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ABSTRACT

We investigate the behavior of a discrete-time multi-
server buffer system with infinite buffer size. Packets
arrive at the system according to a two-state corre-
lated arrival process. The service times of the pack-
ets are assumed to be constant, equal to multiple
slots. The behavior of the system is analyzed by
means of an analytical technique based on proba-
bility generating functions (pgf’s). Explicit expres-
sions are obtained for the pgf’s of the system contents
and the packet delay. From these, the moments and
the tail distributions of the system contents and the
packet delay can be calculated. Numerical examples
are given to show the influence of various model pa-
rameters on the system behavior.

1 INTRODUCTION

Discrete-time queueing models have been used
for many years to analyze the behavior and per-
formance of digital communication networks, where
buffers are used for the temporary storage of informa-
tion packets awaiting transmission. In such discrete-
time models, time is divided into fixed-length slots
and the service or transmission of packets starts and
ends at slot boundaries only. In the scientific litera-
ture, many results can be found with respect to the
analysis of discrete-time single-server queues with
various types of (uncorrelated or correlated) packet
arrival processes and various types of service-time
distributions. For systems with multiple servers how-
ever fewer results are available. Firstly, most stud-
ies of multiserver systems assume constant service
times of one slot, see e.g. Bruneel et al. (1992) and

Bruneel and Kim (1993). Only a limited number of
papers consider more general service-time distribu-
tions. Multiserver systems with geometrically dis-
tributed service times have been studied in Rubin
and Zhang (1991), Gao et al. (2004b), Gao et al.
(2003) and Gao et al. (2004c); queues with multiple
servers and constant service times of arbitrary length
have been studied in Bruneel and Wuyts (1994) and
Gao et al. (2004a). Secondly, in case of multiple
servers, mostly an uncorrelated packet arrival pro-
cess is considered, i.e., the numbers of packet arrivals
during the consecutive slots are assumed to be inde-
pendent, see e.g. Bruneel et al. (1992), Bruneel and
Kim (1993), Rubin and Zhang (1991), Gao et al.
(2004b), Bruneel and Wuyts (1994) and Gao et al.
(2004a). In Gao et al. (2003) and Gao et al. (2004c),
for the case of geometric service times, more gen-
eral, so-called correlated packet arrival processes are
considered, which are more adequate to describe the
bursty nature of the traffic in nowadays communica-
tion networks.

In the present paper, we investigate the behav-
ior of a discrete-time multiserver buffer system with
constant service times of multiple slots and corre-
lated arrivals. From the above survey, the paper can
be seen as a generalization of Bruneel and Wuyts
(1994) and Gao et al. (2004a) to the case of corre-
lated arrivals. It is also an extension of Wittevrongel
and Bruneel (1999) to the multiserver case.

The paper is organized as follows. In Section 2,
we describe the system under study and introduce
some notations. In Section 3, the pgf’s of the par-
tial system contents and system contents are derived,
and the mean value, the variance and the tail dis-
tribution of the system contents are calculated. In
Section 4, the characteristics of the packet delay are
analyzed. In Section 5, some numerical examples are



given. Finally, the paper is concluded in Section 6.

2 SYSTEM DESCRIPTION AND NOTA-

TIONS

We consider a discrete-time queueing system with
c (c ≥ 1) servers (or output channels) and an infinite
buffer capacity for the storage of packets. Time is
divided into fixed-length slots. Packets arrive at the
input of the system and are queued in a buffer un-
til they can be transmitted via one of the c output
channels based on a FCFS (first-come-first-served)
discipline. The service (or transmission) of a packet
can start or end at slot boundaries only. The ser-
vice times of the packets are assumed to be constant,
equal to s (s ≥ 1) slots.

The packet arrival process is modelled as follows.
The traffic source has a bursty nature and alternates
between two states, state 0 and state 1. Transi-
tions between the states are assumed to occur at
slot boundaries. The numbers of consecutive slots
during which the source state is 0 or 1 are called
0-times and 1-times respectively. The 0-times and 1-
times are assumed to be independent geometrically
distributed random variables with parameters α and
β respectively, i.e.,

Prob[0-time = n slots] = (1 − α)αn−1;

Prob[1-time = n slots] = (1 − β)βn−1, n ≥ 1.

