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Abstract. This paper presents a finite element model of a rotor system with pedestal looseness stemming from a loosened bolt

and analyzes the effects of the looseness parameters on its dynamic characteristics. When the displacement of the pedestal is less

than or equal to the looseness clearance, the motion of the rotor varies from period­one through period­two and period­three to

period­five with the decreasing of stiffness of the non­loosened bolts. The similar bifurcation phenomenon can be also observed

during the increasing process of the rotational speed. But the rotor motion is from period­six through period­three to period­four

with the decreasing of the foundation stiffness. When the stiffness of the foundation is small and the displacement of pedestal

is greater than the looseness clearance, the response of the rotor exhibits period­one and high order harmonic components with

the decreasing of looseness clearance, such as 2X, 3X etc. However, when the stiffness of the foundation is great, the spectrum

of the response of the rotor will be from combined frequency components to the continuous spectrum with the decreasing of the

looseness clearance.
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Nomenclature

a Distance between coupling gravity center and left bearing

cbl Foundation equivalent damping

cxl, cyl Horizontal (vertical) damping of left bearing

d1, d2 Journal diameter and shaft diameter at the impeller

E Elastic modulus

kb Foundation stiffness

kb1 Stiffness of non­loosened bolts

kb2 Stiffness of loosened bolts

kbl Left pedestal equivalent stiffness

kxl, kyl Horizontal (vertical) stiffness of left bearing

l Center distance between left bearing and right bearing

l1 Distance between impeller gravity center and left bearing

m · r Unbalance moment

m1 coupling mass

m2 Impeller mass

mbl Left pedestal mass

Oi(i = 1, 2, 3, 4) Geometric center
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Om2 Impeller centroid

yb Pedestal displacement

δ1 Looseness clearance

υ Poisson ratio

ρ Material density

ω Rotational speed (rev/min)

1. Introduction

In a rotor­bearing system, the loosened bolt of the pedestal will reduce pedestal stiffness, mechanical damping,

which results in violent vibration of the whole system. Especially, when the looseness fault is serious, it may cause

other faults such as rub­impact fault of the rotor­stator, even may lead to disastrous accidents [1,2]. Therefore, the

research on pedestal looseness is significant in engineering practice for the safe operation of rotating machinery, the

extension of service life, the improvement of its work efficiency.

In the last decades, dynamics and fault diagnosis of rotor systems with pedestal looseness have attracted the

attention of many researchers and many results were obtained. Goldman and Muszynska [3] proposed the bi­

linear model of a rotating machine with one loose pedestal. Their numeric results showed the synchronous and

subsynchronous fractional components of the response, which were verified by the experiments. Subsequently,

they discussed the chaotic behavior of the system based on the bi­linear model [4]. Chu and Tang [5] analyzed

vibration characteristics of a rotor­bearing system with pedestal looseness by building a non­linear mathematical

model. Stability of these periodic solutions was discussed by using the shooting method and the Floquet theory.

When the rotational speed and imbalance of rotors varied, periodic, quasi­periodic and chaotic motions could be

observed and three kinds of routes to or out of chaos were found. In some cases, pedestal looseness could results in

1X/2 fractional harmonic and multiple harmonic motions of rotor­bearing systems [6]. Using the nonlinear bearing

pedestal model composed of a non­linear spring and a linear damping, Ji [7] analyzed the free and forced vibration

of a non­linear bearing system to illustrate the non­linear effect on the free and forced vibrations of the system by

the method of multiple scales. Ma [8] set up a mechanical model of looseness of fastening bolt on the bearing

pedestal and investigated the dynamic characteristics of rotor by using the nonlinear oil­film model put forward by

Adiletta. The results show that system motion state changes frequently with the increase of the rotational speed.

Fault diagnosis of rotor systems with pedestal looseness have been performed using different analytical methods,

such as genetic algorithm, Hilbert­Huang Transform and wavelet packets­fractal technology [9–11].

