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Analysis of Dynamic Spectra in Ferret Primary Auditory Cortex:
I. Characteristics of single unit responses
to moving ripple spectra

Nina Kowalski, Didier A.Depireux and Shihab A.Shamma

FElectrical Engineering Department & Institute for Systems Research
University of Maryland
College Park MD 20742-38311, USA

Running head: Moving Ripples in Primary Auditory Cortex

1 Summary and Conclusions

1. Auditory stimuli referred to as moving ripples are used to characterize the reponses of
both single and multiple units in the ferret primary auditory cortex (AI). Moving ripples
are broadband complex sounds with a sinusoidal spectral profile that drift along the
logarithmic frequency axis at a constant velocity.

2. Neuronal responses to moving ripples are locked to the phase of the ripple, i.e., they
exhibit the same periodicity as that of the moving ripple profile. Neural responses are
characterized as a function of ripple velocity (temporal property) and ripple frequency
(spectral property). Transfer functions describing the response to these temporal and
spectral modulations are constructed. Temporal transfer functions are inverse Fourier
transformed to obtain impulse response functions that reflect the cell’s temporal charac-
teristics. Ripple transfer functions are inverse Fourier transformed to obtain the response
field, a measure analogous to the cell’s response area. These operations assume linearity
in the cell’s response to moving ripples.

3. Transfer functions and other response functions are shown to be fairly independent on
the overall level or depth of modulation of the ripple stimuli. Only downward moving
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ripples were used in this study.

4. The temporal and ripple transfer functions are found to be separable, in that their shapes
remain unchanged for different test parameters. Thus, ripple transfer functions and re-
sponse fields remain statistically similar in shape (to within an overall scale factor) re-
gardless of the ripple velocity, or whether stationary or moving ripples are used in the
measurement. The same stability in shape holds for the temporal transfer functions and
the impulse response functions measured with different ripple frequencies. Separability
implies that the combined spectro-temporal transfer function of a cell can be written
as the product of a purely ripple and a purely temporal transfer functions, and hence
that the neuron can be computationally modeled as processing spectral and temporal
information in two separate and successive stages.

5. The ripples parameters that characterize cortical cells are distributed somewhat evenly,
with the characteristic ripple frequencies ranging from 0.2 to over 2 cycles/octave and the
characteristic angular frequency typically ranging from 2 to 20 Hz.

6. Many responses exhibit periodicities in the spectral envelope of the stimulus. These
periodicities are of two types. Slow rebounds, not found in the spectral envelope, and
with a period of about 150 ms, appear with various strengths in about 30 % of the cells.
Fast regular firings with interspike intervals of the order of 10 ms are much less common
and appear to correspond to interactions between the component tones that make up a
ripple.

2 Introduction

Timbre perception of broadband complex sounds such as speech and music is strongly influenced
by the shape and dynamics of their acoustic spectra. For example, the recognition of speech
phonemes is based on their formant locations and transitions (i.e., spectral shape and its changes
in time). The primary auditory cortex (AI) plays a pivotal role in this process (review by Neff
et al. 1975). However, there is little agreement on the exact details of this role or of the way
AT responses might encode and map out the acoustic spectrum (see a review in Shamma 1995;
Phillips et al. 1988, 1991; Brugge 1985; Clarey et al. 1992).

The results described in this article relate most directly to a specific hypothesis on the
nature of this representation - the so-called ‘ripple analysis model’ (Shamma and Versnel 1995;
Shamma et al. 1995; Versnel et al. 1995). Briefly, the model postulates that the acoustic
spectrum is encoded in Al at varying degrees of resolution by the activity of units with a range
of response area bandwidths, asymmetries and best frequencies (BF’s). Furthermore, it is
assumed that this multi-scale decomposition can be characterized to a very good approximation
as a linear process. Thus, if a complex spectral profile is decomposed into a weighted sum of
simpler spectra, then linearity implies that responses to the complex profile can be predicted
from a weighted superposition of the responses to the simpler spectra. Note further, that if
the basic set of simple spectra is taken to be sinusoidally modulated envelopes or ripples, then
the decomposition of an arbitrary profile into ripples with different amplitudes, phases, and
densities corresponds simply to a Fourier decomposition of the spectral profile.
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The above postulates were extensively investigated and validated for stationary spectra
in the ferret AI (Shamma et al. 1995; Shamma and Versnel 1995; Versnel et al. 1995; in
cat: Schreiner and Calhoun 1995). For instance, it was shown that an AI unit could be fully
characterized by its responses to ripples with a range of ripple frequencies and ripple phases,
that is by its ripple transfer function. It was also shown that inverse Fourier transforming this
function generates a response field (RF) - a function that is analogous to the response area of
the unit obtained with single tones. The RF’s of Al units exhibited a range of bandwidths and
asymmetries, as required by the multi-scale representation hypothesis (Shamma et al. 1995;
Shamma and Versnel 1995; Versnel et al. 1995; Schreiner and Calhoun 1995). Furthermore,
the RF’s could be used to predict the responses to arbitrary stationary spectra, confirming the
linearity of the responses in Al (Shamma and Versnel 1995).

To generalize this framework to dynamic spectra, it is necessary to consider both the spectral
and the temporal dimensions of the stimulus spectrum. Thus, just as an arbitrary stationary
spectrum could be represented as a sum of stationary ripples with different amplitudes and
phases, so can a dynamic spectrum be similarly decomposed into a weighted sum of moving
ripples traveling at different velocities, i.e., a two-dimensional Fourier decomposition. Therefore,
if linearity applies to moving ripples as it does to stationary ripples, it should be possible
to predict the responses to an arbitrary dynamic spectrum by superposition of responses to
individual moving ripples. Before issues of linearity can be addressed, however, it is important
to understand how AI units respond to temporal modulations of their input spectra. Our main
questions therefore are: What is their tuning with respect to ripple velocities, and: Are they
all tuned to the same ripple velocity or with the same bandwidths.

The experiments described here were designed to answer these questions by providing details
of the response characteristics to moving ripples over a wide range of parameters. In the
companion paper (Kowalski et al. 1995), response linearity is directly tested using the response
measures discussed here. As mentioned above, there have been numerous published reports on
the response properties in Al to temporally modulated stimuli, though none with the stimuli
and theoretical framework adopted here. A common finding is that Al units tend to respond
best in a phase-locked fashion to modulation rates under about 10 Hz (Schreiner and Urbas
1988; Eggermont 1994). This and other findings will be discussed in relation to the results
obtained with our moving ripples.

3 Methods

3.1 Surgery and animal preparation

Data were collected from a total of 10 domestic ferrets (Mustela putorius) supplied by Marshall
Farms (Rochester, N.Y.). The ferrets were anesthetized with sodium pentobarbital (40 mg/kg).
Anesthesia was maintained throughout the experiment by continuous intravenous infusion of
pentobarbital. Dextrose (5% in Ringer’s solution) was also infused IV to maintain metabolic
stability. The ectosylvian gyrus, which includes the primary auditory cortex, was exposed by
craniotomy and the dura was reflected. The contralateral ear canal was exposed and partly
resected, and subsequently a cone-shaped speculum containing a Sony MDR-E464 miniature
speaker was sutured to the meatal stump. For details on the surgery see Shamma et al. (1993).
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3.2 Acoustic stimuli

For each cell, we measured a frequency response curve with up to 1/8 octave resolution at
low intensity, using pure tones with linear rise and fall times of 8 ms, lasting 200 ms and
repeated every second. The best frequency (BF) was determined from this response curve as
the frequency which evoked the best response. The rate-level function at BF was measured at
a range from 35 to 85 dB SPL in order to determine the cell’s response threshold and possible
nonmonotonicity. Our criteria were 10% of maximum response for threshold and a decrease of
25% with increase of intensity for nonmonotonicity.

