
Analysis of Distributed Control Systems with Shared Communication and

Computation Resources

Payam Naghshtabrizi and João P. Hespanha

Abstract— We address the analysis and implementation of
a distributed control system on a network of communicating
control units, resulting in a Networked Control System (NCS).
We propose an approach based on three steps: control system
analysis in terms of sampling times and delays, mapping of
control loops to computation/communication hardware com-
ponents, and scheduling analysis. This procedure is especially
important for applications that place a heavy load on the
available computation and communication resources and finds
direct application in FlexRay control networks.

I. INTRODUCTION

Inexpensive computation and ubiquitous embedded sens-

ing, actuation, and communication provide tremendous op-

portunities for social impacts. These systems can be found in

the newest generation of engineered systems such as automo-

biles, high precision medical devices, aerospace systems, and

power distribution systems [1]. In particular for automotive

applications, such systems are essential to achieve energy

efficient, low emission, and safety with high drivability

performance [2]. Modern vehicles may have up to 85 ECUs

(Electric Control Units) that implement sophisticated control

algorithms and communicate through in-vehicle networks

such as high-speed and low-speed CAN (Control Area Net-

work) and FlexRay networks connected through gateways

[3]. Moreover, software and electronics are an essential part

of automotive systems and it is forecasted that they will

account for 50% of the total cost of an automobile by 2020.

Most of this comes from advanced and control intensive

features, including active safety and hybrid powertrains [4].

To physically implement control algorithms we have to

assign control tasks to ECUs sharing information through

communication networks. The use of shared communication

and computation resources, can lead to significant variable

delays that in tern can lead to system instability, violation of

specifications (loss of correctness), and lack of robustness.

The current trend in the automotive industry is to simu-

late, implement, and calibrate this type of systems. This is

followed by thorough performance tests, which are used to

identify faulty behaviors and eventually may lead to system

redesign. However, this approach is becoming unpractical as

the system complexity increases. The focus of this paper is

on the development of a procedure that guarantees correct-

ness and robustness by design. In addition, we are interested

in modular design procedures that facilitate the calibration,

testing, and diagnosis of these complex systems.

P. Naghshtabrizi is with Ford Motor Company, Dearborn, Michigan,
U.S.A pnaghsht@ford.com. J. P. Hespanha is with the Department
of Electrical & Computer Engineering, University of California, Santa
Barbara, CA, U.S.A. hespanha@ece.ucsb.edu.

Our design procedure consists of three steps that operate

at different levels of abstraction for the NCS.

1) The first step operates at the control system level of

abstraction. At this level, the NCS is viewed as a

collection of (possibly coupled) control loops with

variable sampling intervals and delays. The details of

the computation/communication hardware implemen-

tation are ignored and the focus is on determining

which combinations of sampling and delays lead to

stability and adequate performance.

2) The second step operates at the physical architecture

level and consists of mapping the control algorithms to

computation resources and assigning communication

resources to the required information flows between

processors.

3) The last step consists of a scheduling analysis that,

based on the parameters obtained from the control

system and the physical architecture, determines if

given computation/communication protocols will result

in a correct and robust system. A negative answer may

require modifications of the physical architecture. For

example, it may lead to implementing an algorithm in

another ECU, dividing an algorithm between multiple

ECUs, increasing or decreasing the sampling rates, or

adding another communication network to the system.

This procedure is especially crucial for FlexRay network

systems that support fast control algorithms. FlexRay net-

works are next generation, deterministic, and fault tolerant

network protocols to enable high bandwidth and safety

critical applications [5]. In FlexRay systems (static segment),

application and communication tasks are synchronized across

the network based on a global time trigger structure. This

structure requires the worse time execution of the control

algorithms and functions to make sure that an application

task finishes before its communication task starts. Moreover,

fast control algorithms, such as x-by-wire and active safety

features, are sensitive to the presence of delay and cur-

rently dedicated wires are usually used to connect different

elements of these systems. As these types of networked

applications become common, the need for the type of design

procedures proposed in this paper grows. We do not limit

ourselves to FlexRay networks as this work applies to any

deterministic network (i.e., any network for which the access

to the network may not be predetermined but the latest

delivery time of a packet can be computed) such as token-

passing networks, CAN, switched networks, and FlexRay.