Recently, many researchers studied rotor fault by using finite element method which may take into account many

factors, such as mass, moment inertia, internal damping, bending and torsion vibration coupling effects. Chien [12]

presented the dynamic responses of the coupled textile/rotor system by finite element analysis. The effects of constant

and non­constant angular rotational speeds, shaft stiffness and non­linear terms on the transient amplitudes of the

textile and the whirling deflection of the shaft are investigated. Jing [13] studied the nonlinear dynamic behavior of

a rotor­bearing system based on a continuum model using the finite element method in his analysis. By comparing

with a simple discrete model, some significant difference is found between two models. By combining finite element

model of rotor and rigid discs, Han [14] presented a quantitative identification procedure for local rubbing fault in

rotor systems based on a hybrid model and identified oil film stiffness and elastic supports. Guo [15] built the rotor

model with a growth crack by finite element method (FEM) and Dimarogonas’ method, investigated crack fault using

HHT. For shaft crack detection, a genetic algorithm [16] was proposed, which can make the shaft crack detection as

an optimization problem by means of the finite element method. Behzad [17] developed a finite­element code for

studying the effects of loose rotating discs on the rotor–bearing systems’ response. The developed finite­element

model can numerically give the response of rotors with any number of loose discs at any location with isotropic or

orthotropic supports. Considering a base­transferred shock force, Lee [18] presented a generalized finite element

modeling method of a rotor­bearing system using the state­space Newmark method based on the average velocity

concept.

Most of previous researches on looseness fault focus on simple Jeffcott rotor systems using the lumped mass

model and only a few works were on the complex rotor system with looseness fault using finite element method
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Fig. 1. Mechanical model of the rotor­bearing­foundation system.

Fig. 2. Bolt looseness schematic.

(FEM). In our study, a nonlinear finite element model of the rotor­bearing­foundation system with pedestal looseness
is set up. Vibration responses are simulated by changing different looseness parameters. When the displacement of
pedestal is less than or equal to looseness clearance and some influence parameters such as stiffness of non­loosened
bolts, rotational speed, and foundation stiffness are considered. When the displacement of pedestal is greater than
looseness clearance, the responses are simulated under different foundation stiffnesses. The results may give deep
insight into looseness mechanism.

This paper investigates the dynamic characteristics of a rotor system with pedestal looseness. The next of the
paper is organized as follows: The mathematical model of the considered system is described in Section 2. In
Section 3, dynamic characteristics of rotor system with pedestal looseness when yb 6 δ1 is studied, the effect of
stiffness of non­loosened bolts is analyzed in Section 3.1, the effect of rotational speed in Section 3.2, and the
effect of foundation stiffness in Section 3.3. In Section 4, vibration characteristics of rotor system with pedestal
looseness when yb > δ1 are analyzed, the effect of looseness clearance under small foundation stiffness condition is
analyzed in Section 4.1, and the effect for looseness clearance under large foundation stiffness condition is analyzed
in Section 4.2. Conclusions are given in Section 5.

2. Mathematical models of a rotor system with pedestal looseness

Figure 1 shows the mechanical model of the considered rotor system, which consists of two identical tilting­pad
bearings, a coupling, an impeller and a stepped shaft. Each tilting­pad bearing is supported on one pedestal, which
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Fig. 3. The finite element model of the rotor­bearing­foundation system.

is fixed on the foundation by two bolts. It is assumed that one bolt on the left pedestal is loosened, which causes the

pedestal loose, as is shown in Fig. 2. In the following context, the equivalent stiffness of pedestal will be described

by bi­linear and tri­linear forms.

In this paper, the equivalent stiffness of pedestal can be simplified as

kbl ≈

{

kb1 0 6 yb 6 δ1

kb, others
. (1)

Considering the directivity of looseness fault, in this paper, only the vibration characteristics of the rotor system

with looseness fault in vertical direction y are studied. And assume that pedestal equivalent damping (cbl) is constant.

2.1. Finite element model of rotor system with looseness fault

The finite element model of rotor­bearing­foundation is established, only the stiffness and the damping of bearing

and pedestal are plotted in vertical direction, as is shown in Fig. 3. In the figure, black spots denote nodes, number

denotes node number, impeller and coupling are simplified as discs, left and right tilting pad bearings are simulated

by four oil film stiffness coefficients and four oil film damping coefficients. The equivalent stiffness of loosening

pedestal can be obtained by Eq. (1).

The dynamic equation of the rotor system with looseness fault by finite element method is shown as follows:

Mq̈ + Dq̇ + Kq = Q (2)

Where M is mass matrix including shaft, disc and pedestal, D is damping matrix including bearing damping,

gyroscopic matrix and foundation equivalent damping, K is global stiffness matrix, Q is composite external force

vector, q is displacement vector. Finally, Eq. (2) is solved by using the Newmark­β method to obtain the displacement

of rotor.

