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The present work studies the trends in drought in northern Algeria. This region was marked by a severe,
wide-ranging and persistent drought due to its extraordinary rainfall deficit. In this study, drought classes
are identified using SPI (standardized precipitation index) values. A Markovian approach is adopted
to discern the probabilistic behaviour of the time series of the drought. Thus, a transition probability
matrix is constructed from drought distribution maps. The trends in changes in drought types and the
distribution area are analyzed. The results show that the probability of class severe/extreme drought
increases considerably rising from the probability of 0.2650 in 2005 to a stable probability of 0.5756 in
2041.

1. Introduction

Global warming and climate change refer to an in-
crease in average global temperatures, which causes
a change in the amount and pattern of precipita-
tion and consequently facilitates the installation of
the drought. The increase in the GHGs (greenhouse
gases) is an underlying cause of the global warming.
Indeed, the increased amount of gases which absorb
heat, has directly lead to more heat being retained
in the atmosphere and thus an increase in global
average surface temperatures.

Drought is an extreme recurrent climatic event
characterized by lower than normal precipita-
tion. Although it occurs in all climatic zones, its
characteristics vary significantly from one region
to another. Drought conditions can have critical
environmental and economical impacts, especially
in areas with high water demand and intensive
agricultural activity.

In Algeria, the coincidence of an annual rainfall
minimum with a maximum in evapotranspiration,

due to the high temperatures in summer, leads to a
depletion of the water reserves available for plants
and the onset of many mechanisms of adaptation
designed to combat this type of situation (water
stress). This circumstance may also aggravate the
effects of other environmental problems typical of
the region, such as the intensity and frequency of
forest fires (Alexandrian et al. 1999) and processes
deriving from soil degradation and loss (De Luis
et al. 2000).

In this context, studies analyzing the intensity
and frequency of dry spells are necessary in regions
such as the one studied here, where water resources
are scarce and ecosystems show greater sensitiv-
ity to water availability. Therefore, it is important
to develop prediction tools, including probabilistic
ones, which may support timely implementation of
preparedness and mitigation measures. In recent
years, many statistical studies have been conducted
to evaluate drought by analyzing the occurrence or
nonoccurrence of rainfall (e.g., Moon et al. 1994;
Mehrotra and Sharma 2005; Mehrotra et al. 2006;
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Lazri et al. 2007; Yoo et al. 2012), but fewer studies
have been conducted to evaluate drought change
trend in future and the spatiotemporal evolution
of drought. In addition, the use of remote sensing
technology from satellite imagery allows improving
the identification, inventory, mapping, and classifi-
cation of land wetlands and increased spatial cov-
erage. The SPI (standardized precipitation index)
developed by McKee et al. (1993, 1995) is widely
used for the identification of drought events and
to evaluate its severity (e.g., Moreira et al. 2006,
2008; Cancelliere et al. 2007).

Among the different probabilistic approaches,
Markov chain models are a frequent choice in the
published literature (e.g., Paulo and Pereira 2007;
Chattopadhyay et al. 2012). For example, Gabriel
and Neumann (1962) used a first-order stationary
Markov chain. The models have since been exten-
ded to allow for nonstationarity, both by fitting
separate chains to different periods of the year
and by fitting continuous curves to the transition
probabilities (Stern and Coe 1984). The order of
Markov chain required has also been discussed
extensively (Chin 1977), with the obvious conclu-
sion that different sites require different orders.
The dominant trend over the years has been the
increase in the number of states to improve the
performance of Markov model (e.g., Srikanthan
and McMahon 2001). For example, Lennartsson
et al. (2008) modelled precipitation in Sweden
using multiple step Markov chains. It is shown
that a Markov chain of an order higher than one
is required. The derived models are used to com-
pute different weather indices. The distribution of
the modelled indices and the empirical ones show
good agreement, which supports the choice of the

model. Paulo and Pereira (2007) applied Markov
chains with four states to predict the SPI drought
class transitions using both the homogeneous and
nonhomogeneous formulations. The results of the
application of the Markov models show the useful-
ness of adopting a nonhomogeneous formulation,
which allows to differentiate predictions in relation
to the initial month considered, thus understanding
the probable evolution of a drought as influenced
by the climate and, in particular, the seasonality
of rainfall.