This paper is organized as follows. In Section II we show

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThC03.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 3384

.......

.......

subsystem 1 subsystem 2 subsystem N

Plant 1 Plant 2 Plant N

Dynamic

Controller 1
Dynamic

Controller 2

Static

Controller N

s1

s2

s3

s4

s5

s6

sℓ

d1

d2

d3

d4

d5

d6 dℓ

Network

Fig. 1. Schematic description of an NCS with N different subsystems
consisting of a plant and a controller. In this example, subsystem 1 consists
of a MIMO plant and a MIMO dynamic controller, subsystem 2 consists of a
SISO plant and a dynamic controller, and subsystem N consists of a SISO
plant with a static controller. We refer to a path between a sampler-hold pair
as a connection and we assume that there are ℓ connections. A subsystem
with one connection, e.g. subsystem N , is modeled by a SISO delay
impulsive system, whereas a subsystem with more than one connection,
e.g. subsystem 1 is modeled by a MIMO delay impulsive system. Note
that the controller of subsystem 2 is a dynamic controller so subsystem 2
consists of two connections but the controller of subsystem N is a static
controller so subsystem N can be regarded as having only one connection.
Network in Fig. 1 can consist of several sub-networks of different types
connected by gateways and also elements of the control systems may be
implemented on different ECUs.

how to model distributed control systems with shared com-

munication and computation resources as delay impulsive

systems and we characterize admissible sampling intervals

and delays. In Section III we focus on the physical archi-

tecture level and the mapping of algorithms and network

connections to specific computation and communication re-

sources. In Section IV we consider the scheduling analysis to

guarantee control algorithm correctness. We present an ex-

ample in Section V and Section VI is devoted to conclusions

and future work.

Notation: We denote the transpose of a matrix P by P′.

We write P > 0 (or P < 0) when P is a symmetric positive (or

negative) definite matrix and we write a symmetric matrix
[

A B
B′ C

]

as
[

A B
∗ C

]

. We denote the limit from below of a signal

x(t) by x−(t), i.e., x−(t) := limτ↑t x(τ).

II. CONTROL SYSTEM LEVEL

The schematic description of the system we consider is

given in Fig. 1. We consider N subsystems, each con-

sisting of a plant and a controller connected through the

network. The sensors, actuators, and controllers are spatially

distributed and they may be implemented on different ECUs.

Note that the network in Fig. 1 can consist of several sub-

networks of different types connected by gateways. The

overall system consists of ℓ connections, where a connection

is a path between a sampler and its corresponding hold.

A key observation is that the unity feedback of “traditional

control” that operates in continuous time or at the fixed

sampling rate is not adequate in the advanced system in

Fig. 1, where sensor data arrives from multiple sources, asyn-

chronously, delayed, and possibly corrupted. In Section II-

A we show that delay impulsive systems provide a natural

framework to model systems with shared communication

and computation resources in a unified way. In Section II-

B we briefly review analysis tools to study delay impulsive

x(t)

x(si
k)

u(t)
hold

si
k

ẋ = Ax + Bu

Delay of τ i
k

Fig. 2. A subsystem with one connection (denoted by connection i) with
delay in the feedback loop where u(t) = x(si

k), ∀t ∈ [si
k + τ i

k,s
i
k+1 + τ i

k+1).
Variable delay τ i

k represents the effect of sharing communication and
computation resources.

systems, from which we can determine maximum tolerable

delays for each connection i ∈ {1, . . . , ℓ}, such that all the

subsystems remain (exponentially) stable given known upper

bounds on the sampling intervals. For simplicity, we focus

our attention on the subsystems with one connection modeled

as Single-Input Single-Output (SISO) delay impulsive sys-

tems, such as subsystem N in Fig. 1. We refer the reader to

the PhD thesis [6] for more general cases, such as subsystem

1 or 2 that can be modeled as Multi-Input Multi-Output

(MIMO) delay impulsive systems.