All the other stimuli used in these experiments were broadband ripple spectra consisting of
101 tones equally spaced along the logarithmic frequency axis and spanning 4.32 octaves (1-20
kHz) or 5 octaves (0.5-16 kHz), as illustrated in Fig. 1. The range was chosen such that the
response area of the cell tested lay within the stimulus’ spectrum. The spectral envelope of
the complex was then modulated as a single sinusoid along the frequency axis on a linear or
logarithmic amplitude scale (Fig. 1A).

The overall level of a single-ripple stimulus was calculated from the level of a single frequency
component at L; dB SPL. Thus, an L level flat ripple is composed of 101 components, each
at L; — 10log(101) =~ L; — 20 dB. The overall stimulus level was chosen on the basis of
the threshold at BF, typically L; was set about 10 to 20 dB above threshold. High levels
(L, > 65 dB SPL) were avoided to ensure the linearity of our acoustic delivery system. The
amplitude of a single ripple was defined as the maximum percentage or logarithm change in the
component amplitudes. Ripple amplitudes were either at 90 — 100% or at 10 dB modulation,
except for a few recordings in which we studied the effect of depth modulation on responses.
The ripple frequency €2 is in units of cycles/octave against the logarithmic frequency axis. The
ripple phase is given in radians or degrees relative to a sine wave starting at the low frequency
edge of the complex (Fig. 1A). Schematically then, if the level of the base is defined to be 1,
the amplitude of a given component tone is given by

S(z)=1+AA -sin2r-Q- -2+ 9), (1)

where AA is 0.9 or 1 for a linear modulation, z is the position on the logarithmic frequency
axis (in octaves) defined as: z = lng(%) with Fy the lower edge of the spectrum, i.e. 1 kHz or
0.5 kHz, and F' the frequency of the tone. Note that when AA is zero, the resulting stimulus
is a flat spectrum.

In order to measure the ripple transfer function of a cell, a series of tests were carried out
using ripple spectra with a range of ripple frequencies 2 (usually from 0-2 cycles/octave with
different resolutions) and ripple phases (from 0-77/4 in 7 /4 steps). Typically, each stimulus
was presented 20 times. The (temporal) phase of the component tones was chosen at random.

The response to moving ripple spectra was the main focus of this study. The stimulus here
was the ripple spectrum traveling along the logarithmic frequency axis at various velocities
(Fig. 1B). The ripple velocity was defined either directly as the number of octaves traveled
per second (i.e., linear velocity - v in octaves/sec), or indirectly as the number of ripple cycles
traversing the left ordinate per second (i.e., angular velocity - w in cycles/sec or hertz). The two
measures are related via the ripple frequency Q as w = v-§). In the remainder of this article, we
shall exclusively use the angular velocity w to describe the speed of moving ripples (the term
‘angular’ will often be dropped for brevity). A moving ripple spectrum can therefore be fully
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characterized by its ripple frequency € in cycles/octave, initial ripple phase ® in radians, and
ripple velocity w in Hz:

S(z,t)=1+AA-sin(27- (w-t+Q-z)+ ) . (2)

Therefore, a positive value for w corresponds to a ripple whose envelope travels towards the
low frequencies (Fig. 1B).

For measurements with stationary ripples, the stimulus bursts had 8 ms rise/fall time and
50 ms duration, and were repeated every second. For the dynamic ripples, the stimuli lasted
1.7 seconds with same rise/fall times, and were repeated every 4.2 seconds. At the onset of the
sweep, the ripple spectrum was started in a sine phase (defined as 0°) as depicted in Fig. 1B
(t = 0). The ripple began immediately moving to the left at a specific constant velocity for the
duration of the stimulus (e.g., w = 4Hz). The stimulus was acoustically turned on 50 ms after
the onset of motion.

All stimuli were computer synthesized, gated, and then fed through a common equalizer into
the earphone. Calibration of the sound delivery system (to obtain a flat frequency response up
to 20 kHz) was performed in situ using a 1/8-in. Briiel & Kjaer probe microphone (type 4170).
The microphone was inserted into the ear canal through the wall of the speculum to within
5 mm of the tympanic membrane. The speculum and microphone setup resembles closely that
suggested by Evans (1979).

3.3 Recordings

Action potentials from single units were recorded using glass-insulated tungsten micro-electrodes
with 5-6 MS) tip impedances. Neural signals were fed through a window discriminator and
the time of spike occurrence relative to stimulus delivery was stored using a Hewlett-Packard
9000/800 series minicomputer. The computer also controlled stimulus delivery, and created
various raster displays of the responses.

In each animal, electrode penetrations were made orthogonal to the cortical surface. In
each penetration, cells were typically isolated at depths of 350-600 pm corresponding to cortical
layers 11T and IV (Shamma et al. 1993).

In many instances, it was difficult to hold a single unit for extended recordings, and hence
several units were recorded instead. Such data were labeled “cluster recordings” and are ex-
plicitly designated as such and separated from the single unit records in all data presentations
in the paper.

3.4 Data analysis for stationary ripple stimuli

Figure 2 illustrates the display and initial analysis applied to the data. Details of these proce-
dures are described in Shamma et al. (1995). Here the cell was tested over ripple frequencies
0-2 cycles/octave in steps of 0.4 cycles/octave. For each ripple, the responses to a full cycle of
the ripple (i.e., 27 phase change) was measured at 8 steps (Fig. 2A). The spike counts at each
phase step were made over a 60 ms time window starting shortly (10 ms) after the onset of the
stimulus (note that the tonal latency of the response is typically on the order of 15 ms). These
counts are indicated in the plots of Fig. 2B by the circles (connected by the dashed lines) for
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ripple frequencies 0.4-1.2 cycles/octave. The baseline at each ripple frequency (represented by
the dotted horizontal line) was set equal to the spike count obtained from the flat spectrum
(Q=0).

The axis at the bottom, labeled as ¢ (octaves), indicates the equivalent amount of shift
each ripple pattern undergoes at each phase step. For instance, for a 0.4 cycles/octave ripple,
response measurements over a full cycle are equivalent to shifting the spectral pattern by 2.5
octaves along the logarithmic frequency axis. The same phase steps for a 0.8 cycles/octave pat-
tern are equivalent to shifting it by half as much (1.25 octaves). To estimate the ripple transfer
function T'(2) of the cell, an 8-point Fourier transform was performed on the spike counts at
each ripple frequency. The magnitude and phase of the primary component synchronized to
the ripple frequency AC;(f2) was then extracted and weighted by the rms value of the response

ACy (2 >|—1A01< )
VI [ACKQ
T(Q) =0 1f|AC’1( )| — |AC,(0)] < 0

where |AC;(Q)] is the magnitude of the i** Fourier component of the response. In general T'(Q)
can be written

T(Q) = ACL(Q) - if [ACL(Q)] — |ACL(0)] > 0 3)

T(Q) = |T(Q)|*® (4)

where j = v/=1. Figure 2C illustrates the magnitude |T'(Q2)| and the unwrapped phase ®(2)
of the transfer function T'(2). This ripple transfer function can be inverse Fourier transformed
to obtain the response field (RF) of the cell shown in Fig. 2D. The RF is comparable to an
iso-intensity response curve, such as measured with two-tone stimuli (Shamma et al. 1995),
with the positive peak representing the excitatory region and the negative peak representing
the inhibitory region of the response curve.

