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Abstract—In this paper, a closed-form integral representation
for the eddy-current losses over a conductive substrate is pre-
sented. The results are applicable to monolithic inductors and
transformers, especially when such structures are realized over
an epitaxial CMOS substrate. The technique is verified against
measured results from 100 MHz to 14 GHz for spiral inductors.

Index Terms—CMOS substrate losses, eddy currents, monolithic
inductors, monolithic transformers, spiral inductors, spiral trans-
formers.

I. INTRODUCTION

M ONOLITHIC inductors and transformers, especially in
the form of spirals, have gained great importance in the

design of integrated silicon RF transmitters and receivers. For
this reason, the analysis and optimization of such structures has
been of paramount importance.

The optimization of these structures involves maximizing the
quality factor of these devices, or equivalently, maximizing
the magnetic or electromagnetic energy stored by the structures
while minimizing the energy dissipation. There are several
mechanisms for energy dissipation. At the frequencies of
interest, in the dc–15-GHz range, the most important losses
occur in the metal layers that form the devices, as well as in the
bulk Si substrate that appears below the device.

Due to the nonzero resistivity of the metal layers, there are
ohmic losses in the metal traces as well as eddy-current losses.
The eddy currents in the metal traces arise from the magnetic
field generated by the device that penetrates the metal layers.
These magnetic fields induce currents that give rise to a nonuni-
form current distribution along the width and thickness of con-
ductors, pushing current to the outer skin of the conductors.
These effects are also known as skin and proximity effects. Skin-
effect losses are from the magnetic field of the “self”-induc-
tance of a metal trace, whereas proximity effects result from the
magnetic field of nearby conductors. The proximity of nearby
conductors also contributes to the current distribution in a con-
ductor, most prominently for the innermost turns of spiral where
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the magnetic field is strongest [1], [2]. This leads to more pro-
nounced current constriction along the inner core of the spiral.

In a previous paper [3], a technique was presented to analyze
the skin- and proximity-effect losses based on the previous work
of [4] and [5], especially the partial-element equivalent-circuit
(PEEC) formulation [6]. Electrical substrate losses were also
analyzed in [3] based on the work of [7] and [8]. Eddy-current
losses in the bulk Si substrate, though, were not accounted for,
as a free-space Green function was used to derive the induc-
tance. In this paper, previous work is extended by including the
magnetically induced losses in the substrate.

The importance of modeling such effects was not initially re-
alized, as these effects were not widely observable in the bipolar
and BiCMOS substrates of interest because of the widespread
use of highly resistive bulk materials. These effects, though,
were seen to be of integral importance when researchers at-
tempted the construction of high-inductors over an epitaxial
CMOS substrate [9]. In [1], the importance of modeling eddy
currents was further demonstrated through numerical electro-
magnetic simulation. These simulations and measurement re-
sults clearly show that eddy currents are a dominant source of
loss in these substrates.

In this paper, approximate two-dimensional (2-D) expres-
sions for the eddy-current losses over a multilayer substrate are
derived. These can be used to predict the losses in inductors
and transformers fabricated over such substrates. In Section II,
the results are derived using quasi-static analysis. In Section III,
the losses at low frequency are calculated, and in Section IV,
the results are extended to high frequency. Finally, in Section V,
the results are compared to measurement.

II. ELECTROMAGNETIC FORMULATION

A. Partial Differential Equations for Scalar and Vector
Potential

Consider a long filament sitting on top of a multilayer sub-
strate. A cross section of the geometry is shown in Fig. 1. As-
sume the filament is carrying a time–harmonic current. The
substrate is assumed infinite in extent in the traverse direction,
whereas each substrate layerhas thickness , conductivity

, magnetic permeability , and electric permittivity . The
substrate is most likely nonmagnetic or weakly diamagnetic, a
good approximation for Si and other semiconductors. The intro-
duction of a linear magnetic substrate, though, does not compli-
cate the analysis. The filament is located a distanceabove the
substrate, parallel to the-direction.

0018–9480/01$10.00 © 2001 IEEE
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Fig. 1. Multilayer substrate excited by a filamental current source.