A. Modeling of control systems with shared communication

and computation resources

Consider a subsystem with one connection (e.g., subsys-

tem N) that consists of a linear time invariant process

with state space model of the form ẋ(t) = Ax(t) + Buu(t),
x ∈ R

n,u ∈ R
m and a static feedback controller with constant

gain K connected by sample and hold blocks through the

network. The k-th sampling time and the total delay in the

control loop of the connection i are denoted by si
k, and τ i

k.

At time si
k, k ∈ N the process’s state, x(si

k), is sent to the

controller and the control command Kx(si
k) is sent to the

actuators to be used as soon as it arrives at time si
k +τ i

k, and

until the next control command update at time si
k+1 + τ i

k+1.

The resulting closed-loop system is shown in Fig. 2 and can

be expressed by

ẋ(t) = Ax(t)+ Bx(si
k), t i

k ≤ t < t i
k+1, k ∈ N, (1)

where B := BuK, t i
k := si

k + τ i
k. Equation (1) can represent a

delay impulsive (hybrid) system, as we can define a new state

z1(t) := x(si
k), t i

k ≤ t < t i
k+1, and rewrite the equation (1) as

follows:

ξ̇ (t) = Fξ (t), t i
k ≤ t < t i

k+1, (2a)

ξ (t i
k+1) =

[

x−(ti
k+1)

x(si
k+1)

]

, k ∈ N, (2b)

where F :=
[

A B
0 0

]

, ξ (t) :=
[

x(t)
z1(t)

]

. The equation (2a) gov-

erns the evolution of the system’s state between jumps and

equation (2b) determines the abrupt change of state at the

jump times, which are the times that the state of hold is

updated with a new control command.

In this work we do not assume that the sampling rate is

constant, i.e., we do not require that si
k+1 − si

k = T, ∀k ∈ N.

3385

This allows us to capture the effect of clock drift as well as

packet dropout in the distributed NCSs [7].

At the control systems level of abstraction, we model

the closed-loop subsystems in Fig. 1 as SISO or MIMO

delay impulsive systems (SISO case is shown in Fig. 2) with

variable delays and sampling reflecting the effect of sharing

communication and computation resources. At this level, we

ignore the detailed physical architecture as its effect is mostly

captured by the variable delays model.

B. Analysis of control systems with variable delay and

sampling

The purpose of this section is to determine conditions

on the sampling-delay sequences ({si
k},{τ i

k}) for which

one can guarantee (exponential) stability of all subsystems.

Specifically, we seek to compute upper bounds ρimax and

τimax on the sampling interval and delay, respectively:

si
k+1 − si

k ≤ ρimax, τ i
k ≤ τimax, ∀k ∈ N (3)

for which stability is assured.

Characterizing admissible sampling-delay sequences as in

(3) results in a deterministic delay impulsive systems, for

which there are a few stability results. Here we present an

analysis based on discontinuous Lyapunov functionals. A list

of other approaches and comparison can be found in [6], [1].

For the analysis of the system described by equation (2),

we employ a Lyapunov functional of the form

V := x′Px +

∫ t

t−ρ̄1

(ρ̄1max − t + s)ẋ′(s)R1ẋ(s)ds

+

∫ t

t−ρ̄2

(ρ̄2max − t + s)ẋ′(s)R2ẋ(s)ds

+(ρ̄1max− ρ̄1)(x−w)′X(x−w), (4)

where P,X ,R1,R2 are appropriately chosen positive definite

matrices and

w(t) := x(t i
k), ρ̄1(t) := t − si

k, ρ̄2(t) := t − t i
k, t i

k ≤ t < t i
k+1,

ρ̄1max := sup
t≥0

ρ̄1(t), ρ̄2max := sup
t≥0

ρ̄2(t).