The main reason for the use of Markov model is
that, in probability theory and statistics, a Markov
process can be thought of as ‘memoryless’: loosely
speaking, a process satisfies the Markov property
if one can make predictions for the future of the
process based solely on its present state just as
well as one could know the process’s full history
(Gabriel and Neuman 1962; Caskey 1963; Weiss
1964).

Thus, a Markov process is suitable for drought
analysis and simulation of its dynamic change. The
overall objective of this study is to analyze drought
characteristics in northern Algeria, based on the
variability of the amount of precipitation mea-
sured from satellite imagery. Four states describing
the drought intensity to analyze drought distribu-
tion areas during 2005–2012, namely no drought,
mild drought, moderate drought, severe/extreme
drought are identified according SPI values and
used in this study.

The structure of this paper is as follows: the
underlying datasets and methods are introduced in
section 2. Section 3 gives a procedure of the appli-
cation of the model and results. The paper is closed
with some conclusions in section 4.

Figure 1. Study area.
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Table 1. Drought classes and corresponding SPI
values.

Drought category SPI values

No drought ≥ 0

Mild drought 0 to −0.99

Moderate drought −1.00 to −1.49

Severe/extreme drought ≤ −1.5

2. Data and methods

2.1 Study area and data

Algeria is located in North Africa and it forms,
with Morocco and Tunisia, the southern edge of
the Mediterranean. It covers a surface of 2381,740
km2, and is characterized by a well marked physical
and climatic contrast between the north and south
regions. It should be noted, however, that 75% of
this expanse is a desert zone. The north of the
country (figure 1) is characterized by a Mediter-
ranean climate where the understanding and
management of water is important. This area
lies between the 30th and 37th parallels north.
Majority of the population lives in this large zone
(582,320 km2).

The distribution of precipitation is very hetero-
geneous. In fact, precipitation varies generally
according to the relief and the distance from
the sea. Average annual precipitation is 600 mm.
The areas which receive most rains are: the
massif of Djurdjura and the massif of Edough,
where the quantities of rain recorded exceed 1500
mm per year. From a temporal point of view,
the annual precipitation cycle is very heteroge-
neous, with most rain falling between October and
March. The summer is dry and lasts from May to
September, when only some rare local storms are
observed.

Annual precipitation maps from meteorological
satellite data were calculated using the ‘Convec-
tive/Stratiform Rain Area Delineation Technique
(CS-RADT)’ developed by Lazri et al. (2013) for
2005–2010 period. Rainfall estimates are validated
by a network of about 219 rain gauges and radar
precipitation (Lazri et al. 2013). It should be
noted that the use of satellite data is to cover the
entire northern part of Algeria unlike traditional
data.

The satellite rainfall retrieval technique uses
data from new European GEO satellite system
based on the enhanced information content on opti-
cal and microphysical cloud properties provided
by SEVIRI radiometer (Spinning Enhanced Visible
and Infrared Imager) on Meteosat Second Gener-
ation (MSG). It relies on the conceptual model
that precipitating clouds are characterized by a

combination of particles that are large enough to
fall, an adequate vertical extension, and the exis-
tence of ice particles in the upper part of the cloud.
In other words, it is based on various spectral
parameters of SEVIRI that express microphysical
and optical cloud properties, which permit to dis-
tinguish between stratiform and convective clouds
on the one hand and on the other hand, to estimate
rainfall. The basic assumption is based on the rela-
tionship between infrared brightness temperature
(BT) and convectively dominated precipitation
areas, as well as the relationship between infor-
mation about cloud properties and the stratiform
precipitation areas, which became possible by the
enhanced spectral resolution of the new generation
GEO satellites.