3. Dynamic characteristics of the rotor system with pedestal looseness when yb 6 δ1

Values for the parameters of the rotor system used in the analysis and the subsequent simulation are as follows:

d1 = 40 mm, d2 = 51 mm, l = 0.8 m, a = 0.208 m, l1 = 0.54 m, E = 2.07 × 1011 Pa, υ = 0.3, ρ = 7850 kg/m3,

kxl = 2.2 × 108 N/m, kyl = 3.6 × 108 N/m, cxl = 6.43 × 105 N·s/m, cyl = 8.8 × 105 N·s/m, cbl = 2 × 105 N·s/m,

δ1 = 1 mm, mbl = 32 kg, m · r = 168.5 g·mm. The bearing parameters of right end are identical as these of left

end. Based on these values the first critical speed of the rotor system is obtained as 4135 rev/min.

For the normal rotor systems, the amplitudes (peak­peak value) of different nodes at different rotating speeds(2000,

4000 and 6000 rev/min), are simulated by taking kb = kb1 = 4 × 107 N/m, as is shown in Fig. 4. From this
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Table 1

Simulation conditions when yb 6 δ1

Fixed­parameter Variable parameters Figures

kb1 = 4 × 107 N/m, kb = 4 × 107 N/m, δ1 = 1 mm ω Fig. 4

ω = 4000 rev/min, kb = 4 × 107 N/m, δ1 = 1 mm kb1 Fig. 5, Fig. 6

kb = 4 × 107 N/m, kb1 = 2.2 × 105 N/m, δ1 = 1 mm ω Fig. 7

ω = 4000 rev/min, kb1 = 2.2 × 105N/m, δ1 = 1 mm kb Fig. 8

Fig. 4. Amplitudes under different rotating speeds.

figure, it can be seen that the amplitude of journal in left bearing (node 6) is closed to zero at given three rotating

speeds. In the following we investigate the dynamic characteristics of rotor system with pedestal looseness when

yb 6 δ1. The pedestal equivalent stiffness is given by Eq. (1). The effect of different parameters on the dynamic

characteristics of the rotor system is studied. These parameters include stiffness of non­loosened bolts, rotational

speed and foundation stiffness. The simulation conditions are listed in Table 1. The figures (Figs 5–10), from the

top to the bottom, are vibration waveform, amplitude spectrum and rotor trajectory, respectively.

3.1. The effect of stiffness of non­loosened bolts (kb1)

Pedestal is likely to become loose when rotational speed is approaching to the first critical speed (4135 rev/min).

Therefore, we choose the simulation condition as ω = 6000 rev/min (around the first critical speed), kb = 4 ×

107 N/m, and δ1 = 1 mm (much larger than yb).

It can be seen from Fig. 5(a) that when kb1/kb = 0.05, vibration amplitude is 6.1 µm. The waveform is a

sine­cosine curve and the average displacement is much greater than zero due to piecewise linear stiffness. In the

frequency domain, high order frequency components (i.e. 2X, 3X, 4X, etc.) can be observed but their amplitudes

decrease along with the increase of the frequency. In such case, the rotor motion is period­one. Rotor trajectory

is a long and narrow ellipse along the direction of arrows. This is because horizontal stiffness (z­coordinate) is far

greater than vertical stiffness (y­coordinate).

Figure 5(b) displays vibration characteristics of node 6 when kb1/kb = 0.025. In time domain, vibration amplitude

increases and is about 9.3 µm. The period of motion is two times as long as that of the former, which also show

the amount of beating is 1/2 times of that in Fig. 5(a). Obviously the waveform is truncated near wave troughs.

This is due to periodic beating when the pedestal contacts foundation instantly. In frequency domain, the amplitude

spectrum shows 1/2 fractional harmonic components (i.e. 1X/2, 3X/2, 4X/2, etc.), which indicates that the rotor

reaches a period­two motion, and the amplitude of 1X/2 component is greater than the others. Furthermore, the rotor

trajectory displays the shape of ’8’ curve and its motion direction is also shown by arrows. In such case, it is clear

that bifurcation phenomenon appears when the stiffness of non­loosened bolts decreases.
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Fig. 5. Vibration characteristics of node 6 when kb1/kb = 0.05 and kb1/kb = 0.025.

The system motion form changes to period­three when the stiffness of non­loosened bolts continues declining

(kb1/kb = 0.0055), as is shown in Fig. 6(a). The vibration amplitude is almost unchanged compared with that in

Fig. 5(b). But the 1/3 fractional harmonic components (i.e. 1X/3, 2X/3, and 4X/3, etc.) can be observed from the
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Fig. 6. Vibration characteristics of nodes 6 when kb1/kb = 0.0055 and kb1/kb = 0.0025.

amplitude spectrum and the amplitude of 1X/3 is second only to that of 1X component. Rotor trajectory looks like

the shape of multiple inside ‘8’ curve.