The timers ρ̄1, ρ̄2 reset at the update times, t i
k, and essentially

measure the time elapsed since the last sampling time and

the last input update time, respectively. By construction, this

Lyapunov functional does not increase at the update times t i
k,

at which it is discontinuous. To guarantee stability we further

need to show decrease of the Lyapunov functional between

these discontinuities [6]. It turns out that this decrease holds

if the Linear Matrix Inequalities (LMIs) in the next theorem

are satisfied. These LMIs can be solved numerically using

software packages such as MATLAB.

Theorem 1: The system (2) is (exponentially) stable over

the set of sampling-delay sequences defined by (3), if there

exist symmetric positive definite matrices P,X ,R1,R2 and

(not necessarily symmetric) matrices N1,N2 that satisfy the

sℓ

ECU 1 network 1 gateway 1 network 2
ECU 2

dℓ

Fig. 3. Physical architecture schematic of the system in Fig. 1. The
source and the destination of connection ℓ are denoted by sℓ and dℓ.The
ECU 1 reads the sensor of subsystem ℓ and sends the data to the network
after encoding it as a packet. The ECU 2 then receives the packet,
decodes it, computes the control command and applies it to the actuator
of subsystem ℓ. The network consists of two deterministic networks 1 and
2 connected through a gateway. The arrows refer to other communication
and computation jobs of the ECUs, networks, and the gateway.

following LMIs:
[

M1+(ρimax+τimax)(M2+M3) τimaxN1
∗ −τimaxR1

]

< 0, (5a)
[

M1+(ρimax+τimax)M2 τimaxN1 (ρimax+τimax)(N1+N2)
∗ −τimaxR1 0

∗ ∗ −(ρimax+τimax)(R1+R2)

]

< 0, (5b)

where

M1 :=F̄ ′ [P 0 0]+
[

P
0
0

]

F̄ −
[

I
0
−I

]

X
[

I
0
−I

]′
−N1 [I −I 0]

−
[

I
−I
0

]

N′
1 −N2 [I 0 −I]−

[

I
0
−I

]

N′
2

M2 :=F̄ ′(R1 + R2)F̄ ,

M3 :=
[

I
0
−I

]

XF̄ + F̄ ′X [I 0 −I] . (6)

with F̄ :=
[

A B 0
]

. �

The feasibility of the LMIs (5a) and (5b) for given pairs

of ρimax,τimax characterizes admissible sampling-delay se-

quences in equation (3) for the connection i.

Theorem 1 can be extended to MIMO case to characterize

sampling-delay sequences of other subsystems with more

than one connection [6].

When the upper bound of the sampling intervals ρimax, i ∈
{1, . . . , ℓ} are given, one can use (5) to determine the

maximum tolerable delays, τimax for which (5) holds and

consequently stability of all subsystems is guaranteed.

III. PHYSICAL ARCHITECTURE LEVEL

At this level of abstraction, the physical structure of the

system is considered and one maps algorithms and network

connections to specific computation and communication re-

sources. We assume that the mapping is given; however, the

procedure to construct the map in order to assign functions

to ECUs and to assign ECUs to networks so as to optimize

and balance the loads is an important open problem. Such

procedure should consider the cost of different options,

module integration, delay jitter, reliability and robustness of

design.

At this level, the system is regarded as a collection of

several resources connected in series or parallel to service

“jobs”. For shared computation resources (ECUs and gate-

ways) jobs typically correspond to the execution of control

algorithms, whereas for shared communication resources,

jobs typically correspond to the transmission of data in the

network.

Fig. 3 shows the physical architecture schematic of the

system in Fig. 1 in which we only show the details of

3386

connection ℓ. Note that Fig. 3 is more comprehensive than

Fig. 1 since diagnostic algorithms, interrupts, and other

computation and communication jobs were also included at

this level.