MSG is a new series of European geostationary
satellites that is operated by EUMETSAT. The
first MSG Meteosat-8 is a spinning stabilized satel-
lite that carries the 12-channel SEVIRI instrument
with three channels at visible and near-infrared
wavelengths between 0.6 and 1.6 µm, eight chan-
nels at infrared wavelengths between 3.8 and 14
µm, and one high-resolution visible channel. The
nadir spatial resolution of SEVIRI is 1× 1 km2 for
the broadband high-resolution channel and 3 × 3
km2 for the other channels. Over northern Alge-
ria, the satellite viewing zenith angle of SEVIRI
is about 45◦, and as a consequence, the spatial
resolution is reduced to about 4× 5 km2.

On annual precipitation maps over northern
Algeria, drought categories are classified according
to SPI values (table 1). The SPI values were
calculated based on 12-monthly rainfall values. The
time scale of 12 months was selected as a medium
length scale often used in drought studies, but any
other scale could be used.

Thus, drought categories are divided into no
drought, mild drought, moderate drought, severe
drought and extreme drought areas using the
respective thresholds of SPI proposed by McKee
et al. (1993) and Paulo and Pereira (2007).

The SPI is widely used as an indicator of
drought, because it has several advantages (Hayes
et al. 1999). First, SPI is based on rainfall alone,
so that drought assessment is possible even if other
hydrometeorological measurements are not avail-
able. Second, it has a variable time scale and is
thus conducive to describing drought conditions
for a range of meteorological, hydrological, and
agricultural applications. Third, its standardiza-
tion ensures that the frequencies of extreme events
at any location at any time scale are consistent.

Drought categories distribution area in northern
Algeria (unit: km2) are given in table 2 and corre-
sponding distribution maps are depicted in figure 2
for six times (N) 2005, 2006, 2007, 2008, 2009, and
2010.
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Table 2. Drought categories distribution area in northern Algeria.

No drought Mild drought Moderate Severe/extreme Total land area

Year (%) (%) drought (%) drought (%) 100% (km2)

2005 26 37 21 16 582320

2006 25 38 16 21 582320

2007 24 34 18 24 582320

2008 23 33 20 24 582320

2009 24 30 17 29 582320

2010 23 29 16 32 582320

Figure 2. Drought categories distribution maps.
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Table 3. Drought type area transition matrix.

2006

No Mild Moderate Severe /extreme

2005 drought drought drought drought Area total

No drought 119487 32983 1784 112 154366

Mild drought 16096 169890 22655 6961 215602

Moderate drought 6738 10842 60601 44908 123089

Severe/extreme drought 4443 4996 6459 73365 89263

Area total 146764 218711 91499 125346 582320

Using drought categories distribution area
(table 2), drought type area transition matrices
have been determined for each transition of a year
to another. As an illustration, transition matrix
from 2005 to 2006 is given in table 3.

2.2 Methodology

Droughts can be treated as stochastic events due
to the random character of their contributing
factors, and their probabilistic characterization is
extremely helpful in water resources management.
Advance warning and knowledge about the future
evolution of a drought event can help to mitigate its
consequences. In this context, the Markov model is
used to analyze changes and trends in drought in
the future in northern Algeria.

2.2.1 Markov model

(i) Markov chain: Markov chains are stochas-
tic processes that can be parameterized by
empirically estimating transition probabilities
between discrete states in the observed systems
(Çinlar 1975).

A Markov chain is characterized by a set
of states, S={S1, S1, . . . , Sr}, and by the tran-
sition probability, Pij , between states. The
Markov chain of the first order is one for which
each subsequent state depends only on the
immediately preceding one.

The transition probability Pij is the proba-
bility that the Markov chain is at the next time
point in state j, given that it is at the present
time point in state i. The process can remain
in the state it is in, and this occurs with prob-
ability Pii. An initial probability distribution,
defined as Q(0), specifies the starting state.

(ii) Transition probability matrix: In general,
for a Markov chain with n states, there will be
n × n transitions between two successive time
instances. It is then possible to find the number
of transition probabilities, Pij from a state at
time t to another state at time t + 1. Pij can

be arranged in sequence to give the following
transition probability matrix:

P =

⎡

⎢

⎣

P00P01 ... ..P0n

P10P11 ... .. P1n

... ... ...
Pn1Pn2 ... .. Pnn

⎤

⎥

⎦
(1)

where Pij is the transition probability of state
i to state j.

