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Summary 
Mathematical models which relate the growth rate of a microorganism to a single 

limiting substrate concentration have long been established. In recent years, it has 
become apparent that, under certain conditions, the growth rate of an organism may 
be simultaneously limited by two or more substrates. Mathematical models of 
double-substrate limitation fall into two categories: interactive and noninteractive 
models. A discussion of both types of models is presented in both conceptual and 
mathematical terms. An analogous case of an enzyme which requires two different 
substrates to produce a single product is presented. This enzyme analog indicates 
that both types of double-substrate limitation models appear to be feasible under 
certain conditions. Based upon stoichiometry and specific growth rate-substrate 
concentration contour plots, a method for determining the operational conditions 
which will lead to double-substrate limitation is presented. 

INTRODUCTION 

Mathematical models which describe the growth rate of a biolog- 
ical population as a function of a single limiting substrate have 
existed, at least since Blackman published his model in 1905.' 
These models provided a necessary theoretical tool which has 
aided in understanding many natural biological systems and in 
developing industrial processes. In recent years it has become 
apparent that the possibility exists that at least some natural or 
industrial biological populations may be simultaneously limited by 
more than one substrate. A new concept has also developed: that 
one substrate may control the rate of growth while another may 
ultimately control the extent of growth. 

From a theoretical viewpoint, it would be desirable to develop a 
general mathematical model which handles all types of double- 
substrate limitation. This becomes rather difficult since two sepa- 
rate schools of thought exist about the nature of growth with two 
limiting substrates, and there is insufficient experimental data to 

* Current address: The Upjohn Company, Unit 1500, Kalamazoo, MI 49001. 

Biotechnology and Bioengineering Vol. XX, Pp. 183-202 (1978) 
@ 1978 John Wiley & Sons, Inc. 0006-3592/78/002@-0183$01 .oO 



I84 BADER 

support either school. In fact, it is doubtful that sufficient experi- 
mental evidence will be developed in the near future. 

The present paper is a follow-up to a previously published 
paper.2 The purpose is to further develop the two types of models 
which may be used for describing double-substrate limited growth. 
Double-substrate limitation is not likely to occur readily in most 
real systems. The conditions under which it is likely to occur are 
discussed in both conceptual and theoretical forms. 

BASIC SINGLE-SUBSTRATE MODELS 

Many different types of single-substrate limited growth models 
exist. The choice of model often depends upon the type of 
organism being studied. For example, light-limited algal growth 
models are slightly different than bacterial models, which in turn 
may be different from zooplankton models. Most models generally 
degenerate to one of three forms which can be represented by the 
M o n ~ d , ~  Blackman,' and exponential kinetic models. These are in 
a dimensionless form: Monod 

Blackman 

exponential 

"= (1 - exp (-0.6931 "}) K' 
CLm 

(3) 

In these models, prn is the maximum specific growth rate of the 
organism, p is the actual specific growth rate of the organism at a 
limiting substrate concentration equal to S1, and K 1  is the half 
velocity constant (equal to the substrate concentration at which the 
organism grows at half its maximum rate). A plot of the three 
models is shown in Figure 1. The dots in Figure 1 represent typical 
experimental results. A similar comparison, using real data, has 
been presented by Dabes et aL4 
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Fig. 1 .  Dimensionless plot of the three basic models for substrate limited growth 
of bacterial cells. Models have been normalized so that p /pm = 0.5 at S J K ,  = 1. 
Circles represent typical expenmental results. 

The Monod model is the most commonly used of the three 
models. It is equivalent to the Michaelis-Menten enzyme kinetic 
model which is covered in many basic biology and chemistry texts. 
The Monod model is also a simple and continuous algebraic 
relationship which lends itself readily to theoretical analysis. Of the 
three models, the Monod model generally represents the worst fit 
to experimental data. As can be seen in Figure 1, it does not 
saturate rapidly enough at higher substrate concentrations. 

The Blackman and exponential models generally give a better fit 
to experimental data; primarily because they both saturate faster 
than the Monod model. Most data fall between the Blackman and 
exponential models as shown in Figure 1. Both of these models are 
not frequently used because of the discontinuity in the Blackman 
model and the exponential term in the exponential model. These 
lead to mathematical complexities which one frequently would 
prefer to avoid. 