IV. SCHEDULING ANALYSIS

The main question addressed in this section is whether

the total delays in all connections are smaller than the

tolerable delays that can be determined by the analysis in

Section II or by other specifications. A negative answer to

this question may lead to faulty behavior of some or all of the

subsystems. The current trend in automotive industry is to

simulate, implement, calibrate, and check the performance,

and then identify faulty behaviors that may require system

redesign. However, detecting problems and fixing them at the

simulation and calibration stages are becoming increasingly

harder and more expensive due to the increased complexity.

This type of approach can be improved through the use

of formal techniques that guarantee correctness and cover

corner cases and rare events.

These formal techniques are based on results in real-time

scheduling [8]. In real-time scheduling, different jobs are

released periodically or aperiodically, but with given lower

bounds between release times. In the most basic setting, one

shared resource services different jobs and servicing a job

takes a certain amount of time. Each job should be completed

before a deadline and if all the timing requirements can be

met, then the set of jobs is said to be schedulable.

A. Real time scheduling and priority assignment

There are two main classes of priority assignments to jobs:

static and dynamic. In static priority assignments, a fixed

priority is selected for each job. This form of scheduling is

simple, yet it is very inflexible to changes, failures, and often

it under-utilizes the shared resources [8]. When scheduling

decisions are based on the current decision variables, we have

dynamic scheduling. This type of priority assignment may be

more difficult to implement because priorities change over

time and need to be computed online; however, a dynamic

priority assignment is generally more flexible and efficient. In

the following, we summarize the most common scheduling

policies and we refer the readers to [8] for more details.

First-Come First-Serve (FCFS) scheduling: This policy

serves the oldest request first so that resource allocation is

based on the order of request arrivals. This policy is generally

not suitable for control application because it may serve a

job with longer deadline over a job with shorter deadline. In

our context, deadlines are determined by the inequalities in

(3), which specify the largest admissible delays.

Round-Robin (RR) scheduling: This is a static algorithm

in which a fixed time slot is dedicated to each node. This

policy is simple and effective when:

• All nodes have data most of the time.

• All nodes are synchronized.

• The network structure is fixed so that no new node

joins the network after the time slots are assigned to

the nodes.

When a node loses its turn, no matter how close it is to its

deadline, it should wait until its next allocated slot.

Deadline Monotonic (DM) scheduling: This static pol-

icy allocates the resource to nodes according to their dead-

lines. A task with the shortest deadline, is assigned the high-

est priority. In our context, static deadlines would typically be

selected based on the delay upper bounds τimax. For example

if τ1max = 3 and τ2max = 4 then jobs of source one will

always have higher priority over jobs of source two.

Earliest Deadline First (EDF) scheduling: EDF is a

dynamic algorithm that assigns priorities to jobs according

to their absolute deadlines, which are the times remaining to

miss the deadline. A job with the earliest absolute deadline,

(til +τimax − t) will have the highest priority, where til is the

last sampling time of connection i and t is the current time.

Again consider job one with τ1max = 3,t1l = 2 and job two

with τ2max = 4,t2l = 0. If both nodes have a job ready to be

serviced at time t = 3, job two gains access to the resource

because jobs 1 and 2 must be completed before times 5 and

4 respectively, so the node 2 has a closer deadline.

Each of these scheduling policies can be easily imple-

mented on computation resources, but scheduling policies

for shared communication resources depend on the specific

network. FCFS is not implementable on CAN or FlexRay,

whereas RR is the only scheduling policy suitable for the

static segment of FlexRay. DM and EDF are both imple-

mentable on CAN and on the dynamic segment of FlexRay.

Among all the policies discussed EDF has the advantages

of being a dynamic algorithm, generally leading to better

network utilization.. The disadvantage of EDF is that the

priority of the job is a function of time and should be

updated periodically, which requires spending more compu-

tation power [6].

