FN equation. Also, Figs. 3 and 4 show the numerical simulations of three term approx-

imate solutions of (26) for γ = 1, 0.8 and the validity region of convergence of solutions

given by intervals [–5, 5] and [0, 10] for γ = 1 and γ = 0.8.

Likewise, Tables 1 and 2 display the comparison among approximate solutions of (23)

and (26), respectively, using ILTM with known results obtained by RPSM [31] and FVIM

[27] for γ = 1, 0.8. The numerical values demonstrate that the region of convergence of

approximate solutions depend continuously on the time fractional derivative γ . These

tables clarify convergence of the approximate solutions to the exact solutions, and as
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Figure 1 Approximate solution of (23) for γ = 1

Figure 2 Approximate solution of (23) γ = 0.8

Figure 3 Approximate solution of (26) for γ = 1,

y = x

Figure 4 Approximate solution of (26) for γ = 0.8,

y = x
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Table 1 Numerical comparison between approximate solutions uILTM , uRPSM , uFVIM and exact

solution of (23) for x = 0.01, θ = 0.8

t γ = 0.8 γ = 1 Absolute error

uILTM uRPSM uFVIM uILTM uRPSM |uexact – uILTM| for γ = 1

0.01 0.486180 0.499745 0.499774 0.501018 0.501018 2.97766× 10–4

0.05 0.483787 0.494437 0.494541 0.498018 0.498018 5.80223× 10–4

0.10 0.480798 0.489004 0.489186 0.494268 0.494268 1.67898× 10–3

0.15 0.477812 0.484113 0.484366 0.490519 0.490518 2.77608× 10–3

0.20 0.474829 0.479543 0.479864 0.486771 0.486769 3.87305× 10–3

Table 2 Numerical comparison between approximate solutions uILTM , uRPSM and exact solution of

(26) for y = x = 0.5

t γ = 0.8 γ = 1 Absolute error

uILTM uRPSM uILTM uRPSM |uexact – uILTM| for γ = 1

0.01 0.354051 0.333229 0.331345 0.331345 1.54490× 10–9

0.05 0.357844 0.341156 0.335791 0.335791 1.93035× 10–7

0.10 0.362610 0.349387 0.341391 0.341391 1.54344× 10–6

0.15 0.367406 0.356899 0.347038 0.347036 5.20598× 10–6

0.20 0.372230 0.364004 0.352732 0.352726 1.23320× 10–5

the value of the t decreases the absolute error becomes smaller. Hence, it is observed

that the proposed technique is most suitable in terms of computational cost and accu-

racy for obtaining approximate solutions of nonlinear fractional reaction–diffusion equa-

tions.

6 Conclusions

This manuscript presents the existence and uniqueness criteria for nonlinear fractional

differential equations involving the Caputo–Fabrizio differential operator. Further, we

have developed ILTM to obtain approximate solutions of the Caputo–Fabrizio fractional

differential equations successfully. The approximate solutions are compared with exact

solutions and also with other existing solutions by other methods. It is observed that the

obtained approximate series solutions for the first three terms are very precise and con-

verge very rapidly to the solutions of real physical problems. The proposed approach is

reliable, simple and effective to find approximate solutions of many nonlinear reaction–

diffusion equations of fractional order.
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