Figure 6 (b) demonstrates the system responses when kb1/kb = 0.0025. Noticeably, vibration period becomes
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Table 2

Vibration characteristics of pedestal looseness with decrease of kb1

Fixed­parameter kb1/kb Amplitude Frequency spectrum characteristics Motion forms Rotor trajectory

(peak­peak value µm) characteristics

ω = 4000 rev/min 0.05 6.1 High order frequency components

(1X, 2X, 3X, etc.)

Period­one (P­1) A long and nar­

row elliptic

δ1 = 1 mm 0.025 9.3 The 1/2 fractional harmonic compo­

nents (1X/2,1X,3X/2,etc.)

P­2 “8” shape curve

kb = 4 × 107 N/m 0.0055 9.4 The 1/3 fractional harmonic

components

P­3 Multiple inside

’8’ curve

0.0025 26.8 The 1/5 fractional harmonic
components

P­5 Spiral curve

Table 3

Response features of pedestal looseness with increase of ω

Fixed­parameter ω (rev/min) Amplitude Frequency spectrum characteristics Motion Rotor trajectory

(peak­peak value µm) forms characteristics

δ1 = 1 mm 2000 8.2 The 1/2 fractional harmonic compo­

nents (1X/2, 1X, 3X/2, etc.)

P­2 “8” shape curve

kb1 = 2.2 × 105 N/m 4000 9.4 The 1/3 fractional harmonic

components

P­3 Multiple inside

‘8’ curve

kb = 4 × 107 N/m 6000 20 The 1/5 fractional harmonic

components

P­5 Spiral curve

longer and the vibration amplitude reaches at the value of 26.8 µm. In frequency domain, the 1/5 fractional harmonic

components (i.e. 1X/5, 2X/5, etc.) can be observed and the amplitude of 1X/5 component is largest. In such case,

system motion is period­five. Rotor trajectory likes as spiral along with vertical direction. All these characteristics

indicate that the looseness is very serious.

The detailed Vibration characteristics of pedestal looseness with the decrease of kb1 are listed in Table 2. When

the pedestal stiffness becomes smaller, vibration amplitude increases gradually, even reach at 26.8 µm which

exceeds allowable amplitude of 15 µm. Low frequency components with large amplitude can be observed in

frequency spectrum. Rotor trajectory changes from a long and narrow elliptic to a spiral curve. By above analysis,

we can conclude that when looseness becomes more and more serious, system motion demonstrates bifurcation

characteristics and the amplitude of minimum frequency component is maximum or second.

3.2. The effect of rotational speed

Rotational speed is an important parameter affecting the vibration of the rotor system. Figure 7 shows the vibration

of node 6 with different rotational speeds ω = 2000 rev/min (less than first critical speed) and ω = 6000 rev/min

(greater than first critical speed) respectively, when kb1 = 2 × 105 N/m, kb = 4 × 107 N/m and δ1 = 1 mm.

It can be seen from Fig. 7(a) that when ω = 2000 rev/min, vibration amplitude is about 8 µm and the waveform

is truncated near wave trough. In frequency domain, the 1/2 fractional harmonic components such as 1X/2 and

3X/2, etc. can be observed, which shows that system motion is period­two and the amplitude of 1X/2 is the largest.

Rotor trajectory displays the shape of ’8’ curve. Compared with Fig. 5 (b), the waveform, amplitude spectrum and

trajectory in Fig. 7 (a) are similar to these in Fig. 5(b).

Figure 7(b) displays that when ω = 6000 rev/min, vibration is aggravated with the amplitude of 20 µm because

of the increase of rotational speed. In frequency domain, the amplitude spectrum shows the 1/5 fractional harmonic

components such as 1X/5 and 2X/5, etc. can be observed, which shows system motion is period­five and the

amplitude of 1X/5 is second only to that of 1X. Rotor trajectory likes as a spiral along with vertical direction. All

this vibration characteristics are similar to these shown in Fig. 6(b).

The detailed response features of pedestal looseness with increase of ω are listed in Table 3. By Comparing

Table 2 with Table 3, we can conclude that the decrease of stiffness of non­loosened bolts has the similar effect on

the vibration of node 6 to increase of rotational speed (unbalance force).
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Fig. 7. Vibration characteristics of nodes 6 when ω = 2000 and ω = 6000 rev/min.