According to Markov stochastic process the-
ory, the probability matrix in the initial state
can be used to calculate the state transition
probabilities given from the initial state to the
nth state and even a stable state. The formula
of the nth state Markov transition probability
was as follows:

P
(n)
ij =

m−1
∑

k=0

P
(n−1)
ik P

(n−1)
kj (2)

where m is the number of rows or columns of
the transition probability matrix, and the nth
transition probability matrix is equivalent to
the nth power of the first transition probability
matrix.

To use Markov model, four assumptions
should be supposed:

• The drought process is described by state
space S={S0, S1, S2} ; this is a Markov chain
with finite state space.

• The evolution of phenomenon is random: it
is a stochastic process.

• The future depends only on the present; it
verifies the Markov property (no memory):
this is a Markov chain.

• Possible developments of the process do not
depend on time, the system verifies the
homogeneity property: this is a homogeneous
Markov chain.

(iii) Markov estimation: According to the the-
ory of Markov stochastic process, the use of
the initial probability distribution vector Q (0)
and the transition probability matrix M per-
mit to calculate the drought distribution area
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in northern Algeria in the future. The Markov
simulation model Q (n) is as follows:

Q (n) = M (1)Q (n− 1) = M (n)Q (0) . (3)

3. Procedure and results

The Markov model is applied to drought categories
distribution maps. To do this, the initial state and
transition probability matrix are determined.

3.1 The initial state and the transition
probability matrix

The first step is the determination of the initial
state matrix. As mentioned previously, the drought
classes are divided into a set of states evolving
mutually. Thus, the building of the initial state
matrix with the areas of each drought category for
2005 is as follows (unit: km2):

S (0)=

⎡

⎢

⎣

154366
215602
123089
89263

⎤

⎥

⎦
=

⎡

⎢

⎣

No drought
Mild drought

Moderate drought
Severe/extreme drought

⎤

⎥

⎦

(4)

The second step is to determine the transition
probability matrix. From table 2, the drought type
transition probability matrix can be calculated
for each transition from a year to another year.
Then, average transition probability matrix is also
calculated. In table 4, the transition probability
matrix from 2005 to 2006 is presented and the
average transition probability matrix of all these

transitions 2005–2006, 2006–2007, 2007–2008,
2008–2009, and 2009–2010 is given in table 5.

According to the analysis of the transition
probability matrix, it is observed that a state
‘severe/extreme drought’ would follow a state
‘severe/extreme drought’ with a probability of
0.893, which is very high in comparison to other
transitions.

States ‘no drought’, ‘mild drought’, and ‘moder-
ate drought’ follow state ‘no drought’ with a proba-
bility of 0.770, 0.211, and 0.016, respectively. After
a state ‘moderate drought’, the chance of a state
‘moderate drought’ would be high in comparison
to other states with a probability of 0.502, and fol-
lows state ‘severe/extreme drought’ with a prob-
ability of 0.386, which is important compared to
probabilities of transition to states ‘no drought’
and ‘mild drought’. State ‘mild drought’ is more
likely to pass to state ‘mild drought’ and ‘moderate
drought’ with a probability of 0.769 and 0.122,
respectively. Therefore, this analysis shows that the
trend to pass to driest states is dominant.

3.2 Evolution trends simulation

In this section, the future drought distribution
area in northern Algeria of change trend is esti-
mated using equation (3). The simulation results
are depicted in figure 3 and corresponding values
are presented in table 6.

In table 6, the results indicated that the distri-
bution area of no drought, mild drought, moder-
ate drought, and severe/extreme drought will be
in a stable state after 2041. The results show that
the probability of class severe/extreme drought
increases considerably rising from the probability

Table 4. Transition probability matrix from 2005 to 2006.

2006

No Mild Moderate Severe/extreme

2005 drought drought drought drought

No drought 0.774 0.214 0.011 0.001

Mild drought 0.075 0.788 0.105 0.032

Moderate drought 0.055 0.088 0.492 0.365

Severe/extreme drought 0.050 0.056 0.072 0.882

Table 5. Average transition probability matrix.