Note that this assumption implies there is a first-
order Markovian correlation in the state of the source,
meaning that the probability that the source is in
state 0 or state 1 in any given slot is fully deter-
mined by the state of the source in the previous slot.
In particular, if the source is in state 0 during a slot,
it will remain in state 0 with probability α or turn to
state 1 with probability 1 − α during the next slot;
if the source is in state 1 during a slot, it will re-
main in state 1 with probability β or turn to state
0 with probability 1 − β during the next slot. The
case of uncorrelated source states from slot to slot
corresponds to γ = α + β − 1 = 0, where γ is the
coefficient of correlation between the source states
in two consecutive slots in the steady state. The
number of packet arrivals during a slot has an arbi-
trary distribution which depends only on the source
state during the slot. We denote the probability mass
functions (pmf’s) of the numbers of arrivals during
an arbitrary slot where the source state is 0 or 1 by
a0(n) or a1(n), i.e.,

am(n)
4
= Prob[n arrivals in a slot where the source

state is m], n ≥ 0, m = 0, 1,

and the corresponding pgf’s by A0(z) and A1(z), re-
spectively. Moreover, the service and arrival pro-

cesses are assumed to be mutually independent.

Finally, we assume that the queueing system can
reach a steady state, i.e., we assume

ρ =
[

p0 A
′

0(1) + p1 A
′

1(1)
]

s/c < 1.

Here ρ denotes the load of the system, p0 and p1

denote the probabilities that the source is in state 0
or state 1, respectively, during an arbitrary slot in
the steady state:

p0 =
1 − β

2 − α − β
=

1 − β

1 − γ
;

p1 =
1 − α

2 − α − β
=

1 − α

1 − γ
,

and A
′

0(1) and A
′

1(1) are the average arrival rates of
packets when the source state is 0 or 1, respectively.

3 SYSTEM CONTENTS AND PARTIAL

SYSTEM CONTENTS

Let us denote by vk the system contents (i.e., the
total number of packets in the buffer system, includ-
ing the packets under transmission, if any) at the
beginning of slot k, by ak the number of packet ar-
rivals during slot k, and by tk the state of the source
during slot k. Furthermore, let uj,k be the partial
system contents of degree j at slot k, i.e., the num-
ber of packets in the system at the beginning of slot
k whose service has progressed for at most j slots at
the end of slot k. Note that no packets in the system
at the beginning of a slot have received more than
s slots of service at the end of the slot due to the
constant nature of the service times. Then, we have

vk = us,k; (1)

uj,k+1 = uj−1,k + ak, 1 ≤ j ≤ s, (2)

u0,k = (us,k − c)+, (3)

where (· · · )+ = max(0, · · · ). Indeed, the right-hand
side of (3) is the queue length at the beginning of
slot k, i.e., the number of packets present in the sys-
tem at the beginning slot k whose service has not yet
started by the end of the slot. In the steady state,
the distributions of the above random variables be-
come independent of the time index k. We denote
by V (z) and Uj(z) the pgf’s of the random variables
vk and uj,k respectively when steady state is reached.

Let us now define the joint pgf of the random
variables (tk,uj,k) as

Yj,k(x, z)
4
=E[xtkzuj,k ]

=
1
∑

m=0

∞
∑

n=0

Prob[tk = m, uj,k = n]xmzn.

(4)



Using system equation (2), we then obtain

Yj,k+1(x, z) = E[xtk+1zakzuj−1,k ], 1 ≤ j ≤ s. (5)

From the arrival process description in Section 2, it
follows that {tk} is a homogeneous two-state Markov
chain and the distribution of ak depends only on the
value of tk. More specifically, the joint pgf of the
random variables (tk+1, ak) can be written in terms
of the pgf of the random variable tk:

E[xtk+1zak ] = T0(x, z) E

[

(

T1(x, z)

T0(x, z)

)tk

]

, (6)

where

T0(x, z) = [α + (1 − α)x]A0(z);

T1(x, z) = [1 − β + βx]A1(z).

Combining equations (4)-(6), when steady state is
reached, we have

Yj(x, z) = T0(x, z) Yj−1

(

T1(x, z)

T0(x, z)
, z

)

, 1 ≤ j ≤ s.

(7)

Next, let us introduce the following partial pgf’s:

Yj;m(z)
4
= lim

k→∞

∞
∑

n=0

Prob[uj,k = n, tk = m] zn.