The electric and magnetic fields are completely determined
by Maxwell’s equation. The time–harmonic fields are deter-
mined by the scalar and vector potentials [10]

(1)

(2)

For obvious reasons, we will denote the first term of (1) the mag-
netic response and the second term of (1) the electric response.
From Maxwell’s equations, we have the well-known relation

(3)

Assuming the substrate and metal conductors are linear and
isotropic gives

(4)

Substituting (4) and (1) in (3) and invoking a coulomb gauge
results in the following:

(5)

The parenthetical expression on the right-hand side has units of
current density. The first term can be identified as the magneti-
cally induced eddy currents that flow in the substrate and metal
conductors. The second term is the dynamic radiation current
term. The third term includes the electrically induced conduc-
tive and displacement currents flowing in the substrate. Finally,
the last term is the impressed currents flowing in the metal con-
ductors.

At microwave frequencies of interest (15 GHz), the con-
stant of the second term is at least three orders of magnitude
smaller than the first, and can be safely ignored. The physical
significance is that radiation is negligible. Dropping the third
term of (5) has two implications. First, the magnetic-field
contribution of the electrically induced currents will be ig-
nored. Second, the electrically induced substrate losses will
be ignored. The second implication is a far bigger concern
as the electrically induced substrate losses are significant at
frequencies of interest. The contribution to the magnetic field,

Fig. 2. Schematic representation of electrically and magnetically induced
currents.

though, can be safely ignored. To understand this physically,
consider the schematic representation of the substrate currents
shown in Fig. 2. Clearly, the electrically induced current
distribution leads to a zero magnetic field. This can be shown
at low frequency by noting that .

Applying the coulomb gauge to the electric divergence rela-
tion, we obtain the well-known electrostatic Poisson’s equation

(6)

If we modify the above equation by replacing the electric per-
mittivity with

(7)

we account for the loss tangent of the material as well as the
conductive losses. Thus, the electrically induced losses can be
derived from (6) instead of (5). This is valid as long as skin effect
in the bulk does not significantly alter the electrically induced
current distribution in the substrate. With these simplifications,
we have

(8)

(9)

where

(10)

and is given by (7).

B. Boundary Value Problem for Single Filament

Under a 2-D approximation, the magnetic vector potential
is directed in the direction of current and, hence, has only a
nonzero component in the-direction. At microwave frequen-
cies of interest, (9) simplifies and for each region

(11)

By the method of separation of variables in rectangular coordi-
nates [11], we write the solution in each layer as follows:

(12)
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Substitution of the above form in (11) produces two ordinary
constant-coefficient second-order differential equations

(13)

(14)

with the additional constraint that

(15)

Due to the even symmetry of the problem, one selects

(16)

and by (15), it follows that

(17)

Since we seek the vector potential over an infinite domain, the
most general solution has the following form:

(18)

For conductive layers, there are unknown coeffi-
cients in the expansion of (18). There are boundary
conditions, which hold at the interface of each layers. The
boundary conditions follow from Maxwell’s equations [10]

(19)

(20)

where is the surface current density. For , the above
relations simplify to

(21)

(22)

where

(23)

(24)

Note that (21) and (22) must hold for each mode of (18) so one
can show that

(25)

where

(26)

and

(27)

(28)

Since as , it follows that and
to satisfy the boundary condition at infinity.

The boundary conditions at the filament interface re-
quire special care. Applying (21) and (22), we have [12]

(29)

(30)

where

(31)

or, equivalently, expressing (31) as an inverse cosine transform

(32)

Thus, all the unknown coefficients may be evaluated and the
boundary value problem is solved. This is the approach followed
in [12] and [13]. An alternative derivation, which leads to a dif-
ferent integral representation of the magnetic potential, is pre-
sented in [14]. Observe that the magnetic field in the free-space
region above the substrate may be expressed as arising from two
sources: the filament current and the currents flowing in the sub-
strate (the eddy currents). To derive the term arising from the
filament in free space, observe that

(33)

which may be expressed by the converging Fourier integrals

(34)

(35)

This observation implies that

(36)

Using the above relation and (29), the coefficients can be ob-
tained uniquely for all layers. More generally, we can write

(37)
where is the source filament location. The unity term
accounts for the filament current in free space and the term
involving accounts for the eddy currents in the substrate.
In other words, the first term is the solution of the free-space
problem for the impressed filamental currents, whereas the
second term is due to the response eddy currents in the sub-
strate. This particular form will be very fruitful in the analysis
that follows.