B. Scheduling tests and tools

The core of the scheduling analysis is a scheduling test,

which determines if a particular scheduling policy can guar-

antee that the tasks will be serviced, even under worst-

case choice of sampling-delays. When this happens, we say

that the tasks are schedulable under the policy. Our focus

here will be on EDF scheduling. The deadline to finish job

i ∈ {1, · · · ,n} is denoted by Di, the lower bound between

consecutive job release times is denoted by Ti and the time

to service job i is denoted by Ci. If the conditions in the

next theorem hold for a given set of jobs, then the set of

jobs is schedulable under the EDF policy. This means that

the worse delay experienced by every job i, from the time it

is released to the resource until the time that it is serviced,

is always smaller than its deadline Di. This delay consists of

the service time plus the waiting time to get serviced. The

waiting time depends on the scheduling policy and on the

priority assignment.

Theorem 2 ([9]): A set of connections (Ti,Ci,Di), i ∈
{1, · · · ,n} is schedulable over a network under the (non-

preemptive) EDF scheduling policy if and only if the fol-

3387

lowing conditions hold:

n

∑
i=1

Ci

Ti

≤ 1, (7)

n

∑
i=1

⌊
t −Di

Ti

⌋+Ci +Cmax ≤ t, ∀t ∈ ∪n
i=1Si, (8)

where Cmax := maxi Ci

Si :=
{

Di + hTi : h = 0,1, · · · ,
⌊dmax −di

Ti

⌋

}

,

dmax := max
{

D1, · · · ,Dn,
∑n

i=1(1−Di/Ti)Ci +Cmax

1−∑n
i=1 Ci/Ti

}

,

⌊ .⌋ is a floor function, ⌊x⌋+ := ⌊x + 1⌋ for x ≥ 0 and zero

otherwise. �

Assuming that the only shared resource in Fig. 1 is

the network and there is no computation delays. Given

ρimax,τimax for which the LMIs (5) in Theorem 1 hold, if the

sampling-delay satisfies (3) then stability of all subsystems

is guaranteed. In real-time scheduling it is assumed that the

lower bound between consecutive release times of all source

nodes are given. In our problem we denote this lower bound

by ρimin, which corresponds to the smallest sampling interval

ever used by the source i. We also denote by transi the

transmission time from the source to the destination of job

i (time taken by the network to “service” a packet sent by

source i). Based on Theorems 1 and 2 we have:

Corollary 1: If the set of “jobs” of the shared resource

are schedulable based on Theorem 2 with Di = τimax,Ci =
transi,Ti = ρimin the completion of the job i is guaranteed

before τimax. Hence any sampling-delay sequence is charac-

terized by (3) and consequently stability of all subsystems

connected to network is guaranteed.

This corollary formally verifies the design specification

that the end to end delays must be smaller than τimax. Without

scheduling analysis, one have to rely on extensive testing to

find rare events that may occur and violate the specification.

For complex systems such as the one depicted in Fig. 3 in

which multiple computation and communication resources

are connected in series or parallel, it may be difficult to

verify the scheduling test. Even when the input tasks of a

resource are released periodically (for example the tasks of

ECU 1 in Fig. 3) the period of the output tasks, which can

be input tasks of another resource (for example network 1

in Fig. 3), becomes unknown. Moreover, deadlines of jobs

for each resources are not given and must be chosen such

that the summation of the deadlines are smaller than the

tolerable end to end delay; however, the method to choose

them is not clear. For these reasons, in such cases one may

need more sophisticated, commercial simulation tools for

timing verification such as SymTA/S [10] which is based on

scheduling analysis, symbolic simulation, and optimization.

This tool can also be used for optimizing networks and

identifying bottlenecks.

The parameters determined by scheduling tests and sim-

ulations (e.g., deadlines or worse case time delays of each

shared resource) may be useful not only for system verifica-

tion, but also for the calibration and testing of final products

as well as real-time fault detection. For example, if at the

testing stage a particular network component exceeds the

maximum delay levels used for design, then it should be

identified faulty.

V. EXAMPLE

We consider the example of a motion control system

for sheet control in a printer paper path from [11], [12].