Then the function Yj(x, z) is expressed as

Yj(x, z) = Yj;0(z) + xYj;1(z). (8)

Substitution of (8) in the functional equation (7) and
identification of the coefficients of equal powers of x
on both sides of the resulting equation then yields the
following set of two recursive equations for Yj;0(z)
and Yj;1(z) (expressed in a matrix form):

[

Yj;0(z)
Yj;1(z)

]

=

[

αA0(z) (1 − β)A1(z)
(1 − α)A0(z) βA1(z)

]

·

[

Yj−1;0(z)
Yj−1;1(z)

]

, 1 ≤ j ≤ s.

(9)

By repeated use of equation (9), we find

[

Yj;0(z)
Yj;1(z)

]

= M j

[

Y0;0(z)
Y0;1(z)

]

, (10)

where

M j =

[

M00
j (z) M01

j (z)
M10

j (z) M11
j (z)

]

4
=

[

αA0(z) (1 − β)A1(z)
(1 − α)A0(z) βA1(z)

]j

.

In a similar way, now using the system equations
(1) and (3), we get

[

Y0;0(z)
Y0;1(z)

]

= z−c

{[

Ys;0(z)
Ys;1(z)

]

+

[
∑c−1

n=0 vn0(z)
∑c−1

n=0 vn1(z)

]}

,

(11)
where

vnm(z)
4
= v(n, m)(zc − zn);

v(n, m)
4
= lim

k→∞
Prob[vk = n, tk = m]

= lim
k→∞

Prob[us,k = n, tk = m],

m = 0, 1; 0 ≤ n ≤ c − 1.

Combination of equations (10) and (11) finally gives

zc

[

Yj;0(z)
Yj;1(z)

]

= M j

{[

Ys;0(z)
Ys;1(z)

]

+

[
∑c−1

n=0 vn0(z)
∑c−1

n=0 vn1(z)

]}

,

0 ≤ j ≤ s.

(12)

The entries of the matrix M j can be expressed in
terms of the 2 eigenvalues λ1 and λ2 of the matrix
M , by using the property that λ1

j and λ2
j are the 2

eigenvalues of the matrix M j , as follows:

M00
j (z) =

λj+1
1 − λj+1

2 + βA1(z)(λj
2 − λj

1)

λ1 − λ2
;

M01
j (z) =

(1 − β)A1(z)(λj
1 − λj

2)

λ1 − λ2
;

M10
j (z) =

(1 − α)A0(z)(λj
1 − λj

2)

λ1 − λ2
;

M11
j (z) =

λj+1
1 − λj+1

2 + αA0(z)(λj
2 − λj

1)

λ1 − λ2
,

where

λτ =
αA0(z) + βA1(z)

2

+
−

√

[αA0(z) + βA1(z)]2 − 4γA0(z)A1(z)

2
,

τ = 1, 2,

with ± being + for τ = 1 and − for τ = 2. Note that
λ1 and λ2 are functions of z. However, we write λτ

instead of λτ (z) to ease the notation. When j = s,
(12) leads to a set of linear equations for Ys;0(z)
and Ys;1(z), from which the partial pgf’s Ys;0(z) and
Ys;1(z), as well as the pgf of the system contents
V (z) = Ys;0(z) + Ys;1(z) can be calculated. Substi-
tution of the results for Ys;0(z) and Ys;1(z) in (12)
moreover enables the calculation of the pgf Uj(z) =
Yj;0(z) + Yj;1(z) of the partial system contents of



degree j, 0 ≤ j ≤ s. As a result, the following ex-
pressions are obtained:

V (z) =
1

λ1 − λ2

c−1
∑

n=0

{[

λ1λ
s
2

zc − λs
2

−
λ2λ

s
1

zc − λs
1

]

vn(z)

+
zc(λs

1 − λs
2)[A0(z)vn0(z) + A1(z)vn1(z)]

(zc − λs
1)(z

c − λs
2)

}

;

(13)

U0(z) = z−c

[

V (z) +

c−1
∑

n=0

v(n)(zc − zn)

]

; (14)

Uj(z) =
λj

1 − λj
2

λs
1 − λs

2

V (z) −
λj

1λ
s
2 − λj

2λ
s
1

λs
1 − λs

2

U0(z),

0 ≤ j ≤ s,

(15)

where

vn(z)
4
= vn0(z) + vn1(z)

= v(n)(zc − zn);

v(n)
4
= v(n, 0) + v(n, 1),

0 ≤ n ≤ c − 1.