No Mild Moderate Severe/extreme

drought drought drought drought

No drought 0.770 0.211 0.016 0.003

Mild drought 0.061 0.769 0.122 0.048

Moderate drought 0.050 0.062 0.502 0.386

Severe/extreme drought 0.010 0.022 0.075 0.893
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Figure 3. Evolution of probability distribution.

Table 6. Drought distribution area value estimated by using Markov chains.

No drought Mild drought Moderate drought Severe/extreme drought

Year Probability Area (km2) Probability Area (km2) Probability Area (km2) Probability Area (km2)

2011 0.1588 92472 0.2767 161128 0.1376 80127 0.4268 248593

2012 0.1501 87406 0.2642 153849 0.1374 80011 0.4482 261054

2015 0.1318 76750 0.2354 137078 0.1369 79719 0.4959 288773

2020 0.1160 67549 0.2083 121297 0.1362 79311 0.5395 314163

2030 0.1058 61609 0.1902 110757 0.1356 78962 0.5684 330992

2040 0.1038 60445 0.1865 108602 0.1355 78904 0.5743 334369

2041 0.1033 60157 0.1856 108078 0.1355 78904 0.5756 335181

2042 0.1033 60157 0.1856 108078 0.1355 78904 0.5756 335181

2045 0.1033 60157 0.1856 108078 0.1355 78904 0.5756 335181

2050 0.1033 60157 0.1856 108078 0.1355 78904 0.5756 335181

2055 0.1033 60157 0.1856 108078 0.1355 78904 0.5756 335181

→ ∞ 0.1033 60157 0.1856 108078 0.1355 78904 0.5756 335181

of 0.2650 in 2005 to a stable probability of 0.5756
in 2041.

3.3 Validation of Markov simulation model

To validate Markov model, a comparison is car-
ried out between the simulated and actual values
of drought area in 2011 and 2012. For each year,
the value of the chi-square (χ2) statistic is com-
puted based on the null hypothesis H0. The method
of computing the χ2 for testing serial indepen-
dence against Markovian property is extensively
discussed in Wilks (2006). In the present study, the
degrees of freedom would be 3 (4 categories –1).
At this degree of freedom, the critical value in the
test (0.05) is 7.82. The null hypothesis is rejected
whenever the computed χ2 exceeds the critical
value (7.82). Otherwise, the model is considered
plausible.

The test of χ2
(0.05) was applied between both val-

ues (estimated and actual) to evaluate the 95% sig-
nificance of the results and thus to determine if
the model is applicable or not. Test results have
been calculated with equation (5) and are given in
table 7 with actual values and estimated values for
the years 2011 and 2012:

χ2
(0.05) =

4
∑

i=1

(AVi − EVi)
2

EVi

(5)

where EVi and AVi are the values estimated by the
model and the actual values, respectively.

The values of the χ2
(0.05) test are lower than

7.82 for the two years (2011 and 2012), indicating
that the estimated areas and the actual areas are
almost identical. These results validate the Markov
model which is used for modelling the chronological
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Table 7. Estimated model χ2
(0.05) test using the drought distribution area in 2011 and 2012.

2011 2012

Actual Estimated Absolute Actual Estimated Absolute

values (km2) values (km2) error (km2) values (km2) values (km2) error (km2)

No drought 92508 92472 36 87452 87406 46

Mild drought 161174 161128 46 153894 153849 45

Moderate drought 80102 80127 25 79990 80011 21

Severe/extreme drought 248536 248593 57 260984 261054 70

χ
2
(0.05) test 0.048 0.062

Figure 4. Maps of estimated and actual drought.

behaviour drought with four states. Therefore, the
estimation of the evolution of drought distribution
in the study area presented previously is plausible.

Also, in order to examine the spatial distribution
that is important, maps of simulated and actual

drought are constructed. The estimated droughts
are performed at the resolution of SEVIRI pixel
for spatial comparison. A pixel is simulated from
probability vector of its previous state with prob-
ability matrix using Markov theorem (equation 3).
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The pixel is assigned to one category (no drought,
mild drought, moderate drought or severe/extreme
drought) according to the probability vector result.
Indeed, this pixel is assigned to a category whose
probability is the largest. The results of simulated
and actual drought for years 2011 and 2012 are
given in figure 4. The map of simulated drought of
the year 2041 is also constructed (figure 4).