An organism that is growing at its maximum rate is said to be 
saturated with substrate, i.e., addition of more substrate would not 
increase its growth rate. Of the three models, only the Blackman 
model truly saturates. Both the Monod and exponential models 
asymptotically approach the maximum growth rate (pIpm = 1). 
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When an organism is growing in an environment in which two of 
its required substrates are present at less than saturating levels, 
double-substrate limitation may occur. Two different philosophies 
have developed concerning the growth rate of the organism under 
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Fig. 2. Plots of lines of constant dimensionless specific growth rate p l h  as a 
function of two dimensionless substrate concentrations for noninteractive models 
using (a) Monod kinetics, (b) exponential kinetics, and (c) Blackman kinetics. Note 
that a dimensionless specific growth rate of p / h  = 1 is only attained with 
Blackman kinetics. 
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this type of condition. These may be classified as interactive and 
noninteractive double-substrate limited growth models. 
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Noninteractive Model 

A noninteractive model basically implies that the growth rate of 
the organism can only be limited by one substrate at a time. 
Therefore, the growth rate of the organism will be equal to the 
lowest growth rate that would be predicted from the separate 
single-substrate models. For the Monod model, this may be written 

Sl s2 _ -  P SllKl 
A n  1 + SlIKl Kl K, 

- _  P - SzIK2 -<- s2 Sl 
I-Lm 1 + S21K2 K2 Kl 

-<- - 

(4) 

Similar equations may be written for Blackman and exponential 
kinetics. Graphs of constant dimensionless growth rate (p/p,,J as a 
function of dimensionless substrate concentrations (S, /K,  and Sz/ 
K, )  are shown for all three types of kinetics in Figure 2. Examples 
of this type of approach may be found in articles by S y k e ~ , ~  
Droop,' and Ryder and Sinclair.' 

The rationale for noninteractive models may be developed using 
the schematic model shown in Figure 3. Consider an organism 
which has two separate subsystems (biochemical pathways) that 
consume different substrates and produce different products which 

'11 F; 
0 
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S d K I  (cl 
Fig. 2. (Continued from previous page . )  
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Fig. 3. Conceptual representation of the noninteractive model. Systems 1 and 2 
operate independently of one another. 
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Fig. 4. Plots of lines of constant dimensionless specific growth rate p / c ~ ,  as a 
function of two dimensionless substrate concentrations for interactive models of the 
McGee-type, (a) Monod, (b) exponential, and (c) Blackman kinetics. 
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Fig. 4. (Continued from previous page.) 

are required for the growth of the organism. If the two subsystems 
do not require intermediates or products from one another, they 
can function independently. If the substrate concentrations S, and 
S, are such that subsystem 1 and 2 are producing their products at 
one-half and one-fourth of their maximum rates, respectively, then 
product 1 would be present in excess and only product 2 would 
limit the growth rate of the organism. The growth rate of the 
organism would be one-fourth its maximum growth rate, or limited 
only by substrate 2. 

Since the general physiological state of an organism depends 
upon the availability of all nutrients, it is unlikely that any two 
cellular subsystems would be totally independent of each other. 
However, the degree of interaction between certain subsystems 
may be rather small. In such cases, a noninteractive-type of model 
may accurately describe the growth rate of the organism. 

Interactive Models 

An interactive model is based upon the assumption that if two 
substrates are present in less than saturating concentrations, then 
both must affect the overall growth rate of the organism. The 
simplest type of interactive model may be constructed by simply 
multiplying two single-substrate limited models together, 
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This particular model was developed by McGee et a1.,* and has 
been subsequently used by Ryder and Sinclair' and Howell and 
Atk in~on.~  Similar equations may be written for the Blackman and 
exponential type of kinetics. Plots of these models are shown in 
Figure 4. 

Two cases which provide a rational basis for the interactive 
model are shown in Figures 5(a) and 5(b). In the first case (5a) a 
cell has a certain number of enzymes present which, in the 
presence of a cofactor (Sz), convert a substrate (S,) to a product 
(PI) which is required for the growth of the cell. If the external 
substrate (S,) and cofactor (S,) concentrations are both at half 
velocity levels, then only one-half of the total enzyme would be 
active, and the active enzyme would be producing product at one- 
half its maximum rate. The overall rate of P, production and the 
growth rate of the cell would be one-fourth the maximum possible 
rate. This agrees with the prediction of the McGee-type model. 