Several parameters characterize the ripple transfer function and the RF. The first is the
characteristic ripple frequency §2,, which is the ripple frequency at which |7'(2)| is maximum
(Q, = 0.8 cycles/octave in Fig. 2B). This parameter reflects the width of the RF near its center.
In general, the higher the characteristic ripple, the narrower the corresponding RF. Two other
parameters are derived from a linear fit of the phase function $(£2) according to

®(Q) = 212,02 + ¢, (5)

where x, is the slope of the line, and ¢, is its intercept. The parameter z, reflects the location
(in octaves) of the RF relative to the left edge of the ripple. The distance from the center of
the RF envelope to the left edge of the spectrum is given by % - gf + x,, where A is the step
size of the ripple frequencies tested, and k is an integer > 1 (Shamma et al. 1995; Shamma
and Versnel 1995). The parameter ¢, (called the characteristic phase) roughly indicates the
asymmetry of the RF about its center: the RF is symmetric for ¢, = 0, and asymmetric for
$o, = £90° (Fig.2C). Another response parameter is the location of the maximum of the RF
along the tonotopic axis as determined by finding the maximum of the RF. This has been shown
to correspond well to the tonal BF of the cell (Shamma et al. 1995) and hence will be labeled
as the BF in this paper. The RF was usually measured only at one stimulus level which elicited
a relatively strong response (L; usually set at 10-20 dB above threshold). This is justified by
the fact that the RF remains relatively stable with overall stimulus level (Shamma et al. 1995).
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3.5 Data analysis for moving ripple stimuli

Moving ripple spectra were presented to Al units at different velocities and ripple frequencies. In
most units, the responses were measured only at one effective stimulus level (L, set at 10-20 dB
above threshold and AA = 90%). It is unknown whether the central auditory system encodes
the spectral profile on a linear or a logarithmic amplitude scale, or via other representations
such as the power spectrum. While we did not look systematically for response differences
between linear or logarithmic amplitudes, an earlier study with stationary ripples (Shamma et
al., 1995, Fig 8) addressed this issue and no substantial differences were found. To explore the
dependence of the responses on stimulus intensity, we also measured changes in unit responses
within a range of intensities and ripple amplitudes for several ripple velocity and frequency
combinations.

3.5.1 Temporal transfer function tests

Figure 3 provides an example of the actual responses observed and the way they were analyzed
for the same unit discussed in Fig. 2. The raster responses in Fig. 3A were elicited by a ripple
spectrum (0.8 cycle/octave) traveling at a range of velocities w = 4 — 32 Hz in steps of 4
Hz. The ripple spectrum begins moving at ¢ = 0 ms from 0° initial ripple phase, and the
stimulus was acoustically turned on at ¢ = 50 ms. Following a transient which usually lasts less
than 50 ms, the responses become more steady and periodic reflecting the ripple velocity. All
response measures derived in this paper were based on this steady-state response, which was
defined as starting at ¢t = 120 ms (as indicated by the arrow).

To assess the strength of the phase-locked responses, period histograms with a time-base of
16 bins were constructed at each w as shown in Fig. 3B. The amplitude and phase of the response
component synchronized to each w were then derived from the first coefficient of a 16 point
Fast Fourier Transform (FFT) of the histogram AC)(w), which was equivalent to performing a
best mean-square fit to the data points (depicted in Fig. 3B by the solid lines fit to the circles
connected by the dashed lines). The zeroth order coefficient AC,(w) represents the total spike
count, which reflects the average firing rate of the unit (not shown). The amplitude of these
two coeflicients were plotted (dashed lines) in the top panel of Fig. 3C as a function of w. If
the response modulation is linear, all higher order coefficients of the FFT would be negligible,
and AC|(w) in Fig. 3C would strictly reflect the temporal transfer function of the unit To(w),
measured at a specific ripple frequency 2. However, because of half-wave rectification and
other nonlinearities, higher order coeflicients are usually significant. To assess the linearity of
the response, the amplitude of this component is weighted by the rms value of the response as
follows:

|AC) (w )l
/T JACHw

where |AC;(w)| is the magnitude of the i*" Fourier component of the period histogram response
at the specific ripple frequency 2 at which the temporal transfer function was measured. In
general T(w) can be written as:

To(w) = AC, (w) (6)

To(w) = |Ta(w)le**) (7)
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where j = /—1. Figure 3C illustrates the magnitude |T(w)| (solid line) and the unwrapped
phase ®q(w) of the transfer function Tg(w). Two parameters can be extracted from the |Tq(w)]
curve (Fig. 3C): wy,, the ripple velocity at which the response is maximum (= 8Hz) and w,, the
ripple velocity at which the response rolls off by 50% from the maximum (= 20Hz).

In almost all units recorded, reliable data points of the phase function ®q(w) (those for which
the weighting factor exceeded 60%) could be fit well by a straight line defined as (Fig. 3C):
dq(w) = 2nwry+ D (0), where the slope reflects the absolute time-delay (7;) between stimulus
and responses. Note that this delay is affected by the additional delay due to the arbitrary
choice of the starting time of the period histogram. In all cases shown in this paper, the period
histograms were constructed from responses starting at ¢ = 120 ms, and hence the absolute
time delay was computed from:

74 = (0.12 — slope (radian/Hz)) seconds. (8)

For example, in Fig. 3C, the slope is equal to 40 deg/Hz, giving a 74 = 9 msec. Another
parameter of the phase fit is its intercept along the ordinate, ®q(0), which is a constant phase-
shift between the period histogram and the ripple stimulus. We will come back to this.

3.5.2 Ripple transfer function tests

Another complementary test of the response properties to moving ripples is shown in Fig. 4.
Here, the ripple velocity was fixed at w = 12 Hz, while the ripple frequency {2 was increased
systematically from 0 to 2 cycles/octave (Fig. 4A). The responses were analyzed in a manner
similar to that of Fig. 3. First, a period histogram is constructed for each stimulus condition,
which is then Fourier transformed to compute the primary phase-locked responses (Fig. 4B).
These are then weighted and plotted as a ripple transfer function measured at w, i.e.,

|AC\(Q )I
Vi l4ci@
where |AC;(€2)| is the magnitude of the 5** Fourier component of the period histogram response,

and w is the specific ripple velocity at which the ripple transfer function is measured. In general
T.(§2) can be written as:

T,(2) = ACL(Q) - (9)

T, (Q) = |T,(Q) |’ (10)

where j = \/—1. Figure 4C illustrates the magnitude |T,,(Q2)| and the unwrapped phase @, ()
of the transfer function 7,,(2). The ripple frequency at which |T,,(Q)] is a maximum is desig-
nated as €2, (= 0.4 octaves/cycle in Fig. 4C).

A straight line fit to the phase function, @w(ﬂ), is shown in the bottom panel of Fig. 4C,
and can be described as

d,(Q) = 21Qz,, + $,(0) , (11)

where x,, is the slope of the line, and fi)w(O) is its intercept. The parameter z,, reflects the
location (in octaves) of the RF relative to the left edge of the ripple. The distance from the
center of the RF envelope to the left edge of the spectrum is given by & - %" + Zp,, where A is
the step size of the ripple frequencies tested, and % is an integer > 1 (Shamma et al. 1995).
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The intercept &,,(0) is an additional constant phase shift between the period histogram and
the stimulus ripple. Note that z,, and z, (defined earlier for stationary ripples) are analogous
except for the use of moving ripples.

3.5.3 Extraction and interpretation of the parameters of the phase functions

The slopes and intercepts of the phase functions ®q(w) and &,() carry useful information
about the ripple and temporal response characteristics of the units. Specifically, four indepen-
dent sources (parameters) contribute to the phase of the response period-histogram. The first
two are due to the tonotopic location and shape of the unit RF. The other two depend only on
the temporal properties of the unit’s responses.