3.3. The effect of foundation stiffness kb

Foundation stiffness also influences the vibration of the rotor system. Figure 8 shows the vibration of node 6 with

different foundation stiffness whenkb1 = 2.2 × 105 N/m, ω = 4000 rev/min and δ1 = 1 mm.
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Fig. 8. Vibration characteristics of nodes 6 when kb1/kb = 0.00055 and kb1/kb = 0.055.

From Fig. 8(a), we can see that when kb1/kb = 0.00055, the waveform is similar to that shown in Fig. 6(a), but the

amplitude is much smaller. This shows that large foundation stiffness will weaken the vibration of the rotor system.

The 1/6 fraction harmonic components such as 1X/6, 2X/6, 3X/6, etc. can be observed in amplitude spectrum. The
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Table 4

Response features of pedestal looseness with decrease of kb

Fixed­parameter kb1/kb Amplitude Frequency spectrum characteristics Motion Rotor trajectory

(peak­peak value µm) forms characteristics

δ1 = 1 mm 0.00055 8.6 The 1/6 fractional harmonic compo­

nents (1X/6,1X/3,2X/3,etc.)

P­6 Spiral curve

kb1 = 2 × 105 N/m 0.0055 9.4 The 1/3 fractional harmonic

components

P­3 Multiple inside

‘8’ curve

ω = 4000 rev/min 0.055 25.6 The 1/4 fractional harmonic

components

P­4 Spiral curve

Table 5

Simulation conditions when yb > δ1

Fixed­parameters variable parameters Figures

ω = 4000 rev/min, kb1 = 2.2 × 105 N/m, kb = 4 × 106 N/m δ1 Fig. 9

ω = 4000 rev/min, kb1 = 2.2 × 105 N/m, kb = 4 × 108 N/m δ1 Fig. 10

1X/6 component is weak in magnitude and the amplitude of 1X/3 is second only to that of 1X component. So the

rotor reaches a period­six motion. Because of the appearance of 1X/6, rotor trajectory is slightly complicated in

comparison with that in Fig. 6(a).

Figure 8 (b) shows that the vibration amplitude of node 6 increases greatly until near 0.45s when kb1/kb = 0.055.

When the waveform becomes stable, the amplitude is about 25.6 µm, nearly 2.7 times as large as that in Fig. 6(a).

The frequency spectrum displays the 1/4 fractional harmonic components such as 1X/4, 1X/2 and 3X/4, etc., which

indicates that system motion is period­four, and the amplitude of 1X/4 is largest. The rotor trajectory is still a spiral

curve. All these characteristics indicate serious pedestal looseness.

The detailed vibration characteristics of pedestal looseness with decrease of kb are listed in Table 4. It demonstrates

new bifurcation forms with decrease of kb, large foundation stiffness will weaken the vibration of rotor system, on

the contrary, vibration will be exacerbated.

From the foregoing discussion, it is evident that system motion shows basically similar law when stiffness of

non­loosened bolts and rotational speed change, and the motion forms are both from period­two through period­three

to period­five, which is partly consistent with experiment results (Fig. 5.7.15) in Ref. [2]. But new bifurcation route

from period­six through period­three to period­four appears when foundation stiffness decreases, which is similar to

experiment results (Fig. 5.7.17) in Ref. [2].

4. Vibration characteristics of rotor system with pedestal looseness when yb > δ1

In this section, we investigate the responses of rotor system with pedestal looseness when yb > δ1. The pedestal

stiffness is given by Eq. (1). Then we study the effect of different parameters on the vibration of the rotor system.

These parameters include looseness clearance and foundation stiffness. The simulation conditions are listed in

Table 5.

4.1. The effect of looseness clearance under small foundation stiffness condition

The looseness clearance can affect the vibration of the rotor system, Fig. 9 shows the vibration of node 6 with

different looseness clearances, δ1 = 8 µm and δ1 = 7 µm respectively, when kb1 = 2.2 × 105 N/m, kb = 4 ×

106 N/m and ω = 4000 rev/min.

It can be seen from Fig. 9(a) that when δ1 = 8 µm, the waveform is truncated in the initial 0.1s and then the

waveform turns quickly stable. The maximum displacement is slightly bigger than clearance value, which indicates

that pedestal is limited by bilateral constraint when yb > δ1. In frequency domain, high order components such as

2X and 3X, etc. can be observed in Fig. 9(a) and the amplitude of 1X is largest. Rotor trajectory is like an inclined

long ellipse when system is stable.
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Fig. 9. Vibration characteristics of nodes 6 at kb = 4 × 106 when δ1 = 8 and δ1 = 7 µm.