In the second case (Fig. 5(b)) two substrates (S, and S,), or their 
derivatives, are required to produce a single product (PI ) ,  which is 
required for the growth of the cell. This is probably the most 
common type of interaction between substrates which are required 
for the anabolic functions of the organism. The relationship be- 
tween the product production rate and the two substrate concen- 

(b) 

Fig. 5 .  Conceptual representation of the interactive model. (a) S, is converted to 
P ,  by an enzyme which requires Sz as a cofactor. (b) Substrates S, and S, from two 
p d e l  pathways are combined by an enzyme ET to produce a product P I  which is 
required for growth. 
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trations is not readily self-evident for this system. However, it can 
be derived from basic enzyme kinetics. 

TWO-SUBSTRATE ENZYME MODEL 

Consider the system shown in Figure 6 where we have a single 
enzyme which must pick up two different substrates to combine 
them into a single product. In theory, this can happen by either 
route 1 or route 2 depending upon which substrate complexes with 
the enzyme first. It should be recognized that it is possible that 
only one route may actually occur owing to allosteric properties of 
the enzyme. Three possible cases exist for this system: only route 
1 operates, only route 2 operates, and both routes operate. The 
first two cases are rather simple and are shown in Appendix I. 

By the analogy shown in the bottom of Appendix I, we can use 
the result from the single route enzyme system to describe the 
growth rate of the organism. Equations (19) and (20) (Appendix 1) 
are similar in form to the McGee model (eq. (5)) and are identical 
to the McGee model if a’, or a” is equal to one. A dimensionless 
plot of the single route equations for a dimensionless growth rate 
(k/p,J equal to 0.5 and for various values of a is shown in Figure 7. 

The analysis of the system, where both routes are acting 
simultaneously, is shown in Appendix 11. There are nine separate 
rate constants for this system for which values must be set. The 
single route analysis has produced relationships for the half veloc- 
ity constants if either route dominates. If the half velocity con- 
stants for single-substrate limited growth are known for both 

(Route 1 )  (Route 2 )  

E +s, E+S, 

P, + E  

Two-substrate enzyme reactions. Substrates S, and S2 are combined to 
form a single product P,. This set of reactions are analyzed in Appendices I and 11. 

Fig. 6. 
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Fig. 7. Plot of the single route-double-substrate enzyme equations shown in 

Appendix I .  Lines of ~ I c L ,  = 0.5 are plotted as a function of dimensionless substrate 
concentration for different values of a. McGee model is equivalent to (Y = I .  Dashed 
line is the noninteractive model using Monod kinetics. 

substrates, then these can b e  used to evaluate some of the 
individual rate constants: 

k, = k , /K ' ,  

Note that k ,  may have any value as it drops out when analyzing for 
the dimensionless growth rate (pIpm). There are now four rate 
constants (k2, k4, k7, k,) which must be assigned values. A relative 
handle may be obtained for these by looking at the equilibrium 
relationships for each of the reactions: 

All of the rate constants can be evaluated by specifying values for 
Xi-X4. Values of X greater than one indicate a forward reaction 
equilibrium and values less than one indicate a reverse reaction 
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equilibrium. A computer solution of eqs. (21)-(24) has been con- 
ducted where values of X were limited to 10 (forward reaction 
equilibrium) and 0.1 (reverse reaction equilibrium). Since we have 
four X’s, all possible combinations of two values for the four X ’ s  
give us 16 separate solutions for a given value of dimensionless 
holding time which was specified as pip,,, = 0.5. 

The results of the computer solution are shown in Figure 8. Only 
five of the 16 curves are shown as the remaining curves are either 
identical or very similar to those that are shown. Curves of type A 
and B in Figure 8 are rather close approximations to the noninter- 
active model discussed earlier. These curves occur when the 
equilibrium of both reactions (2) and (4) (i.e., X ,  and X,) have a 
forward reaction equilibrium. Curve E shows the highest level of 
involvement of both substrates in the overall operating rate of the 
system. This curve occurs when both reactions (2) and (4) have a 
reverse reaction equilibrium. Curves C and D are intermediate 
cases which result when either reaction (2) or (4) has a forward 
equilibrium, while the other has a reverse equilibrium. Curve D is 
identical to the prediction of the McGee model. 