C. Problems Involving Circular Symmetry

When the current excitation is circular or approximately sym-
metric, as in the case of a polygon spiral inductor, the assump-
tion of circular symmetry also leads to a one-dimensional in-
tegral expression for the magnetic vector potential. The analo-
gous solution involves Bessel functions in the place of the co-
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sine function of (37). This problem has been treated extensively
in [14]–[16] using a magnetostatic formulation, and in [17] and
[18] using an electromagnetic formulation. In this paper, we will
concentrate on the infinite rectangular solution as it applies more
directly to devices involving orthogonal or Manhattan geometry.
It should also be noted that [19] used the circularly symmetric
solution to calculate the substrate losses.

III. EDDY-CURRENT LOSSES ATLOW FREQUENCY

A. Eddy-Current Losses for Filaments

With the magnetic vector potential known, we can proceed
to calculate the eddy-current losses. There are two approaches
to determine the losses. One approach is to use Poynting’s the-
orem to calculate the total power crossing a surface enclosing
the filament. In the time–harmonic case, the real component of
this power must be due to the lossy substrate since no other loss
mechanisms are present [14]. The complex Poynting’s vector is
given by

(38)

If we integrate the normal component of this vector over the
surface , we obtain the power crossing the substrate

(39)

Considering now only the magnetic response of the substrate,
from (1), we have

(40)

Thus, (38) becomes

(41)

For the geometry of Fig. 1, the integrand of (39) simplifies to

(42)

In Section II-B, it was shown that the magnetic vector potential
has the following general form:

(43)

Differentiating (43) under the integral and substituting in (39)
results in

(44)

If we interchange the order of integration and observe that

(45)

Fig. 3. Cross section of square spiral inductor.

we obtain

(46)

Thus, the equivalent resistance per unit length seen by the source
driving the filament becomes

(47)

The imaginary part of (47) also contains useful information as
it represents the reactive power crossing the surface that can be
attributed to inductance. This is a negative increasing function
of frequency that represents decreasing inductance as a function
of frequency. The inductance decreases due to the “image” eddy
currents flowing in the substrate. By Lenz’s law, these currents
flow in a direction opposite to the impressed current and, hence,
generate a magnetic field that tends to cancel the penetrating
magnetic field of the source, thereby decreasing the inductance.

Using this principle, let us derive the power loss for the con-
figuration shown in Fig. 3. Note that two sets ofparallel cur-
rent filaments carry a currentwhere the individual filaments
are separated by a distanceand the two sets of filaments are
separated by a distance. Notice that this current distribution
crudely approximates one-half of the current distribution for a
spiral inductor of turns. In a spiral inductor, the filaments
have finite length and vary in length. Here, we neglect “end ef-
fects” and calculate the losses for the average length filament.

Using (43), we have

(48)

and

(49)

and applying (46) while changing the order of integration, we
have

(50)
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where

(51)

has been written in shorthand notation. Eachdomain integral
of (50) takes the form of

(52)

Using the above relation reduces (50) to

(53)

Alternatively, one can derive the equivalent impedance per unit
length seen by the source driving the filament by simply ob-
serving that, by (1), the reflected magnetic contribution to the
impedance must be [12]

(54)

Notice that (54) will lead to a different, yet equivalent, integral
expression for the eddy-current losses.

B. Eddy-Current Losses for Conductors

Due to the linearity of Maxwell’s equations, we can invoke
the superposition principle to calculate the losses when more
than one filament is present, even for a continuous distribution
of the field. An alternative viewpoint is that, in calculating the
vector potential for the filament case, we have actually derived
the kernel of the integral operator that is the inverse transform
of (11) or the 2-D Green function [20].

Thus, for any 2-D distribution of current over the multilayer
substrate of Fig. 1, we can write the resulting vector potential
as1

(55)

where the surface integral is taken over the cross section of the
conductor and has the form of (43). If the current distribution is
uniform, this simplifies to

(56)

In many practical cases, the current distribution is nonuniform.
In these cases, one may approximate the current distribution
by dividing the cross section into uniform current distribution
segments and apply (56) to such segments. This is discussed in

1Note that this is not, in general, true for the vector potential since a dyadic
Green function must be employed. However, it is valid for the 2-D case under
investigation.

more detail in [3], [5], [6], and [21]. Integrating (43) over the
width of the source conductor, we obtain

(57)

If we further average the above expression over the finite width
of the field point, we obtain

(58)
assuming the field conductor width is also equal to.