1. A phase shift due to the location of the unit along the tonotopic axis relative to the left
edge of the stimulus spectrum: For example, at a given instant, two units centered at
different BF’s see different stimulus ripple phases, and hence their period histograms will
be phase-shifted accordingly. This phase-lag is given by 27z, (radians).

2. A phase shift due to the asymmetry of the RF: An hypothetical example of such a shift
would be the difference in the responses of two units located at the same BF, but one with
a symmetric RF, and the other with an inverted RF (an inhibitory center and excitatory
sidebands); the response period histograms would in this case be 7 radians out-of-phase.
This phase contribution is designated ¢,, to distinguish it from the ¢, measured using
stationary ripple stimuli.

3. A phase shift due to the absolute delay between the stimulus and responses (or the
response latency). This has already been defined as 2mw7y earlier.

4. A phase shift (§) due purely to the temporal response properties of the cell, i.e., indepen-
dent of the RF shape and location.

These four phase shifts can be determined from the phase functions and their linear fits as
follows:

(i) Using &,(Q): The slope of this line, z,,, reflects the location of the RF relative to the
left edge of the stimulus spectrum. The intercept ®,(0) represents the total constant
phase-shifts due to the other three phase factors listed above, i.e.,

A

Q,(0) = 2wy + 0 + by . (12)

Note that the phase of the response period histogram to the flat spectrum ®,,(0) does not
depend on the RF shape, but rather only on the temporal factors, i.e. ®,(0) = 2nwry+6.
Consequently, we have a way of estimating the asymmetry of the RF from the ripple
responses as: )

¢m = <I>w(0) - (Pw(o) . (13)
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(ii) Using ®q(w): The slope of this line fit reflects the absolute time delay between stimulus
and responses, 7;. The intercept is due to the other three phase-shifts listed above:

Do (0) = 2mQz, + G + 0. (14)

Since the first and second terms can be estimated from the ripple transfer function tests
as described above, 8 can also be determined.

Typical distributions for the phase factors described above can be found in Figures 6E, 8B, 8C
and 13C.

3.5.4 The inverse transfer functions

The ripple and temporal transfer functions can be inverse Fourier transformed to obtain the
corresponding impulse responses. In either case, the phase functions must be modified so
that only the relevant phase-shifts are kept: for example, to compute the RF from the ripple
transfer function 7;,(€2), the temporal phase-shifts (2rw7y + 6) must be first subtracted from
the phase function and the remainder is then inverse transformed to obtain the response field
RF, (Fig. 4D):

RF,(z) = F (| T, (Q) e/ @)2rema=0)), (15)

or equivalently: _
RF,(z) = FH(|T,(Q) ] O mtom)) | (16)

where F~1(-) denotes the inverse Fourier transform. The subscript in RF,,(z) is used to distin-
guish this function from the RF measured with stationary ripples. The location of the maximum
of this response field along the tonotopic axis is defined as BF,,, which is an estimate of the
BF of the unit using moving ripples.

To compare the shapes of the two response fields (RF vs RF,), we use the correlation

coefficient p defined as:
> RE, -RF

p= 2 2
VT, RE}? T, RF

If p =1, the two curves are identical in shape; the correlation decreases as p decreases.

Similarly, a temporal impulse response (I Rq(t)) can be defined as the inverse Fourier trans-
form of the temporal transfer function T(w). Again, the phase function is modified to subtract
out the phase contributions due to the RF shape (Qz,, + én), i.e.:

(17)

TRa(t) = F1([Ta(w) e/ P00 -250n=0m)), (18)

or equivalently: .
IRqo(t) = F~}(|Ta(w) |/ merat?). (19)

Fig. 3D provides an example of such an I Rq(t). Note that this function intuitively represents
the response of the unit to an impulsive presentation of a ripple spectrum of frequency £2.
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4 Results

Data presented here were collected from 81 single unit and 51 multi-unit recordings in 10 fer-
rets. In general, the responses to moving ripples fell into two types: Those that followed closely
the stimulus periodicities (stimulus evoked periodicities), and others that had intrinsic rhythms
initiated by the stimulus but were mostly unrelated to the stimulus envelope periodicities (stim-
ulus induced rhythms). Many units exhibited both types of response periodicities. Unless stated
otherwise, all responses illustrated in the figures below were collected from single units. In the
summary histograms, both single units and clusters are included but are distinguished from
each other.

4.1 Stimulus evoked periodicities

Approximately 80% of all units/clusters exhibited synchronized responses to moving ripples.
The strength of the responses depended critically on the ripple velocity and ripple frequency.
The next three sections explore the dependence of the responses on these two parameters. The
following sections discuss the type of information derived from such moving ripple tests about
the cell’s response fields and temporal response properties.

4.1.1 Temporal transfer functions

AT units synchronized their responses to moving ripples at velocities ranging from as low as
2 Hz to over 70 Hz. To examine the dependence of responses on ripple velocity, temporal
transfer functions T (w) were constructed for all cells and clusters isolated as described in
METHODS. Examples from three typical units are shown in Figure 5. For all three, the
ripple frequencies used (1.2, 0.8, and 0.4 cycles/octave) are the characteristic ripple frequencies
as determined from a stationary ripple test. The top unit (Fig. 5A) was slower than the average
with wy, = 4 Hz. By contrast, the bottom unit was fast (w, = 20 Hz), with responses still
following the ripple phase at rates exceeding 30 Hz (Fig. 5C). More typically, Al units were
most responsive around 8-12 Hz as demonstrated by the responses of the middle unit (Fig. 5B).
Furthermore, all Al units sampled in this barbiturate anesthetized preparation exhibited very
little spontaneous or steady state activity, and hence the temporal transfer functions always
decrease to zero near w = 0. Figure 6 provides the distribution of several parameters of Ty (w)
for all units/clusters recorded: The velocity of maximum response wy, (Fig. 6A), the velocity
at 50% of maximum response (cut-off velocity) w. (Fig. 6B), and bandwidth of the transfer
function (Fig. 6C). Bandwidths were measured at 6 dB (or 50%) below the maximum of the
transfer function. They averaged around 3 octaves, ranging from 2 to 4 octaves and correlated
linearly with w,, (Fig. 6D).

Note that in many rasters, the responses appear to decay gradually over the 1.7 second
duration of the sweep. The rate of decay is variable: for instance, in Fig.5, decay is significant
in the responses of the middle unit, but almost absent in the responses of the bottom unit.
Regardless of this slow decay, the period histograms constructed near the beginning or the end
of the sweep are very similar, apart from an overall decrease in spike count which does not
affect the parameters extracted.

While the shapes of the magnitude transfer functions varied in bandwidth, peak, and cut-off
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velocities, their phase functions were typical in that they closely followed a linear relationship
as a function of w. The slopes of the linear fits provided estimates of the response latencies
(74), which averaged around 24 ms as summarized in Fig. 6E histogram. The intercepts of the
linear fits depend on many parameters such as the BF, asymmetry of the RF, and others which
are detailed later in this section.

4.1.2 Ripple transfer functions

The strength of the synchronized responses to moving ripples is affected by the ripple frequency.
This is demonstrated by the ripple transfer functions T,,(£2) shown in Fig. 7: for each unit, the
ripple frequency €2 was increased from 0 to 2 cycles/octave while holding the ripple velocity w
constant. As with stationary ripples, responses to moving ripples were tuned around various
characteristic ripple frequencies (e.g., ,, = 0.4, 0.8, and 1.2 cycles/octave in Figs. 7TA-C).
Figure 8A provides a summary distribution of €2, from all such recordings. Similarly, the
response phases could be well fit by straight lines whose slopes reflected the BF of the units, as
demonstrated by the match between the ripple (BF;,) and tone BF measurements in Fig. 8B.