The two-substrate enzyme system indicates that a range in the 
level of interaction between the two substrates may occur, depend- 
ing upon the relative values of the particular rate constants for the 
system. It does not invalidate the potential use of either the 
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Fig. 8. Results of the double-substrate enzyme model (Fig. 6) shown in 
Appendix I1 where both routes are operating. All curves are for p / h  = 0.5. See 
text for explanation of the different curves. 
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noninteractive or the interactive model (eqs. (4) and (5 ) )  in describ- 
ing such systems. Rather, the two-substrate enzyme system indi- 
cates that a unique model, which would describe all cases of two- 
substrate limited growth, is not likely to exist. Each case of double- 
substrate limitation may exert slightly different behavior. Since 
good experimental evidence is not available for double-substrate 
limited growth systems, the most convenient kinetic model is 
probably the best initial choice. 

CONDITIONS FOR DOUBLE-SUBSTRATE LIMITATION 

The general differential equations which describe a cell popula- 
tion (b,) which is growing on two potentially limiting substrates 
may be written in a general form as follows: 

Sf, - s2 -- ds2 - - --f(Sl, cLm S2)b, + 8 
d t  YZ 

(9) 

wheref(S,, S 2 )  is the relationship between the growth rate and the 
two substrate concentrations, 0 is the holding time for the system 
(hr), Yl and Y2 are the yield coefficients for substrate S, and S,, 
respectively (cells/g substrate), and S ,  and S, are the feed concen- 
trations of the two substrates (dliter). 

At steady state, the concentration of organisms is given by: 

g1 = Yl(Sf1 - 3 , )  = Y2(Sf2 - 3,)  (10) 

where the tilde represents steady-state values. Equation (10) is a 
stoichiometric relationship. This equation may be rearranged in 
terms of dimensionless substrate concentrations as follows: 

If we let: 

af = S f l / K l  

Pf = Sf2/K2 

(Y = $ / K ,  

b = s2 /K2  
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then clearly 

I95 

which defines a dimensionless stoichiometric line which relates the 
steady-state values of the substrates. 

For the growth rate of an organism to be able to switch between 
which substrate is controlling, or to have both substrates control- 
ling simultaneously, the stoichiometric line must intersect the 
transition line, a! = P ,  as shown in Figure 9. (Lines of constant 
specific growth rate CLIII, may be plotted on this figure for any of 
the six kinetic models discussed, similar to Figs. 2 and 4.) The 
point of intersection (aI) may be obtained by setting aI = & = P in 
the stoichiometric equation and solving: 

Note that aI must equal P I .  The value a2 can exist in the positive 
region only if the numerator and denominator of eq. (13) are both 

LI 

Fig. 9. Representative figure showing the general feed conditions required 
(shaded area) for simultaneous limitation by two substrates. Above the transition 
line, dimensionless substrate a is limiting. Below the transition line, dimensionless 
substrate p is limiting. Both may affect the growth rate in the region of the transition 
line. 
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positive or negative. Since the designation of which substrate is S, 
and S, is arbitrary, the selection may be made so that Y,K,  > Y&. 
Thus, if the substrate with the greater value for Y,K,  is chosen as 
S ,  , then both numerator and denominator in eq. (13) must be 
positive for the intersection point to fall in the positive region. 

From eq. (13) and from Figure 9, it becomes apparent that for an 
intersection to occur in the positive region, the following inequality 
must be satisfied: 

Y,K,IY,K, > Pflef’ 1 (14) 

This is in agreement with the requirements posed by Sykes,’ and is 
shown in Figure 9 as the shaded region. The region which satisfies 
inequality (14) is quite large and tends to indicate that both double- 
substrate limitation and a switch between limiting substrates is 
quite common. However, it should be recognized that inequality 
(14) only holds for kinetics models, such as the Monod and 
exponential models, which approach saturation (pip, = 1) asymp- 
totically. The Blackman model would impose the additional limita- 
tion that the intersection with the CY = /3 transition line must fall in 
the region 0 < aI < 2. Outside this region, neither substrate is 
limiting and p/pm = 1. 