In order to determine V (z) completely, we need
to find the 2c unknown constants v(n, 0) and v(n, 1)
(0 ≤ n ≤ c − 1) in (13). These can be obtained by
invoking the analyticity of the pgf V (z) inside the
unit disk (z : |z| < 1) of the complex z-plane and
the normalization condition V (1) = 1. Specifically,
by means of Rouché’s theorem (Kleinrock (1975)), it
can be shown that the factor (zc−λs

1)(z
c−λs

2) in the
denominator of V (z) has exactly 2c − 1 roots inside
the unit disk. We denote these roots by zi, 1 ≤
i ≤ 2c − 1. Since V (z) is analytic for |z| < 1, the
numerator of V (z) must also be zero at these points.
Thus, we have

(λs
1 − λs

2)z
c

c−1
∑

n=0

{

[λ1δ(z
c − λs

2) + λ2δ(z
c − λs

1)]vn(z)

−A0(z)vn0(z) − A1(z)vn1(z)
}
∣

∣

∣

z=zi

= 0,

1 ≤ i ≤ 2c − 1,

(16)

where δ(·) is the Kronecker delta function, which is
1 when its argument is zero and 0 otherwise. From
the normalization condition V (1) = 1 and equation
(13), we moreover find that

c−1
∑

n=0

(c − n)v(n) = c − sλ
′

1(1) = c(1 − ρ), (17)

where λ
′

1(1) = p0A
′

0(1) + p1A
′

1(1) is the first-order
derivative of λ1 at z = 1, which also denotes the
mean number of packet arrivals during an arbitrary
slot. With equations (16) and (17), the constants
v(n, 0) and v(n, 1) (0 ≤ n ≤ c−1) can be calculated.

Once V (z) is determined, some important per-
formance measures for the system, such as the mean
value, the variance and the tail distribution of the
system contents, can be calculated. The mean sys-
tem contents E[v] can be obtained by taking the first-
order derivative of equation (13) with respect to z in
z = 1. Using de l’Hospital’s rule twice, we get

E[v] =V
′

(1)

=

∑c−1
n=0[A

′

0(1) v(n, 0) + A
′

1(1) v(n, 1)](c − n)

c (1 − γ)(1 − ρ)

−
ρc

s(1 − γ)
+

sλ
′′

1 (1) +
∑c−1

n=0(c
2 − n2)v(n)

2c(1 − ρ)

−
c(1 − ρ)

2
+

ρ(s − cρ)

2s(1 − ρ)
,

where λ
′′

1 (1) is the second-order derivative of λ1 with
respect to z at z = 1. Higher-order moments of the
system contents can be derived in a similar way. For
instance, the variance of the system contents follows
from the relation

V ar[v] = V
′′

(1) + V
′

(1) − V
′

(1)2.

Another important performance characteristic for
a buffer is the tail distribution of the system con-
tents, i.e., the probability that the system contents
equals a given value n, for sufficiently large n. In
principle, the tail distribution of a discrete random
variable can be determined by applying the inver-
sion formula for z-transforms and Cauchy’s residue
theorem from complex analysis (see e.g. Kleinrock
(1975)) on its generating function and keeping only
the contribution of the pole (or poles) of the pgf with
smallest modulus outside the unit disk. As argued
in Bruneel and Kim (1993), the system-contents dis-
tribution exhibits a geometric tail behavior. That is,
for sufficiently large values of n, the tail distribution
of the system contents can be approximated as

Prob[v = n] ≈ −Cv z−n−1
v , (18)

where zv is the pole of V (z) with the smallest mod-
ulus (outside the unit disk), and the constant Cv is
the residue of V (z) at z = zv. The dominant pole
zv must necessarily be real and positive in order to
ensure that the tail distribution is nonnegative any-
where (Bruneel and Kim (1993)). From (13), it fol-
lows that zv is a real positive zero of the denominator
of V (z). The residue Cv can be calculated from (13)



as

Cv =











































Pc−1

n=0
{A0(z)vn0(z)+A1(z)vn1(z)−λ2vn(z)}

(λ1−λ2) [c/z−sλ
′

1
(z)/λ1]

∣

∣

∣

z=zv

,

when zv
c = λ1(zv)

s;

Pc−1

n=0
{A0(z)vn0(z)+A1(z)vn1(z)−λ1vn(z)}

(λ2−λ1) [c/z−sλ
′

2
(z)/λ2]

∣

∣

∣

z=zv

,

when zv
c = λ2(zv)

s.

(19)

From (18), the probability that the system contents
exceeds a given threshold N , for large N , follows as

Prob[v > N ] ≈ −Cv
z−N−1
v

zv − 1
.