The intercepts of the linear phase fits varied depending on the response latency, temporal
phase factor €, and the RF asymmetry ¢,,. As described in METHODS (Eq.16), subtracting
out the first two phase terms above from the phase function, and inverse transforming the
remaining ripple transfer function gives the RF,, - the response field of the unit measured with
ripples moving at velocity w. These RF,, functions are shown for all units in Fig. 7. Note the
lack of any significant inhibition in the top unit, and the changing asymmetry of the inhibition
in the other two units (¢, = —8° (Fig. 7B), —23° (Fig. 7C)). A summary of the range of
asymmetries seen in all units/clusters recorded is given in Fig. 8C. The basic finding that
emerges from these histograms is that the distribution of RF shape parameters measured with

moving ripples (Q,, ¢n,) closely resembles that seen with stationary ripples (Shamma et al.
1995, Schreiner and Calhoun 1995).

4.1.3 Separability of the combined ripple-temporal transfer function

All transfer functions described so far were one-dimensional in that either the ripple frequency
(Ta(w)) or velocity (T.,(€2)) was held constant while varying the other parameter. A complete
transfer function T'(w,2) is, however, two-dimensional, combining the dependence on both
parameters. For some single units (N = 24) and clusters (N = 15), transfer functions were
measured for a few w and ) combinations, so as to determine if the transfer function, or
equivalently the RF,, and I Rq, defined in Eqs.(16) and (19) resp., changed systematically with
either parameter. Figure 9 illustrates the RF,’s of two units computed from a series of ripple
transfer functions measured at different w’s. In both cases (Figs. 9A and B), RF,, shapes remain
relatively unchanged apart from an overall decline in spike count at w’s away from the w,, of
each unit. This is confirmed by the significant pairwise correlation coefficients between the
RF,’s of each unit (> 0.85). Similar results were obtained from a large number of units and
clusters as summarized by the histogram of Fig. 9C. '

Analogous results are illustrated in Figure 10 which depicts the I Rq’s of three units com-
puted from a series of temporal transfer functions measured at different (2’s. In two cases
(Figs. 10A and B), the I Rq’s remain similar apart from an overall decrease in spike count at
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Q # Q.. In Fig. 10C, the I Rg computed using a flat amplitude-modulated spectrum (£ = 0)
compares well with that measured at = 0.8 cycles/octave. These results are confirmed by
the significant pairwise correlation coeflicients found between the IRq’s in Figs. 10A-C, and
also from a total of 50 units/clusters as summarized in the histogram of Fig. 10D.

4.1.4 Comparing the RF’s measured with stationary and moving ripples

The stability of the RF,, shape with ripple velocity w suggests that measuring response fields
using stationary or moving ripples should produce similar results. The correspondence between
the two RF types is examined in Figure 11, where for each unit the three parameters of the
RF - characteristic ripple (Q,, vs. €,), asymmetry (¢, vs. ¢,), and BF - were measured and
plotted against each other (Figs. 11A, B, C, respectively). For all three cases, the parameters
are significantly correlated (r > 0.5, p < .001). The similarity of the stationary and moving
ripple RF’s is illustrated in Fig. 11D for two units whose pairwise correlation coefficients are
significant. Similar coefficients were obtained from 50 unit/clusters as shown in the histogram
of Fig. 11E. Note that, in all plots of Fig. 11, RF,, parameters were measured at wp,. Also,
for reasons that are discussed after the next section, all plots exclude the few (5) units whose
temporal phase factor 8 is negative.

4.1.5 Dependence of responses on ripple amplitude and stimulus intensity

Because of the large number of paradigms examined in these experiments, and the limited time
available to record from an isolated single unit, tests were usually performed at a single intensity
where a strong response was elicited. In order to verify that the responses were not strongly
dependent on the overall sound level or the ripple amplitude, we examined the responses at
different intensities for a group of 11 cells. Period histograms and their best fits were constructed
for responses over a 40 dB change in intensity and/or varying ripple modulation depths (50 -
100%). Apart from an overall change in spike counts, period histograms in all cases remained
stable over the range tested. This finding is illustrated by the responses of the unit in Fig. 12,
where the period histograms were measured at one ), w combination (1.6 cycles/octave and 4
Hz) over a 30 dB change in overall level (Fig. 12A) and a change in ripple amplitude from 50%
to 100% (Fig. 12B).

4.1.6 More on the impulse response functions

The impulse response function IRq(t) is computed from the temporal transfer functions ac-
cording to Eq.19. As discussed earlier, its shape is roughly independent of the ripple frequency
Q used in its measurement (Figs. 10); therefore, it reflects purely the temporal properties of the
cell rather than its RF. IR functions were computed from over 60 units, with several examples
already shown in Figs. 3, 5, and 10. Four more examples are shown in Figure 13 (A and B).
IR functions typically resemble the impulse response of a causal bandpass filter, with an
initial large oscillation that decays in a short period of time. A distinctive feature of the response
is its initial polarity, which is reflected by the value of the parameter 8. In the vast majority
of cells (88%) (Fig. 13C), 6 is between 45° to 135°, giving the impulse response the initially
positive or positive-going shape seen in Fig. 13A. In less than 10% of the cells, the impulse
responses appear inverted corresponding to a strongly negative 8 (—45° to —165°) (Fig. 13B).
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In this latter population, several other response characteristics are unusual. Some are
illustrated in Figure 14 for the same unit whose impulse response is shown in Fig. 13B (6 =
—89°). The responses to moving ripples in Fig. 14A appear normal except for the total absence
of onset responses seen usually at 70-80 ms into the sweep in all other rasters (e.g., Figs. 3-5,
7). In fact, the unit seems initially inhibited by the stimulus onset until about 160 ms. The
raster in Fig. 14B illustrates the weak onset responses to a stationary ripple, and the stronger
responses to the offset (compare to Fig. 2A). Interestingly, the two responses are almost out-of-
phase (Fig. 14C), and hence the RF’s constructed from these two different response windows are
roughly inverted relative to each other (solid curves in left and right plots of Fig. 14D). Note also
that these “onset” and “offset” RF’s match well the corresponding onset and offset iso-intensity
response curves elicited by the single tone (Fig. 14D). Furthermore, the RF;,, computed from
the moving ripples (Fig. 14D) matches well the RF derived from the “offset” responses to the
stationary ripple. A possible interpretation of these results is presented in the DISCUSSION.

4.1.7 Responses to moving ripples based on the average firing rates

In addition to the phase-locked responses to moving ripples, the average firing rate of Al
units (measured by the ACy(-) component of the period histograms as explained in METH-
ODS) changed systematically as a function of ripple frequency or velocity. As demonstrated
in Figs. 3C and 4C, it was usually tuned in a manner quite similar to the temporal and ripple
transfer functions. This type of response apparently reflects the half-wave rectification of the
firing rate of the phase-locked responses.