Operational Limitations on Double-Substrate Limited Growth 
From an operational or practical standpoint, certain limitations 

on the region where double-substrate limitation may occur should 
be imposed. These may be listed as: 

1) There is a maximum level in the cell population, b,,, , which 
can occur, above which crowding and stalling effects will cause a 
breakdown in theory. 

2) There is a minimum level in the cell population, bmin, below 
which the population is both insignificant and difficult to measure 
with accuracy. 

3) For continuous systems there is an upper limit to the dimen- 
sionless growth rate (p/pm)max above which the system approaches 
the critical dilution rate and becomes unstable to work with. For 
batch systems, above some value of (p/pm)max the organisms are 
basically not seriously limited by either substrate. 

4) Below some minimum value, ( p / ~ ~ ) , ~ ~ ,  maintenance effects 
start to dominate, the yield coefficients are no longer constant, and 
the theory breaks down. 

The third limitation is rather significant. It takes into account the 
fact that above certain values of dimensionless substrate concen- 
tration, the organisms are actually growing at their maximum rates; 
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even though kinetic models such as the Monod and exponential 
claim that they are not. If the stoichiometric line intersects the cy = 
/3 transition line above the (pIpm),a, value, then only one substrate 
would ever truly limit the growth rate. 

By inserting each of the four limitations into the stoichiometric 
equation, four separate linear relationships can be developed which 
form a boundary around the region where double-substrate limita- 
tion can reasonably occur. These lines are plotted in Figure 10. 
With the four operational limitations, the following inequalities 
must hold for double-substrate limitations to be feasible: 

(15) “I  + &ax IYzKz > Pf > bmin I YzKz + 

/ 
/ 

a 

Fig. 10. Representative figure showing the operational limits on the region of 
feed substrate concentrations (af, pf) where double-substrate limitation is likely to 
occur and be significant. See text for explanation. 
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where at may be any point of intersection between at, and a4 
which are the limits imposed by the limitations of (p/p,),i, and 
(~/h),, ,~~, respectively. The relationships between at and the 
dimensionless specific growth rate for the six models that were 
discussed earlier are given in Appendix 111. 

DISCUSSION 

The region that is mapped out in Figure 10 represents the 
acceptable values of af and pf which will lead to double-substrate 
limitation. That is, if af and pf fall within the outlined region, then 
either or both substrates may control the growth rate of the 
organisms. In the case of a batch growth curve, the system would 
start out at a set of initial substrate concentrations af and pf which 
are within the region. As the cell population grows, the substrate 
concentrations (a and p) will begin to drop, following the stoichio- 
metric line for the particular system. Eventually it will intersect the 
abscissa, and no further growth will occur. Above the transition 
line, the growth rate will primarily be controlled by the a substrate 
concentration. Near the transition line both substrates will affect 
the growth rate. Below the transition line, the growth rate will 
primarily be controlled by the p substrate concentration. The 
ultimate extent of growth would be dependent upon the p sub- 
strate, whereas the initial growth rate would be controlled by the a 
substrate. Similar types of behavior would occur for continuous 
cultures. 

Some estimations of the size of the double-substrate limitation 
region can be ascertained by determining the width ( A q )  and the 
height (Apf) of the region (see Fig. 10). Values for these parameters 
may be determined from: 

as long as we are not too close to the ends of the region. These 
values may be useful in determining whether double-substrate 
limitation is likely to occur in a system. Appendix IV contains 
estimates of Aaf and A& for two different cases of double-substrate 
limited growth. 
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By comparing the width and height of the double-substrate 
limiting region to the initial concentrations of substrate which 
would be required, a qualitative feel for the relative possibility of 
operating within this region may be obtained. In the cases shown in 
Appendix IV, it is much more likely that double-substrate limita- 
tion would occur in case I (glucose-riboflavin system) than in case 
I1 (glucose-ammonia system). 

CONCLUSIONS 

The analyses which have been presented deal primarily with 
systems where both potentially limiting substrates are present in a 
single liquid phase. For growth systems, where one limiting nu- 
trient is supplied independently from the other, the possibility of 
producing double-substrate limitation would be increased. 