The vibration shown in Fig. 9(b) displays the similar characteristics to that in Fig. 9 (a), but the amplitude of the

latter is smaller than that of the former.

The detailed response features of pedestal looseness with decrease of δ1 are listed in Table 6. From Table 6, it

can be seen that system motion always is period­one but vibration amplitude decreases when the value of δ1 become
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Table 6

Response features of pedestal looseness with decrease of δ1

Fixed parameter δ1(µm) Amplitude Frequency spectrum characteristics Motion Rotor trajectory

(peak­peak value µm) form characteristics

kb1 = 2.2 × 105 N/m 8 9.8 Multiple harmonic components
(1X,2X,3X,etc.)

P­1 An inclined
long ellipse

kb = 4 × 107 N/m

ω = 4000 rev/min 7 8.8 Multiple harmonic components P­1 Multiple nested

ellipses

Table 7
Vibration characteristics of pedestal looseness with increase of kb

Fixed­parameter δ1(µm) Amplitude Frequency spectrum Motion form Rotor trajectory

(peak­peak value µm) characteristics characteristics

kb1 = 2.2 × 105 N/m 8 8.2 Combined frequency Quasi­period spiral limited top

and bottom in ver­

tical direction

kb = 4 × 108 N/m

ω = 4000 rev/min 7 7.2 Continuous spectrum Quasi­period

or chaos

spiral limited top

and bottom in ver­
tical direction

smaller. These characteristics indicate that the vibration of the rotor system weakens with the decrease of looseness

clearance.

4.2. The effect of looseness clearance under large foundation stiffness condition

The section investigates the effect of looseness clearance on vibration of the rotor system with large foundation

stiffness. Figure 10 displays the vibration of node 6 with different looseness clearance, δ1 = 8 µm and δ1 = 7 µm

respectively, when kb1 = 2.2 × 105 N/m, kb = 4 × 108 N/m and ω = 4000 rev/min.

From Fig. 10(a), it can be seen that when δ1 = 8 µm, the waveform is seriously truncated, pedestal collides with

constraint, as the concave shown in Fig. 6(b). The increase of constraint stiffness causes the repeated impact and

rebound among pedestal, foundation and bolt head. So the displacement is complicated. In frequency domain,

combined frequency components (such as 68 Hz + 14 Hz = 82 Hz, 68 Hz + 41 Hz = 109 Hz, etc.) appear in

amplitude spectrum, which shows that system motion is quasi­period. The rotor trajectory is similar to spiral limited

top and bottom in vertical direction. These features indicate that the system motion is complicated.

When δ1 = 7 µm, the vibration characteristics of node 6 are shown in Fig. 10(b). Amplitude spectrum is

continuous. In such case, the system motion may be quasi­period or chaos. The waveform and rotor trajectory are

similar to these in Fig. 10(a) except that the amplitude of the former is less than that of the latter.

The detailed vibration characteristics of pedestal looseness with decrease of δ1 are listed in Table 7. From Table 7, it

can be seen that system motion is quasi­period or chaos, serious truncation of waveform can be observed in waveform,

combined frequency components and continuous spectrum appear with decrease of δ1. These characteristics show

that system vibration is more complicated.

From the above discussion, it is clear that system vibration amplitude decreases with the decrease of δ1. When

foundation stiffness is smaller, system motion is period­one. However, when foundation stiffness is larger, system

motion is quasi­period or chaos due to the axis moving irregularly.

5. Conclusions

In this study, the pedestal looseness fault is simulated by finite element method. Some results are obtained as

follows:
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Fig. 10. Vibration characteristics of nodes 6 at kb = 4 × 108 when δ1 = 8 µm and δ1 = 7 µm.

(1) When the pedestal displacement of pedestal is less than or equal to the looseness clearance, system motion

law is basically the same regardless to the stiffness of non­loosened bolts and rotational speed change. And

the motion forms are always from period­two through period­three to period­five. But new bifurcation route

from period­six through period­three to period­four will appear when foundation stiffness changes.
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(2) When the pedestal displacement of pedestal is greater than the looseness clearance, system vibration amplitude

will decrease with the reduction of δ1. When the stiffness of the foundation is small, the response of the

rotor exhibits period­one and high order harmonic components with the decreasing of looseness clearance.

However, when the stiffness of the foundation is great, the spectrum of the response of the rotor will be from

combined frequency components to the continuous spectrum with the decreasing of the looseness clearance.
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