4.2 Stimulus induced slow rhythms

For 26 cells, or about 30% of the cells, a rebound of activity was clearly observed after an
interval between 130 and 200 ms following the stimulus evoked response, either the onset or
one of the phase-locked waves of activity. When the stimulus periodicity was longer than
200 ms, the rebound was easily seen as additional spikes a fixed interval after the stimulus-
evoked spikes. This is illustrated in Figure 15A where the top panel shows two examples of
this type of slow rhythm: for the 3Hz paradigm in Fig. 15A, stimulus evoked spikes (onset
response) appear at 78 ms, followed by a rebound of activity at about 240 ms. Other groups of
stimulus-locked spikes appear at 350 ms and 680 ms, followed by their rebounds at 550 ms and
850 ms resp. We determined that the stimulus-locked part of the response was at 350 ms and
680 ms using the linear regression as in Fig. 3C. In Fig. 15B, another type of rebound activity
is shown: a strong onset response at 68 ms is followed by rebounds at 260 ms, 430 ms and
600 ms. In this second case, the rebound activity is so strong that it completely overshadows
any stimulus locked response. Fig. 15B is fairly typical of this second type of stimulus induced
slow rhythm, with the interval from onset to first rebound around 200 ms, and the subsequent
intervals slightly shorter, at 170 ms. :

Certain general properties of these slow rhythms emerged regardless of the type of rebound
(Fig 15A or 15B). Where tested, the interval to rebound was independent of the temporal
frequency of the ripple. Examination of individual trial records revealed that spike occurrence
in the rebound was not conditional upon occurrence of spike(s) in the onset or the stimulus
evoked responses, as noted also by Eggermont (1992) and de Ribaupierre et al. (1972). In units
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of the type shown in Fig.15A, little rebound of activity was distinguishable at ripple velocities
exceeding about 6 Hz, though the overall spike activity was often modulated with the same
period.

4.3 Stimulus evoked fast firings

In a small subset of cells, the usual phase-locked responses consisted of a burst of pseudo-regular
fast firings at intervals of the order of 8-16 ms. Figure 15C illustrates these patterns; The cell
responds in the usual fashion to ripples presented at different ripple frequencies; at the best
ripple frequency, 1.2 cycles/octave (but it can also be seen to some extent at .8 cycles/octave),
the response of the cell exhibits a substructure which appears as vertical alignment of spikes
from one sweep to the next. An auto-correlation of the response shows a strong peak at
12.2 msec at .8 and 1.2 cycles/octave.

An accurate determination of the number of cells showing these fast periodicities is not easy,
since in many cases it was only visible during part of the response (either at the beginning or
towards the end), and the strength of the response varied considerably. The repetitive firings
in these cells was generally fast enough that it did not interfere with measurements of the much
slower “envelope” of the responses to ripples. Cells exhibiting these response bursts usually
had relatively fast response parameters (w,, > 10 Hz) and lower BF’s (< 3 kHz). These two
properties suggést that in most cases the bursting may simply reflect the ability of the cell to
follow the fine temporal structure of the stimulus, as explained and justified in more details
below in Discussion.

5 Discussion

5.1 Summary of response properties to moving ripples

Units in the ferret Al respond in a phase-locked manner to moving ripple spectra at velocities
occasionally exceeding 70 Hz. The responses are usually best around a specific ripple velocity
wm and ripple frequency §2,,. In the ferret, w,, is restricted below approximately 30 Hz, being
mostly in the 8-16 Hz range; €, is usually lower than 2 cycles/octave. These findings are
roughly consistent with those found in different species using different experimental paradigms:
for instance, a variety of experiments with dynamic spectra (e.g., narrowband such as AM
and FM tones, or broadband such as modulated noise and click trains) have found similar
maximum rates of synchronized responses in Al (cat:Schreiner and Urbas 1988, Eggermont
1994; rat: Gaese and Ostwald 1995; squirrel monkey: Bieser and Miiller-Preuss, 1996).

By focusing on the linear component of the response, that is the component phase-locked
to the moving ripple, it is possible to measure a temporal and a ripple transfer function for the
cell. The magnitude and phase of these functions provide a variety of complementary ways to
characterize the unit responses. For instance, the ripple transfer function implies the response
field of the unit, and such information as the BF', the excitatory bandwidth, and the asymmetry
of the inhibitory sidebands (Shamma et al. 1995). Similarly, the temporal transfer function
leads to the impulse response and to such temporal parameters as the response latency, speed,
and polarity.
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An interesting aspect of the transfer functions is the excellent straight line fits of their phase-
functions which allowed us to extract several parameters of the response fields and impulse
responses. This fit is not as puzzling as it seems if it is considered as an approximation of
the phase function in the neighborhood of w,, and Q,, where cell responses are strongest. In
this light, the phase function may be nonlinear over a wide w and 2 range, but with little
consequence since the responses away from the transfer function peaks (at w,, and Q,,) are
weak.

Our observations regarding the slow stimulus induced rhythms are in good agreement with
those of Eggermont (1992), who found oscillatory rebound activity after click stimulation in
about 60 % of neurons of the auditory cortex of cats, and a 130-155 ms post-click suppression
of activity. Eggermont, Abeles (1982), and Steriade and Llinas (1988) attribute this rhythmic
activity to the anesthetic, as this rebound activity is not seen in the awake animal.

As to the fast firings, we believe that they are essentially stimulus driven. This is because the
tones that make up the stimulus in the low BF region (near 2-3 kHz), like the cell in Fig.15C for
instance, are separated by about 70-110 Hz, and hence can induce envelope periodicities on the
order of 14-9 ms, especially if the signal is bandpassed. It is tempting therefore to ascribe the
fast periodicities in the responses to the interaction between these components of the ripples.
This conclusion is further supported by the fact that cells with BF’s higher than about 6kHz,
where the component tones are at least 200 Hz apart (less than 5 ms intervals), exhibit fast
firings with intervals that are multiples of these periods, presumably due to the inability of
most cortical cells to fire with intervals smaller than 6-7 ms. It still remains intriguing that
cells that displayed this fast firing typically did so near parameters that elicited the strongest
responses, i.e. near the cell’s best ripple frequency and velocity.

Recordings in the inferior colliculus (to be published elsewhere) where cells can follow stim-
ulus envelope modulations that are much faster than cells in the cortex, support our conjecture.
It should be noted however, that many Al units with similarly low BF’s did not exhibit these
fast rhythms; hence the fast responses may reflect a distinct population of cells such as the fast
spiking cells (non-spiny interneurons) as opposed to the regular spiking (pyramidal and other
spiny cells) as suggested by Kawaguchi (1995). The study of these cells was not the focus of our
study, and therefore we did not store the actual spike waveforms of the cells we recorded from,

which would be needed to correlate the response with the cell types as described in Kawaguchi
(1995).

5.2 Separability of the temporal and ripple transfer functions

An important property of the responses is that the ripple and temporal functions are separable,
that is they can be measured to within a scale factor independently of each other. This is
confirmed by the high correlation coefficients (greater than 0.6) between the RF’s and IR’s
measured at different ripple velocities and frequencies (Fiigs.9 and 10). The lowest correlation
coefficients (less than 0.6) in Fig.9C are from comparisons of RF’s measured at widely separated
velocities (e.g., 4 vs. 48 Hz in two cases, and 4 vs. 32 Hz in another). There are many additional
sources of error in such high velocity measurements, such as the weak responses and the limited
resolution of our histograms.

An experimentally useful consequence of the separability is that the response field need only
be determined once at any ripple velocity (a generalized response field, RF). The same applies
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to the impulse response function which can be measured at any ripple frequency (a generalized
impulse response, ZR). Given those two functions, the overall output response of a unit to a
moving ripple could be interpreted as a two stage process as illustrated in Figure 16: In the
first stage, the product of the RF and the ripple spectrum (S(z,t)) at each time instant is
computed to produce an intermediate time function (¥, S(z,t) - RF(z)). This is conceptually
the response of the cell if its dynamics (represented by the ZR) were totally ignored. In the
second stage, the intermediate function is ‘filtered’ by (or convolved with) the ZR to compute
the final expected response of the cell. This “model” is consistent with findings from analogous
experiments in the visual system (Watson and Ahumada 1985; McLean and Palmer 1994) and
the auditory system (Mgller 1976).