In order to calculate the total impedance for a set of filaments
in series, one must account for the self- and mutual-impedance
terms

(59)

where is the vector potential generated by theth con-
ductor evaluated at the location of conductorand is given by

(60)

where the positive sign is used when the currents flow in the
same direction, whereas the negative sign is used when the cur-
rents flow in opposite directions.

The factor accounts for the nonuniform current
distribution along the length of the device. At low frequencies,

since no current is lost to the substrate due to dis-
placement current. At higher frequencies, though, it is critical
to evaluate (59) with this factor in place as the current distribu-
tion becomes nonuniform. In Section IV, we derive this current
distribution.

IV. EDDY CURRENTS ATHIGH FREQUENCY

A. Assumptions

In [6], the PEEC formulation is shown to be equivalent to
solving Maxwell’s equation. We can thus formulate our problem
using a modified PEEC technique. Our modifications mainly
take advantage of the special geometry and symmetries in the
problem to reduce the calculations. This approach has already
been pursued in [3]. Here, we present a more symmetric formu-
lation.

First, we would like to avoid generating volume elements
in the substrate. Generating volume elements in the substrate
would allow free-space Green functions to be employed, but
this would produce too many elements. Since the Si substrate
is only moderately conductive, we would require several skin
depths of thickness in the substrate volume, as well as an area at
least two to three times the area of the device under investiga-
tion to include the fringing fields. Since the fields vary rapidly
across the cross-sectional area and depth of the substrate, many
mesh points would be required. On the other hand, if we formu-
late the problem with a multilayer Green function, the substrate
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Fig. 4. Layout ofL27 inductor.

effects are taken care of automatically and the substrate can be
effectively ignored in the calculation. Therefore, only the con-
ductor volumes need to be meshed.

Furthermore, since the conductors that make up the device
are good conductors, consisting primarily of aluminum, gold,
or copper, displacement current in the volume of the conductors
can be safely ignored. Thus, the divergenceless current distribu-
tion in the conductors is found solely by solving the magneto-
static problem (9). The divergence of the current is determined
from the electrostatic distribution of charge found by solving
(8).

One further assumption greatly reduces the order of the
problem. If we assume that the current flows along the length of
the conductors in a one-dimensional fashion, then only meshing
in one dimension as opposed to two or three dimensions is
needed. For a typical spiral shown in Fig. 4, we see that this is
indeed a good approximation. Note that this does not preclude
a nonuniform current distribution along the length, width, or
thickness of the conductors. Rather, the current is constrained
to flow in one direction only. This assumption is mostly in error
around the corners of the device where we may choose to use
a 2-D current distribution or we may simply ignore the corner
contributions.

B. Partial Inductance Matrix

Given the assumptions of Section IV-A, we may subdivide
the device into many sub-conductors, as shown in Fig. 5. Since
the current is constrained to flow in one dimension, the problem
can be reduced by solving the equivalent magnetic circuit equa-
tions. For the system of filaments, we calculate a partial induc-
tance matrix [4] where each nondiagonal element is com-
puted with

(61)

and the diagonal elements are given by

(62)

Fig. 5. Voltages and currents along series-connected two-port elements.

Employing the same approximations as [5], we reduce this ma-
trix to the level of the conductors by invoking Kirchhoff’s cur-
rent law (KCL), at each node, to obtain [21]

(63)

where the sparse rectangular matrixsums over the current
sub-elements of a conductor. Thus, each row has a one in a po-
sition corresponding to a sub-element and zero otherwise. The
problem with computing (63) directly is that the large matrix

must be computed and inverted.

C. Fast Computation of the Partial Inductance Matrix

In [21], computation of (63) is avoided altogether by an it-
erative solution. The matrix–vector products are accelerated by
taking advantage of the form of the free-space kernel [22].
This kernel specialization, though, limits the applicability of
the technique and precludes its application to the problem at
hand since this would require us to either ignore the Si substrate
(which distorts the free-space Green’s function) or to mesh the
substrate. Not only does the substrate meshing unnecessarily in-
crease the size of the problem, but it also requires a more com-
plete PEEC formulation since displacement current cannot be
ignored in the substrate.