The system consists of several pinches or rollers, driven by

motors, to move papers through the printer. Motor controllers

are implemented on a shared ECU. The position and velocity

measurements are sent to the ECU through a CAN network.

However, the motors are directly connected to the ECU.

Each subsystem (a single motor-roller pair) can be mod-

eled as

ẍs =
nrP

JM + n2JP

u,

where JM = 1.95×105 kg/m2 is the inertia of the motor, JP =
6.5×105 kg/m2 is the inertia of the pinch, rP = 14×10−3 m

is the radius of the pinch, n = 0.2 is the transmission ratio

between motor and pinch, xs is the sheet of paper position

and u is the motor torque. Each subsystem can be presented

with the state-space of the form ẋ = Ax + Buu with

x =

[

xs

ẋs

]

, A =

[

0 1

0 0

]

, Bu =

[

0
nrP

JM+n2JP

]

. (9)

We use the state feedback control K = − [50 1.18] to control

the motors. We assume that for each subsystem ECU needs

0.1 ms to read a measurement packet from its buffer, decode

the data, calculate the control command, and apply it to the

motor. Moreover, we assume that it takes 1ms to transfer a

packet (8 bytes of data on a network with speed 64 kbit/s)

from a sensor to the ECU.

Usually in the control algorithm development process, the

effect of delay caused by the shared network and ECU is

ignored and a sampling time several times faster than what

is required for maintaining stability is chosen. By checking

the condition

eig(
[

I 0
I 0

]

e

[

A B
0 0

]

h
) < 1, B := Bu ×K, (10)

on a tight grid of sampling time h, we can show that the

closed-loop system remains stable for any constant sampling

interval smaller than 48 ms, and becomes unstable for larger

constant sampling intervals. So a designer who follows

traditional design guidelines (and does not consider the effect

of shared communication and computation resources) may

choose the sampling interval equal 12 ms. The main question

at this point is: how many motors can be controlled given

this architecture. The answer to this question depends on the

designer experience and judgment. A conservative designer

would choose n = 6 to guarantee the bus load equal to 50%

and an aggressive designer would choose up to n = 11 so

that the bus load remains under 91.7%.

3388

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

τ m
a

x

ρ
max

Fig. 4. Admissible set of variable sampling-delay sequences for a single
motor-pinch subsystem. The closed-loop remains stable for any sampling
interval and delay sequence that respects the upper bounds in (3) for points
below the graph.

In the following, we illustrate the application of the design

process proposed in this paper to this problem. The closed-

loop subsystems can be modeled as (1) with A,B defined in

(9) and (10). Based on the results presented in Section II-

B, we find the admissible set of sampling-delay sequences

shown in Fig. 4. For consistency with the first approach,

we choose the sampling times constant and equal to 12 ms.

Based on the analysis results depicted in Fig. 4, for this

choice, stability of the subsystems are guaranteed for any

delay sequences smaller than 10 ms. At the scheduling level,

we determine how many subsystems can share the network

and ECU such that the total delay in each loop remains

smaller than 10 ms. To do so, we test the conditions in

Theorem 2 with Ti = 12 ms, Ci = 1 ms, Di = 10−0.1 = 9.9
ms for different values of n. It turns out that the conditions

are satisfied for up to n = 9. This result indicates that 9 pinch-

motor subsystems can share the given architecture while

the stability of all subsystems is guaranteed. Note that for

n = 10,11 the delay can be larger than 10 ms for some corner

cases that may not be easily captured by simulation and

testing (in this system the worse case delay occurs when

all the sensors send data at the same time). By following the

proposed design procedure, we can avoid very conservative

choices (e.g., n=6) or choices that lead to unsafe behavior of

the subsystems by following a formal method.

VI. CONCLUSIONS AND FUTURE WORK

We proposed a method for the analysis of distributed

control systems in which communication and computation

resources are shared. Our method provides correctness and

robustness of the low level control algorithms, models dif-

ferent elements of the system in a unified way, and provides

easy calibration and testing. To achieve these objectives

despite the complexity of these systems, we proposed a three-

step systematic approach.