The separability property implies that the temporal transfer function can in principle be
measured at Q = 0 (Fig. 10C), i.e., a flat spectrum which resembles an amplitude-modulated
noise (or even approximately a click train), stimuli that have been extensively used in the
past to measure temporal response properties of cortical and subcortical cells (Eggermont
1994; review by Langner 1992). Our temporal transfer functions are therefore understandably
similar to those observed earlier. One advantage of moving ripples over flat spectra such as
AM white noise is that the latter may be ineffective at driving the unit compared to a ripple
at the characteristic frequency. For example, in the responses shown in Fig. 7, the middle and
bottom units were strongly tuned to 0.8 and 1.2 cycles/octave and responded poorly to the
flat spectrum. In such units, it would have been difficult to obtain a reliable temporal transfer
function by temporally modulating the amplitude of a flat spectrum. Another advantage of
moving ripples is that the same responses can be used to derive the response field, providing a
more detailed characterization of the unit.

The separability of the ripple and temporal aspects of the responses also implies that the
RF measured with ‘stationary’ ripples is also accurate for all dynamic spectra (Fig. 11D-E).
The word ‘stationary’ is put in quotes here because although the ripples are not moving, the
responses in fact occur at the onset of the stimulus, and are rarely sustained afterwards. In
effect, then, the unit is responding to a dynamic ripple - a step input, or a turned-on ripple
which can be thought of as composed of many moving ripples. Separability, however, suggests
that the same ripple transfer function is measured regardless of the time-course of the ripple
spectrum. The one exception is the minority of units where 8 is negative. Here the step response
would be inverted leading to erroneous results as discussed in Fig. 14. For these cells, a moving
ripple is a better test stimulus.

It should noted however that the ripples used in this study were all moving downwards in
frequency, so that strictly speaking separability here is valid in “one quadrant” (McLean and
Palmer 1994; Watson and Ahumada 1985; see also DeAngelis et al 1995). In a few cases, we
have presented upward moving ripples which elicited comparable response strength. However,
to establish full separability, it is necessary to carry out a more systematic study with ripples
moving in both directions.

Finally, separability of the transfer functions has been demonstrated here mostly for re-
sponses near the peaks of the transfer functions, i.e., near wy, and ,,. It is, therefore, possible
that RF and TR functions are more strongly interdependent far from these velocities and ripple
frequencies. However, just as with nonlinearity of the phase functions, this is inconsequential
since the responses far away from the transfer function peaks are weak.
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5.3 The polarity of the impulse responses

For most units, the impulse response IR had a positive polarity (# > 0) in effect acting as
a temporal derivative. In a few cells, the impulse responses were inverted. While there were
some consequences of this unusual polarity, such as the absence of onset responses, there were
no other obvious correlates such as different w,, and §2,, ranges, or different tone response
latencies (on average only 3-4 ms longer). A very similar finding of impulse responses with
opposite polarities has recently been reported in the visual system. The two classes of cells
- called lagged and nonlagged - have been found in the lateral geniculate nucleus, but not in
the retina (Saul and Humphrey 1990). They are thought to be concerned with temporally
decorrelating time-varying inputs (images) so as to achieve higher coding efficiencies (Dong
and Atick 1995). If this is the case, it is unclear why the proportion of these two types in both
the auditory and visual systems is so unbalanced. It may be that the two types are spatially
segregated, or that search methods are biased to isolate and record from units of the positive
type. The latter possibility is indeed the case in our experiments where “onset” excitatory
responses to short tone pips are used as search stimuli.

The responses detailed in Fig. 14 are illustrative of the difficulties in recording and inter-
preting such units. When stimulated by a single tone, the onset responses of the unit were
tuned around 5 kHz, which agrees with the BF derived from onset responses to ripples (left
plots in Fig. 14D). Usually, frequencies evoking these onset responses are thought of as the ex-
citatory field of the unit’s response area, possibly flanked by inhibitory areas exhibiting strong
offset responses (see Shamma et al. (1993), fig. 2, or Shamma and Versnel (1995), Fig 3B for
examples). However, recognizing that this unit has an IR with a negative polarity (6 < 0)
suggests that these onset responses are in fact indicative of the inhibitory response areas of
the unit (and that the offset responses are indicative of the ezcitatory response areas). This
interpretation is supported by the moving ripple responses which are sustained, i.e. are not
labeled as onset or offset. In this case, the excitatory field of the RF,, at around 6.5 kHz (right
plot of Fig. 14D) matches almost exactly the location of the inhibitory field derived from the
onset responses to ripples and tones (left plot of Fig. 14D); the same opposition holds for the
inhibitory field at 5 kHz.

5.4 Relation to psychoacoustics

There is extensive psychoacoustical literature examining perception of dynamic stimuli. Of
immediate relevance to our results are experiments measuring the psychoacoustical tempo-
ral transfer function using sinusoidally modulated stimuli such as frequency modulated linear
rippled spectra (Yost and Moore 1987) and amplitude modulated noise (Viemeister 1979).
Modulations for the former type of stimuli are detectable only up to 10-20 Hz, while they ex-
tend up to 1-2 kHz for the latter. Physiological responses in AI may infrequently phase-lock
to the fast modulation rates; more typically, however, the bulk of the responses recorded in
different species and under various anesthetics are compatible with the lower modulation limits
(Fig. 6A). Phase-locking to faster rates is commonly seen in precortical structures such as the
inferior colliculus (Langner 1992). Therefore, the different psychoacoustical detection limits
may hint at the prerequisite physiological structures involved in these tasks.

It is unclear why the Al is so dramatically slower than the inferior colliculus. One possibility
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suggested by Eggermont (1992) implicates interactions between the slow alpha rhythms and
the stimulus evoked responses resulting in an amplification of the responses at 10-20 Hz. This
explanation is consistent with the similarly slow phase-locked responses in the medial geniculate
body (Rodrigues-Dagaeff et al. 1989) where strong alpha rhythms are also found (Chatila et
al. 1993).

5.5 Linearity of the responses

The premise underlying much of the analysis and discussion in this report is that the phase-
locked responses to moving ripples are essentially linear. In this light, temporal and ripple
transfer functions, impulse responses, and response fields provide meaningful and efficient char-
acterization of the unit responses. This premise, however, is only indirectly validated here by
such things as the correspondence between stationary and moving ripple RF’s (Fig. 11D-E),
and between the tonal and ripple BF’s (Fig. 12C and Shamma et al. 1995). A direct test of the
linearity must demonstrate that the phase-locked responses obey the superposition principle.
That is, the responses to single moving ripples can be added linearly to predict the responses
to multiple ripples. If operative, this principle allows us to predict a unit’s responses to any
dynamic input spectrum using the procedure outlined in Fig. 16. This hypothesis is validated
by the results of experiments described in the companion paper (Kowalski et al. 1995).
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Figure Legends

Figure 1: The spectrum of the ripple stimulus consists of 101 tones, equally spaced along the

(A):
(B):

logarithmic frequency- axis (usually) between 0.5 kHz and 16 kHz. The amplitude of the
individual components was adjusted so as to form a sinusoidally shaped spectrum around
a flat base. The ripple amplitude AA is defined as the percentage modulation around
the base. The phase of the ripple is defined with respect to the the lower edge of the
spectrum.

A stationary (non-moving) ripple spectrum with ripple frequency 2 (= 0.5 cycles/octave)
and ripple phase ® (= 90°).

A moving ripple (2 = 0.5 cycle/octave). Ripple phase changes linearly with time at rate
w (cycles/sec or Hz). Angular frequency w in cycles/sec or Hertz; it always starts at
® = 0°.

Figure 2: Analysis of responses to stationary ripples.

(A): Raster responses of an Al unit to the various phases of a ripple spectrum (2 = 0.8

(B):

(D):

cycle/octave). The bar indicates the stimulus duration and the spike count window.