This probability (for an infinite buffer model) is often
used to estimate the packet loss probability or buffer
overflow probability that would be observed in case
of a buffer with a finite storage capacity N (see e.g.
Bisdikian et al. (1993)).

4 PACKET DELAY

The delay of a packet is defined as the total num-
ber of slots between the end of the slot during which
the packet arrives in the system and the end of the
slot where the packet finishes its transmission and
leaves the system. Let D(z) be the pgf of the delay d
that an arbitrary packet experiences in the system.
In this section, we analyze the characteristics of the
packet delay by means of a general relationship be-
tween partial system contents and packet delay es-
tablished in Gao et al. (2005). Specifically, it has
been shown in Gao et al. (2005) that for any discrete-
time multiserver system with constant service times
of multiple slots and a FCFS queueing discipline, the
pgf D(z) can be expressed in terms of the pgf’s of the
partial system contents as

D(zc) =
1 − zc

cλ
′

1(1)

c−1
∑

j=0

θjzs

(1 − θjzs)2
·

s−1
∑

i=0

zci
[

Us−i−1(θ
jzs) − Us−i(θ

jzs)
]

,

(20)

where θ = exp(2πI/c) with I2 = −1. The relation-
ship (20) holds regardless of the exact nature of the
arrival process, and therefore it can also be applied
to derive the delay characteristics for the considered
system with a two-state (first-order Markovian) cor-
related traffic source. Combination of (20) and (13)-

(15) finally gives

D(zc) =
1 − zc

cλ
′

1(1)

c−1
∑

j=0

θjzs

(1 − θjzs)2(zc − λ1)(zc − λ2)

·
c−1
∑

n=0

{

(zc + λ1λ2 − λ1 − λ2)vn(θjzs) + (1 − zc)

·
[

A0(θ
jzs)vn0(θ

jzs) + A1(θ
jzs)vn1(θ

jzs)
]}

.

(21)

Note that in (21) λ1 and λ2 are functions of θjzs,
i.e., functions λ1(θ

jzs) and λ2(θ
jzs).

The mean value of the packet delay can be found
from (21) by evaluation of the first-order derivative of
the pgf D(zc) with respect to z at z = 1. Specifically,
we get

E[d] = D
′

(1) =
1

c

dD(zc)

dz

∣

∣

∣

z=1
=

E[v]

λ
′

1(1)
,

in agreement with Little’s theorem. In a similar
way, we can also obtain higher-order moments of the
packet delay, by calculating the appropriate higher-
order derivatives of D(zc) at z = 1. For instance,
the variance of the packet delay (delay jitter) can be
obtained as

V ar[d] = D
′′

(1) + D
′

(1) − D
′

(1)2

=
1

c2

d2D(zc)

dz2

∣

∣

∣

z=1
+

1

c
D

′

(1) − D
′

(1)2.

In order to derive the tail distribution of the de-
lay of a packet, we use a similar procedure as for the
system contents. However, from expression (21) for
D(zc), we note that this function does not satisfy
the condition that it has only one pole with mini-
mal modulus. Indeed, if zv is the dominant pole of
V (z), i.e., the zero of [zc −λ1(z)s] · [zc −λ2(z)s] out-
side the unit disk with the smallest modulus, then

zd(0)
4
= z

1/s
v is the zero with minimal modulus out-

side the unit disk of the factor [zc − λ1(z
s)][zc −

λ2(z
s)] in the denominator of D(zc). Due to θmc = 1

for any integer value of m, zc remains unchanged
when z is multiplied by θ−m, and therefore zd(m) =

θ−mz
1/s
v (0 ≤ m ≤ c − 1) is also a pole of D(zc)

with the same modulus zv
1/s. In particular, it can

be shown that the pole zd(m) is a zero of the fac-
tor [zc −λ1(θ

jzs)][zc −λ2(θ
jzs)] in the denominator

of D(zc) for which j = (ms) mod c, i.e., for which j
equals the remainder of the division of ms by c. Tak-
ing into account all the poles zd(m), 0 ≤ m ≤ c − 1,
and keeping in mind that Prob[d = n] is the coef-
ficient of zcn in the series expansion of D(zc), we



finally get

Prob[d = n] ≈ −
c−1
∑

m=0

bm

zd(m)
[zd(m)]−cn

= −
c−1
∑

m=0

bm

zd(m)
z−cn/s
v

= −Cd zv
−cn/s,

(22)

for sufficiently large n. In (22), bm is the residue of
D(zc) at the point z = zd(m) and is given by

bm =
Nm(zd(m))

Rm
′

(zd(m))
,

where Nm(z) and Rm(z) are the numerator and the
denominator, respectively, of the term in (21) corre-
sponding to the index value j = (ms) mod c. Using
the expressions (21) and (19), we find

Cd =

c−1
∑

m=0

bm

zd(m)

=
z
−c/s
v

λ
′

1(1)

(

1 − z
c/s
v

1 − zv

)2

Cv.