In the future we would like to integrate our approach with

well-established control design processes in the industry and

the V diagram. This is a crucial step to define control design

processes for FlexRay distributed systems.

In this paper we focused on the analysis of distributed

systems but there are other important open problems related

to the design of such systems. Some of them are as follows:

1) Determining the optimal sampling intervals is not triv-

ial. For stability, faster sampling is desirable. However,

faster sampling means higher traffic in the network and

more load on the ECUs. This may lead to larger end-

to-end delays to the point that delays in connections

become larger than their allowable upper bound.

2) Providing systematic procedures to map functions to

ECUs and to assign ECUs to networks so as to

optimize and balance the loads. Such procedure should

consider the cost of the different options, module

integration, delay jitter, reliability and robustness of

design.

ACKNOWLEDGMENT

The first author would like to thank Chaitnaraine Phagoo

and Jim Lawlis at Ford Motor Company for helpful dis-

cussions. Also the first author would like to acknowledge

the support of John Blankenship, Ming Kuang, and Anthony

Phillips at Ford Motor Company.

The research of the second author was supported by a

grant from the National Science Foundation.

REFERENCES

[1] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “Survey of recent results
in networked control systems,” Proc. of IEEE, vol. 95, no. 1, pp. 138–
162, Jan. 2007.

[2] G. Leen, D. Heffernan, and A. Dunne, “Digital networks in the auto-
motive vehicle,” Computing & Control Engineering Journal, vol. 10,
no. 6, pp. 257–266, Dec. 1999.

[3] N. Navet, Y. Song, F. Simonot-Lion, and C. Wilwert, “Trends in au-
tomotive communication systems,” Proceedings of the IEEE, vol. 93,
no. 6, pp. 1204–1223, June 2005.

[4] A. Phillips, M. Jankovic, and K. Bailey, “Vehicle system controller
design for a hybrid electric vehicle,” in Proceedings of the 2000 IEEE

International Conference on Control Applications., June 2000, pp.
297–302.

[5] R. Makowitz and C. Temple, “Flexray - a communication network for
automotive control systems,” in 2006 IEEE International Workshop on

Factory Communication Systems, June 2006, pp. 207– 212.
[6] P. Naghshtabrizi, “Delay impulsive systems: A framework for mod-

eling networked control systems,” Ph.D. dissertation, University of
California at Santa Barbara, Sep. 2007.

[7] P. Naghshtabrizi, J. P. Hespanha, and A. R. Teel, “On the robust
stability and stabilization of sampled-data systems: A hybrid system
approach,” in Proc. of the 45th Conf. on Decision and Contr., 2006,
pp. 4873–4878.

[8] F. Cottet, J. Delacroix, C. Kaiser, and Z. Mammeri, Scheduling in
real-time systems. Willy, 2002.

[9] Q. Zheng and K. G. Shin, “On the ability of establishing real-time
channels in point-to-point packet-switched networks,” IEEE Trans. on

Communications, vol. 42, no. 2/3/4, pp. 1096–1105, Feb. 1994.
[10] R. Henia, A. Hamann, and M. Jersak, “System level performance

analysis - the SymTA/S approach,” in IEE Proceedings Computer and

Digital Techniques, vol. 2, no. 152, March 2005, pp. 148–166.
[11] B. Bukkems, R. van de Molengraft, M. Heemels, N. van de Wouw,

and M. Steinbuch, “A piecewise linear approach towards sheet control
in a printer paper path,” in Proc. of the 2006 Amer. Contr. Conf., vol. 1,
June 2006, pp. 1315–1320.

[12] M. Cloosterman, N. van de Wouw, W. Heemels, and H. Nijmeijer,
“Robust stability of networked control systems with time-varying
network-induced delays,” in Proc. of the 45th Conf. on Decision and

Contr., Dec. 2006.

3389