The responses to 3 ripples with (€2 = 0.4,0.8 and 1.2 cycles/oct) for 8 equidistant phases.
The spike count is plotted against the different ripple phases (small circles). The dotted
horizontal line represents the spike count obtained from the flat spectrum (2 = 0). The
best fit to the primary response component (AC}) is represented by the dashed curve.
The axis at the bottom gives the equivalent shift each ripple pattern undergoes at each
phase step.

: The magnitude |T'(Q)| and unwrapped phase ®(€) of the ripple transfer function as

determined from the best fits to the primary response component at each Q. A straight
line fit to the phase function ®q is shown, together with its slope and intercept. The
slope is only defined modulo 27 /A .

Inverse Fourier transform of T'(Q2) gives the response field (RF) of the cell.

Figure 3: Analysis of responses to ripples moving at different velocities (temporal transfer

(D):

function).

: Raster responses to a ripple (€ = 0.8 cycle/octave) moving at different velocities w. The

stimulus is turned on at 50 ms. Period histograms are constructed from responses starting
at t = 120 ms (indicated by the arrow).

: 16 bin period histograms constructed at each w. The best fit to the spike counts (circles)

in each histogram is indicated by the solid lines.

: The amplitude (dashed line in top plot) and phase (bottom data points) of the best fit

curves are plotted as a function of w. Also shown in the top plot is the normalized transfer
function magnitude (|Tn(w)|) and the average spike count as functions of w. A straight
line fit of the phase data points ®o(w) is also shown in the lower plot.

The inverse Fourier transform of the temporal transfer function T (w) gives the impulse
response function of the cell (IRq(?)).
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Figure 4: Analysis of responses to moving ripples with different ripple frequencies (ripple
transfer function).

(A): Raster responses to a moving ripple (w = 12 Hz) with different ripple frequencies {2 = 0—2
cycle/octave. The stimulus is turned on at 50 ms. Period histograms are constructed from
responses starting at ¢ = 120 ms (indicated by the arrow).

(B): 16 bin period histograms constructed at each 2. The best fit to the spike counts (circles)
in each histogram is indicated by the solid lines.

(C): The amplitude (dashed line in top plot) and phase (bottom data points) of the best fit
curves are plotted as a function of Q. Also shown in the top plot is the normalized transfer
function magnitude (|T;,(£2)|) and the average spike count as functions of Q. A straight
line fit of the phase data points is also shown in the lower plot.

(D): The inverse Fourier transform of the ripple transfer function T, (f2) gives the response
field of the cell (RF,(x)).

Figure 5: Temporal Transfer Functions: Examples from three units (A-C). For each unit, a
raster plot is shown at the top, together with the magnitude and phase of its temporal
transfer function, and the corresponding impulse response function. Details of the plot
are as in Fig. 3.

Figure 6: Distribution of several parameters of the Tn(w) for all units/clusters recorded.

(A): The velocity of maximum response wp,

(B): The velocity at 50% of maximum response (cut-off velocity) w.

(C): Bandwidth of the transfer function (in octaves).

(D): Scatterplot of wy, vs. Bandwidth of To(w).

(E): The latency of response, 74.

Figure 7: Ripple Transfer Functions: Examples from three units (A-C). For each unit, a raster

plot (40 sweeps) is shown at the top, together with the magnitude and phase of its ripple
transfer function, and the corresponding response field. Details of the plot are as in Fig. 3.

Figure 8: Distribution of several parameters of the ripple transfer function T,(2) for all
units/clusters recorded.

(A): Distribution of £2,,.

(B): Scatter plot of BF as determined from pure tones and from moving ripples.
(C): Distribution of ¢,,.

Figure 9: Dependence of RF,, on w. (A) and (B) illustrate a comparison of RE’s from two
units derived at different ripple velocities. Also indicated are the pairwise correlation
coefficients between the different RF,,’s of each unit. (C) is a histogram of the correlations
coefficients obtained from such RF,, comparisons in 39 units/clusters.
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Figure 10: Dependence of IR on §2. (A-C) Figures illustrate a comparison of IR’s from three
units derived at different ripple frequencies. Also indicated are the pairwise correlation
coefficients between the different I Rq’s of each unit. (D) A histogram of the correlations
coefficients obtained from such IR comparisons in 50 units/clusters.

Figure 11: Comparison of RF’s and their parameters measured with stationary and moving
ripples. For each unit the three parameters of the RF' and RF,,  are plotted against each
other.

gezZez

The characteristic ripple
RF asymmetry
The BF derived from the RF.

: Stationary and moving ripple RF’s compared directly

Oaw>

(E): Histogram of the correlation coefficients between stationary and moving ripple RF’s from
50 units/clusters.

Figure 12: Stability of the response parameters with overall sound intensity and ripple am-
plitude.

(A): Response of a cell to a ripple spectrum with different overall sound intensities. Shown
at each level is the period histogram of the responses at Q = 1.6 cycle/octave (circles)
together with the best fits (solid lines).

(B): Response period histograms from a single unit at different ripple amplitudes AA = 50 —
100%).

Figure 13: Impulse response functions derived from moving ripple stimuli.
(A): Impulse responses for two units with > 0.
(B): Impulse responses for two units with 6 < 0.
(C): Histogram of 6’s for 56 units/clusters.

Figure 14: Response properties of a unit with 8 < 0.

(A): Raster responses to moving ripples at w = 8 Hz, and a range of {2 = 0 — 2 cycles/octaves.
Note the inhibition of the onset responses near t = 70 msec.

(B): Raster responses to a stationary ripple at @ = 1.2 cycles/octave. The double-arrowed
bars at the bottom indicate the time windows over which the onset and offset response
spikes were counted. The black line indicates stimulus duration. All other details of the
raster are as in Fig.2A.

(C): Period histograms and their fits derived from the onset (left) and offset (right) responses
to the ripple.
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(D): The middle raster illustrates the responses to a single tone (65 dB SPL) with the range

of frequencies indicated on the ordinate. The double-arrowed bars at the bottom indicate
the time windows over which the onset and offset response spikes were counted, and the
black line indicates the stimulus duration. The counts are plotted as a function of tone
frequency (dashed lines) together with the stationary RF’s (solid curves) and moving
ripple RF,, ( dotted curve) in the panels on either side of the raster.

Figure 15: Examples of stimulus evoked slow and fast rhythms in the cortical responses.

(A):

At 3Hz, an onset response appears at 78 ms, followed by rebound spikes at 240 ms. Other
stimulus-evoked spikes appear at 350 ms and 680 ms, followed by rebounds at 550 ms
and 850 ms resp. The timing of the stimulus-evoked response is determined using the
linearity of the response phase to ripples of higher velocity (see Fig.3C).

: Another type of rebound activity: a strong onset response at 68 ms is followed by rebound

spikes at 260 ms, 420 ms and 600 ms. No stimulus locked response is visible! The rebound
interval is independent of the temporal frequency of the stimulus.

: The phase-locked response (particularly at 1.2 cycles/oct) displays bursts of fast firings

at intervals of 12 ms, corresponding to the spacing between the frequency components
that make up the ripple at the cell’s BF.

Figure 16: Schematic illustrating the computational consequences of the separability of the

temporal and ripple transfer functions.
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Ripple Velocity (Hz) Ripple frequency is 0.40 cyc/oct
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Ripple Velocity (Hz) Ripple frequency is 0.80 cyc/oct
101~ h . o ) .:.- e e ”',. - A A .. -
20“ g o T
30 ¥ S S
a0 ¥ Ll

0 2 0 : 340 j 510

Ripple Frequency (cyc/oct)

Time in milliseconds

Ripple Velocity is 8 Hz
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Tonotopic Axis
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