Two different philosophies exist as to the nature of growth with 
two limiting substrates. Both interactive and noninteractive sub- 
strate limitation would appear to be reasonable approaches. It is 
expected that both types exist for certain different types of 
substrates. A simple and unique kinetic model which handles all 
types of two-substrate limited growth does not appear to exist. 

A method for determining the operational region where double- 
substrate limitation may occur has been presented. This method 
may be useful in choosing a microbial-substrate system for study- 
ing double-substrate limitation and in analyzing whether two par- 
ticular substrates are likely to simultaneously limit growth in 
industrial processes and natural ecosystems. 

APPENDIX I: SINGLE ROUTE, TWO-SUBSTRATE, ENZYME MODEL 

Route 1 only: 

where K ' ,  = k,/k, is the half velocity constant for S,; K ,  = (k4 + kJk ,  is the half 
velocity constant for S,, and a' = k,/k,. 

Route 2 only: 

(20) 

where K, = (k5 + kJk ,  is the half velocity constant for S , ;  K', = kJk6 is the half 
velocity constant for S,, and a" = k,/k,. 

dP, - _  - k5ETSLS2 
dt a'K',K, + K',S, + S,K, + S,S, 
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Note.  By analogy 

BADER 

dP, 1 CL 
dt k5G-L 

APPENDIX 11: TWO ROUTES ACTING SIMULTANEOUSLY 

k+k5+kS 
kj 4 =  

By analogy 

APPENDIX III: RELATIONSHIPS BETWEEN INTERSECTS AND SPECIFIC 
GROWTH RATE LIMITATIONS 

Noninteractive Models 

Monod Exponential Blackman 
1 1 

a, =-In----- 
0.6931 1 - 

Interactive Models 

= 2I-dl.h 
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APPENDIX IV: ESTIMATES OF THE SIZE OF A DOUBLE-SUBSTRATE 
LIMITED OPERATING REGION 

Assume: 

(x) = 0.9 
max 

b,,, = lo'* celUliter bmin = los celuiter 

Case 1, data from McGee et d." 

S, = riboflavin (a) Y, = 4.67 x 1016cells/g 

S, = glucose @) & = 8.7 x gfliter Y, = 4.03 x 10" cells/g 

K ,  = 9.37 x IO-'giliter 

K ,  Y, = 4.376 x 10'ocells/liter K2 Y, = 3.506 x 108cells/liter 

K ,  Y1/K2Y,  =' 124.81 

Interactive 
Monod 

Noninteractive 
Blackman 

0.463 
18.487 
17.883 

2232 
1.942 giliter 

1.68 x W5 giliter 

0.20 
1.80 
1.587 

198 
1.487 X IO-'giliter 

0.172 giliter 

Note that to produce 10l2 celldliter would require roughly 2.14 x 
riboflavin (S,) and 2.48 giliter glucose (S,). 

giliter 

Case II 
S, = ammonia (a) K,  = 1 x gfliter Y, = 4.03 x 10'2cells/g 

S, = glucose @) Y, = 4.03 x 10" cells/g K2 = 8.7 x lo-* giliter 

K ,  Y, = 4.03 X lo9 celljliter K2 Y2 = 3.506 X 10" celllliter 

K,Y,/&Y2 = 11.494 

Model 
Interactive 

Monod 

a11 0.463 
18.487 

Aff, 16.456 
Ml 1.65 X lo-' glliter 
ABf 189.14 
MZ 0.1646 @liter 

Noninteractive 
Blackman 

0.2 
1.80 
1.461 

1 .461  x ~ ~ g i l i t e r  
16.79 

0.0146 @liter 

To produce 10" celldliter would require roughly 0.248 giliter ammonia (S,) and 2.48 
@liter glucose (S2). 
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Nomenclature 
bacterial concentration 
free enzyme concentration 
total enzyme concentration, all forms 
enzyme-Sj complex concentration 
rate constants 
half velocity constants for substrate i 
product concentration 
substrate concentration 
time 
equilibrium constant for reaction i in Figure 6 
yield coefficient for substrate i 
single route-two-substrate enzyme model constants defined in Ap- 

dimensionless substrate concentrations, SIK 
holding time for continuous culture 
specific and maximum specific growth rates of organisms, hr-' 

pendix I 

feed concentration 
tilde; steady-state values 
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