The authors of [23] have developed a more general iterative
solver that can be applied to (63). The basis of their technique
is to factor using the singular-value decomposition (SVD).
Using an SVD, one can compress the matrix by only retaining
the larger singular values. This also allows fast computation of
matrix–vector products. This, of course, requires an efficient
procedure to compute the SVD. For matrices generated from in-
tegral equations, [23] develops an efficient recursive process to
compute the SVD. In [3], an approximate technique is presented
to compute (63) indirectly by ignoring detail in long-range in-
teractions. This is, in fact, the crux of all the above-mentioned
techniques.

D. Efficient Calculation of Eddy-Current Losses

As it stands, the derivations of Section II are not directly ap-
plicable to the above analysis unless an unrealistic 2-D approx-
imation is used. A three-dimensional approach, on the other
hand, requires numerical integration calculations that are at least
four orders of magnitude more expensive to perform. To see this,
note that instead of a one-dimensional integral for the magnetic
vector potential, we would require a 2-D integral. Also, integra-
tion of over the source and field cross sections will add two to
four more dimensions. Finally, integration ofalong the path
of the field will involve one final line integral, adding at least
one dimension to the problem. The 2-D approximation, though,
only involves an integral of one dimension. This is because the
integrations over the cross sections can be performed analyti-
cally and the integration along the path of the field is trivial to
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compute due to the-direction invariance inherent in the 2-D
approach.

On the other hand, the free-space calculation of the magnetic
vector potential is exact and the mutual inductance between fil-
aments may be performed in closed form. To include the cross
section of the conductors requires numerical integration over the
volume of the conductors. The geometric mean distance (GMD)
approximation [24], [25], on the other hand, yields closed-form
results for the case of parallel rectangular cross sections. Thus,
each matrix element computation can be performed in closed
form. It has been found experimentally that the GMD approxi-
mation computes the free-space inductance value to a high pre-
cision for conductors over insulating or semi-insulating sub-
strates. [26]–[29], [3].2

In order to retain the accuracy of the free-space GMD ap-
proximation and the simplicity of the 2-D approximation, we
propose a hybrid calculation. As already noted, due to linearity
of the partial differential (9), we can write the general solution
as follows:

(64)

The first term is the magnetic vector potential computed in
free space. The second term is the magnetic vector potential
resulting from the substrate currents. Note that the substrate
currents are response currents, whereas the free-space currents
are impressed currents. The response currents are not known
a priori, thus, the second term cannot be computed directly.
However, we have already factored in this form in
(37). Thus, we may compute the first term directly, using the
GMD approximation to simplify the calculations. The second
term is computed using the 2-D approximation developed in
Section II. Since the substrate effects are secondary in nature
at frequencies of interest, the error in the above approximation
tends to be second order, yielding accurate overall results.

Hence, computation of (63) proceeds to the following two
stages:

(65)

where the second term is computed from

(66)

(67)

The real part of the above matrix element represents the eddy-
current losses, and the imaginary part represents the decrease
in inductance due to image currents flowing in the substrate.
Note that the kernel is computed by integrating over the cross
section of the source and field points. This term is unity for
filaments, and for thin conductors of width, it is given by the
bracketed expression of (58).

Note that the purpose of calculating is to obtain and ac-
count for the nonuniform current distribution in the volume of
the conductors. This nonuniformity arises primarily from the

2It is interesting to note that the GMD approximation is, in essence, a 2-D
approximation as the functionlog(r), the free-space 2-D Green function, is
averaged over the cross section of the conductors.

nonuniform mutual inductive effects that are contained in the
first term of (65). Since the losses computed from (66) tend to be
uniform and do not influence the skin and proximity effects, one
can reduce the number of calculations of (66) by including the
substrate reflection terms at the conductor stage rather than at
the sub-conductor stage. Thus, we may include the computation
of (66) by simply adding it to the reduced matrix term directly.
This reduces the number of computations from to

, where there are conductors divided into an average
of sub-conductors. The validity of this approach can be ver-
ified by calculating the equivalent resistance and inductance of
a device both ways.

E. Eddy-Current Loss for Square Spiral Inductor

To compute (66) for the case of a spiral inductor, one can take
advantage of the 2-D symmetries of Fig. 3 to further reduce the
number of calculations from to . The complete
substrate reflection matrix may be computed using the following
algorithm.