The probability that the packet delay exceeds a given
threshold T follows from (22) as

Prob[d > T ] ≈ −Cd
z
−cT/s
v

zv
c/s − 1

.

5 NUMERICAL RESULTS

We now present a number of numerical examples
in order to illustrate the influence of various param-
eters of the model, such as the degree of correlation
in the arrival process, the number of servers and the
length of the service times, on the system behavior.
Throughout this section, we assume that the packet
arrivals during states 0 and 1 are governed by the
sets of distributions shown in Table 1. In the first
set, packet arrivals are governed by a geometric dis-
tribution with arrival rate λ during state 0 and there
are no packet arrivals when the source is in state 1.
In the second set, packet arrivals are governed by a
Bernoulli distribution with rate λ during state 0 and

Table 1: The Three Sets of Arrival Distributions

Set 1 2 3

A0(z)
1

1 + λ − λz
1 − λ + λz 1 − λ + λz

A1(z) 1
1

1 + 2λ − 2λz

1

1 + λ − λz

mean system contents
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Figure 1: Mean System Contents vs. Load ρ.

a geometric distribution with rate 2λ during state 1.
In the third set, the arrival distributions are of the
same type as for the second set, but with the same
arrival rate λ during both states.

In Fig.1, we have plotted the mean system con-
tents versus the load ρ, for c = 4, s = 4, α = β,
arrival distributions of set 2, and various values of
the source state correlation coefficient γ, namely γ =
−0.8, 0, 0.6, 0.8. The figure clearly shows that for
a given ρ, the mean system contents increases as γ
increases. Especially, for higher loads ρ, the system
contents may be heavily underestimated when the
(positive) correlation between the source states in
two consecutive slots is not taken into account.

In Figs.2-4, we assume α = 0.7 and β = 0.8.
The source state correlation coefficient γ then equals
0.5. In Fig.2, the overflow probability Prob[v > N ]
is shown as a function of N , for ρ = 0.8, c = 4, s = 8
and the three sets of arrival distributions. We note
that the first set gives the highest overflow probabil-
ity, while the third set gives the smallest value. This
observation can be understood intuitively from the
fact that the variance of the number of arrivals per
slot decreases in the order of set 1, set 2 and set 3.
Indeed, the higher the variance of the number of ar-
rivals and, hence, the more fluctuation of the arrival
process, the higher we expect the buffer contents to
be. The required buffer size N to satisfy a given loss
bound can also be estimated from Fig.2.

In Fig.3, the mean packet delay is plotted versus
the load ρ, for the arrival distributions of set 1, for
s = 1, 3, 5 and c = 4, 8. For given values of c and
s, we see that the mean packet delay increases as ρ
increases. For a given ρ, the mean delay increases as
the service times become longer and/or the number
of servers decreases. We also observe that the longer
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Figure 3: Mean Packet Delay vs. Load ρ.

the service times, the higher the impact of the num-
ber of servers on the packet delay, especially when
the load gets higher.

In Fig.4, the variance of the packet delay is shown
versus ρ, for the arrival distributions of set 3, for
s = 8 and c = 1, 4, 8. Clearly, for a given value of
ρ, the delay jitter decreases as the number of servers
increases.

6 CONCLUSIONS

In this paper, we have studied the behavior of
a discrete-time infinite-capacity buffer system with
multiple servers and constant service times of multi-
ple slots. Packets are generated by a two-state traffic
source with a first-order Markovian correlation in the
state of the source. We have presented an analytical
technique based on generating functions for the anal-
ysis of the system. As a result, closed-form expres-
sions have been derived for such performance mea-
sures as the mean values, the variances and the tail
distributions of the system contents and the packet
delay. Some numerical results have been presented
to illustrate the analysis. The results indicate that
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Figure 4: Variance of the Packet Delay vs. Load ρ.

the characteristics of the system contents and the
packet delay are sensitive to both the arrival process
and the service mechanism.
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