Visibly, for the years 2011 and 2012, the map
of estimated drought is similar to that of actual
drought, in agreement with the comparison statis-
tics found previously. Indeed, locations and magni-
tudes of local drought maxima in estimated maps
coincide with those of actual maps. Even though
this drought distribution is reproduced well, a sig-
nificant overestimation of drought is evident across
the study area. On the simulated map of the
year 2041, it is shown that the severe drought
category has reached more than 50% of the study
area.

Moreover, according to this drought distribution
area calculated using the Markov model carried
out in this study, if the level of drought manage-
ment of the last years in northern Algeria is main-
tained; the drought distribution area will be in net
increase the next 30 years. From table 6, the total
drought area will be 522,163 km2, of which 64% is
the class of severe/extreme drought in 2041. Com-
pared to 2005, there will be an increase of 375% for
severe/extreme drought and a decrease of 61% for
no drought. These proportions are very disturbing.

In addition, from used data, it could be observed
that the major part of drought occurred in the
south of the study area. If this trend continues with
this pace, northern Algeria will be affected seri-
ously. Hence, it can be concluded that, with the
available data, there is an evidence of a trend for
increased drought frequency and severity in north-
ern Algeria that could be attributed to climate
change. Indeed, over the past 40 years, the ecosys-
tem has been completely changed, both in its com-
position and in its functioning through its primary
productivity. From all these results, it is clear that
drought intensifies, indicated by the probability of
0.4268 for severe/extreme drought class, 0.1376 for
moderate drought, 0.2767 for mild drought in 2011
and is likely to move to probabilities 0.5756, 0.1355,
and 0.1856 for severe/extreme drought, moderate
drought and mild drought in 2041, respectively.
Also, the no drought class decreases from prob-
ability of 0.1588 in 2011 to 0.1033 in 2014. The
results have highlighted a dangerous gradual silting
up of drought from the south to the north in some
areas. With this trend indicated by the probabil-
ities (0.5756 for severe/extreme drought in 2041),
the desertification, land degradation, and drought
will be more pronounced in the future decades,
posing fundamental problems and challenges for

dryland populations, nations and regions in parti-
cular. This alarming situation must be taken into
account.

4. Conclusions

The aim of this paper is the analysis of drought
areas in northern Algeria using Markov chains. The
Markov model is used to estimate future drought
values on the basis of past precipitation. On annual
precipitation maps over northern Algeria, drought
categories are classified according to SPI values.
Indeed, four states describing the drought intensi-
ties, namely no drought, mild drought, moderate
drought, severe/extreme drought have been selec-
ted. Stochastic methodology to compute drought
transition probabilities is presented.

The analysis presented here using Markov model
is useful in understanding the stochastic charac-
teristics of droughts through the analysis of prob-
abilities for each severity class. Indeed, drought
monitoring and forecasting are essential tools for
implementing appropriate mitigation measures in
order to reduce negative impacts. Knowledge of
transition probabilities from a drought class to
another, for a given site or region, as well as the
availability of forecasts of drought indices, and of
the related confidence intervals, can help to im-
prove the decision making process for drought mit-
igation, since appropriate measures can be selected
based on the risk associated with the possible
evolution of a current drought condition.

Moreover, by responding to the hydrological
needs in Algeria, the work conducted here presents
an important contribution to the evaluation and
quantification of water throughout the Algerian
territory. Due to the Algerian climate, which
becomes increasingly dry, this work provides infor-
mation necessary for a rational and optimal alloca-
tion of water resources for sustainable development
of areas relating to the agriculture and the needs
of the population. The knowledge of rain fields in
time and space is a significant parameter in the
management of water resources.

To perform a more reliable analysis, it is prefer-
able to consider a large database. Indeed, the tran-
sition matrix will be more representative of change
in drought trends and therefore, the analysis will be
more accurate. Further validation of the adopted
stochastic model approaches using more data could
be helpful to clearly describe and understand the
behaviour of the drought.
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