Let be the substrate partial inductance
matrix. Let

Also let represent the coordinates of the
source and represent the field coordinates. Fi-
nally, the geometric mean length of two segments is given by

begin:
Diagonal terms:
for

end
for

for

end
end
for

end
for

for

end
end
for

for

end
end
let
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Note that the above algorithm involves only compu-
tations since the double loops only involve data transfer.

F. Complete PEEC Formulation

Consider the series interconnection of conductors, as shown
in Fig. 5. Using the reduced partial inductance matrix discussed
in the previous section, along with the reduced lossy capacitance
matrix discussed in [7], one can form the following system of
linear equations.

Let represent the average
current flowing in the th conductor. Similarly, let

represent the average voltage
of each conductor. Applying KCL and Kirchhoff’s voltage law
(KVL) at each node gives

(68)

(69)

where represents the complex lossy capacitive admittance
matrix, which is computed directly in [7]. is computed
using (65). Note that these matrices are compressed or reduced
in order and contain the effects of nonuniform charge and cur-
rent distribution in each conductor. All loss mechanisms rele-
vant at microwave frequencies are thus contained in these ma-
trices. is frequency dependent and includes electrically in-
duced substrate losses. includes ohmic losses, skin and
proximity effects, and magnetically induced substrate losses.

Writing (68) and (69) in the standard modified nodal analysis
(MNA) matrix notation, one obtains

(70)

The last two rows of the above matrix simply enforce boundary
conditions at the input and output terminals, which forces these
terminals to equal the impressed voltage. Note the right-hand
side of the above matrix contains zero terms followed by
the impressed voltages. The matrixsimply averages, whereas
the matrix subtracts adjacent node voltages and terminal cur-
rents. In the continuous limit, these matrix operators represent
integration and differentiation, respectively.

The above system can be solved numerically using Gaussian
elimination. Since a typical device involves hundreds or at most
thousands of elements, numerical packages such as LAPACK
[30] can be used to efficiently compute the inverse of (70). LA-
PACK uses BLAS level–3 routines which utilize the system
cache to maximize memory throughput. For larger systems, it-
erative solutions are more appropriate.

Similarly, (66) can be computed numerically using QUAD-
PACK [31]. This package contains code to efficiently calculate
(66) and the results converge much faster than using Romberg
integration, as is done in [32]. The above algorithms have been
assembled into the user-friendly packageAnalysis and Simu-

lation of Inductors and Transformers for ICs(ASITIC).3 This
tool can be used to analyze spiral inductors, transformers, metal
interconnect, and other similar structures residing over a multi-
layer Si substrate.

V. EXAMPLES AND MEASUREMENTRESULTS

A. Single-Layer Substrate

The magnetostatic problem of a one-layer conductive sub-
strate has been the subject of detailed investigations. References
[12]–[14] derive and compute the integrals of Section II. In par-
ticular, [13] discusses numerical and analytical techniques to
compute the integral. In our research, we found numerical in-
tegration sufficient and, thus, analytical integration was not our
main focus. The solution of the one-layer problem is summa-
rized by the following reflection coefficient:

(71)

where is the source -coordinate. For the case of a one-layer
substrate, we found the following analytical representation:

(72)

where

(73)

and

(74)

The above integral can be represented as follows:

(75)

where and are first-order modified Bessel functions of
the first- and second-kind, respectively, and is a generalized
hypergeometric function [33]. Since (74) represents the contour
integration of an analytic function, its value is path independent.
Using this property, integral representations of the various stan-
dard mathematical functions can be used to derive the above
result.

However, as previously noted, numerical integration is often
faster than the direction computation of (75), and this approach
will be pursued for the more complicated geometries where an-
alytical results are more difficult to obtain.

B. Two-Layer Substrate

For the two-layer problem, the equations of Section II are set
up and involve six equations in six unknowns. The solution can
be simplified into the following form:

(76)

3[Online]. Available: http://www.eecs.berkeley.edu/niknejad
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TABLE I
SPIRAL L27 PHYSICAL DIMENSIONS

where denotes the source-coordinate and is the thickness
of the top substrate layer. Note that (76) reduces to (71) as

. It can also be shown that

(77)

Also, since (76) is exponentially decreasing for large, numer-
ical integration of (66) converges rapidly.

The above result along with (66) can be used to solve for
the eddy-current losses and decrease in inductance due to the
conductive substrate.

C. Measurement Results

Several planar and nonplanar spiral inductors have been
fabricated in National Semiconductor’s 0.25-m CMOS-8
process. This process utilizes a bulk substrate of 10cm,
sufficiently resistive so that eddy currents play a minor part in
the bulk. However, the top layer of Si is fairly conductive at
15 10 cm. The thickness of this layer is less than 1m,
but this is enough to cause significant eddy-current loss.

The layout of a spiral inductor is summarized in Table I. As
shown in Fig. 4, spiral inductor is a planar device utilizing
the top metal layer.

Measurements are performed using a ground–signal–ground
(G–S–G) coplanar waveguide pad configuration. The-pa-
rameters are measured using an HP 8719C Network Analyzer.
G–S–G coplanar cascade probes are used and the setup is
calibrated using a Cascade Microtech 832 210 calibration
substrate. The open-pad-parameters are also measured and
subtracted from the measured-parameters to remove the pad
capacitance and loss.

Measured -parameters for inductor are shown in
Fig. 6. The simulated and measured results match well. The
discrepancy above the self-resonant frequency is in the capac-
itive region where we are less interested in the device. Notice
that the inductor self-resonates at a frequency of 4.25 GHz.
Simulations using ASITIC predicted a self-resonant frequency
of 4.15 GHz. The simulations are performed on a Pentium II
400-MHz machine running the Linux operating system. Each
frequency point requires less than 10 s of computation. In
Fig. 7, we plot the effective value of inductance. This is derived
using a one-to-one transformation of the-parameters into

-parameters [3]. Again, a good match is observed between
the theory and measurements. The inductance decrease is due
mostly to the capacitive effects rather than the inductive effects.
Inductance value decreases slightly due to skin effect and eddy
currents in the substrate, but the main reason for the decrease

(a)

(b)

Fig. 6. Measured and simulateds-parameters (magnitude and phase) of spiral
inductorL27.

Fig. 7. Measured and simulated inductance (imaginary component ofY ) of
spiral inductorL27.

is that energy is coupled from port to port through the winding
capacitance at higher frequencies.
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Fig. 8. Measured and simulated resistance (real component ofY ) of spiral
inductorL27.

Fig. 9. Measured and simulatedQ factor (imaginary over real component of
Y ) of spiral inductorL27.

Fig. 8 shows the effective value of series resistance as a func-
tion of frequency. Two simulations are performed: with and
without eddy-current losses. As evident in this figure, eddy-cur-
rent losses are critical to model. The variation in frequency of
the series resistance is due to various competing effects. Skin
effect and proximity effects increase the series resistance, but
beyond 1 GHz, this is swamped by the increase from eddy cur-
rents. At higher frequencies, more energy is transported capac-
itively and, consequently, the resistance decreases and eventu-
ally becomes negative. The real part of the total input impedance
looking into each port, of course, is positive at all frequencies.

The factor, the ratio between the imaginary and real part of
the input impedance, is plotted in Fig. 9. Again, a good match is
observed between the theory and measurements. Note that neg-
ative factor implies that the device is acting as a capacitor
rather than an inductor. In reality, this plot is misleading, as it
implies a of zero at self-resonance. A better way to calcu-
late is given in [3], but for comparison, the given definition
is better since it involves a minimal transformation of the mea-
sured -parameters. The substrate resistance and capacitance are

Fig. 10. Measured and simulated substrate resistance of spiral inductorL27.

Fig. 11. Measured and simulated substrate capacitance of spiral inductorL27.

also shown in Figs. 10 and 11. The overall shape of both curves
matches the measurements well. The low-frequency substrate
resistance measurements are noisy due to measurement error.

VI. CONCLUSION

In this paper, we have presented 2-D eddy-current loss equa-
tions applicable to transmission lines and interconnect over a
conductive substrate. The results are also applicable to spiral
inductors and transformers fabricated over conductive sub-
strates. We have proposed a hybrid calculation of the magnetic
vector potential to retain the accuracy of a three-dimensional
free-space formulation while exploiting the simplicity of
the 2-D eddy-current loss formulation. Measurement results
confirm the validity of our approach.
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