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The paper presents an analytical investigation of the dynamics of digital force control. A one degree-of-
freedom (DoF) mechanical system with low viscous damping is subjected to proportional--derivative (PD)
force control. Analytical results are presented in the form of stability charts in the parameter space of
sampling time, control gains and mechanical parameters. Simple closed form results include the largest
stable proportional gain and the least steady state force error that provide synthesis of mechanical and
control system parameter influences for the design of digital force control. Also, a novel analytical expla-
nation is given why even the properly filtered force derivative signal is rarely used in practice, and why
the occurring vibrations have frequencies one range smaller than that of the sampling frequency of the
digital control.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Force control in robotic systems has been the subject of intensive
investigations in recent years since most robotic operations involve
interactionswith other objects. Robotic systems are usually equipped
with digital controllers, while the dynamic analysis of robotic sys-
tems is often treated using continuous-time (analog) approaches and
models. The first, and probably the most referenced papers in the
field are [1--3]. These papers present the basics of the force control
approaches. The stability of a simple digital force control system was
analyzed in [1] for the first time.

Simultaneously, comprehensive textbooks [4--7] were published
on digital control theory. These works are used as standards in dig-
ital realizations of control algorithms, which are usually based on
continuous-time arguments. For example, using the frequency re-
sponse bandwidth or the crossover frequency of the continuous-time
system, Refs. [7,8] suggest to determine an appropriate (sufficiently
small) sampling period for the discrete-time realization. Certainly,
these rules of thumb work properly with most of the systems. How-
ever, in case of a rigid mechanical system (e.g., an industrial robot
touching a turbine blade) with a small effective damping in the force
controlled direction, these rules do not provide always conservative
estimates for stability. Also, they cannot reveal the complex struc-
ture of the stability domains in the parameter space.
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Recent books published on force control of robot manipulators
[9--11] present investigations mainly for the case of continuous-time
(analog) force control. A simple model is considered in [9] to investi-
gate some effects caused by the digital force feedback. Experiments
validating the proposed control algorithms have usually been carried
out using digitally controlled experimental testbeds without further
discussing the dynamics of the digitally controlled system [12].

Several researchers had to model deadtime and also the poten-
tially destabilizing sampling effects in order to explain certain stabil-
ity and low frequency vibration phenomena in digital force control
[9,13--15]. These robotic applications were followed by the experi-
ences of the haptics community [16--18]. Recently, intensive research
on haptic devices has called the attention to the differences in the
dynamic behavior of digital and analog force control systems [19].

Turbine blade polishing is a typical example for the case where
digital effects and the variable effective stiffness along the blade
caused unexpected vibrations in the system under digital force con-
trol [20]. As other reports [21--23] show, more thorough stability
analyses are needed when oscillatory systems are to be controlled,
which is often the case in force control.

Nowadays, a lot of robotic applications utilize the enormous evo-
lution of digital technology. In comparison with the early 1980s, the
speed of the processors and the communication rate between the
sensors and the computer seem to be very fast. The sampling rate of
the two degrees-of-freedom (DoF) hybrid position/force controller in
[3] was set only at 60--120Hz, while a recently developed force con-
trolled six DoF manipulator with an open controller [11] is sampled
at 1kHz. From the engineering point of view, this kind of sampling
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looks almost continuous. Indeed, a digital force control algorithm
with a high sampling frequency can be considered ''continuous'' if
the end effector of the robot comes to contact with a relatively soft
environment where the effective stiffness of the system is low and
the effective mass is high. However, examples for the opposite situ-
ation are reported in [16,18,20,24]. Note also that the sampling fre-
quency of industrial robots has not increased as much as the speed
of available processors. This is due to the increased complexity of
the applied control algorithms and the higher level of programming.
In case of either force control with inner position loop or model-
based force control, the sampling frequencies are often in the range
of 10--50Hz, only [9,22,25].

When feedback is used in practice, the first attempt is almost al-
ways the application of PID controllers. Of course, depending on the
given control task, it has non-linear alternatives with superior per-
formance characteristics, but it can be viewed as a simple building
block that is often integrated into complex control architectures. For
example, as an adaptive extension, a model based controller can be
used in supervisory mode over a stable PID controller. Still, there
are difficulties in applying simple PID controllers. According to [26],
''adding derivative action to a PI controller increases the complexity
of the design considerably'' and also ''there is much folklore con-
cerning derivative action'' with especial regard to the appropriate
tuning of the control gains. The synthesis of sensors, digital con-
trollers and mechanical devices, i.e., the mechatronic approach to
extend the applicability and performance of robotic manipulators,
leads to complex system dynamics even in case of simple mechanical
structures.

The goal of this paper is to present a detailed stability analysis of
a proportional--derivative (PD) digital force control loop considering
that the force derivative signal is ideally filtered for high frequency
noise. The closed form analysis offers insight into the dynamics of
digital force control. This work presents analytical investigations and
results in understanding the relations and interactions between the
dynamic behavior of the system, the control algorithm and the me-
chanical parameters. The effects of the control gains and mechanical
parameters are presented by means of stability charts. These charts
can effectively support the engineering work by showing the range
of system parameters for which stable and reliable digital force con-
trol could be realized and can help to understand better the possible
unexpected behavior of digitally controlled multi-DoF systems.

2. Basic model of force controlled system

2.1. Continuous-time model

The mechanical model shown in Fig. 1 has 1 DoF approximating
the behavior of a robotic arm with force control in one direction. The
equivalent mass m and the stiffness k can either be identified exper-
imentally or calculated using the constraint Jacobian representing
the force controlled direction, and the mass and stiffness matrices of
the robot [27]. The generalized force Q represents the effects of the
joint drives, while C denotes the magnitude of the effective Coulomb
friction force. Similar models are frequently used to analyze force

Fig. 1. Mechanical model of unidirectional PD force control.

control [6,9]. Differential feedback is widely applied in position con-
trol. One of the main objectives of our investigation is to provide a
detailed analysis on the effects of the differential gain in the force
control loop (see Fig. 1).

In the model of Fig. 1, qd refers to the position that corresponds
to the desired constant force Fd = kqd, while x = q − qd measures
the deformation of the spring relative to this desired position. The
equation of motion of the above mechanical model can be written as

mq̈(t) = −kq(t) − Csgn q̇(t) + Q(t),

Q(t) = Fm(t) − P(Fm(t) − Fd) − DḞm(t), (1)

where P and D are the proportional and the differential gains, re-
spectively. The contact force Fm(t) = kq(t) is measured through the
deformation q(t) of the spring. In stiff systems, this signal can be
noisy, therefore its derivative Ḟm(t) = kq̇(t) is assumed to be filtered
that may cause some delay. If there is no dry friction in the model,
the only trivial solution of Eq. (1) is q(t) ≡ qd. If considerable dry
friction can be detected (e.g., at the joints), then there are several
equilibriums q∗ leading to the steady state force error

|�F | = max
q∗ |k(qd − q∗)| = C

P
. (2)

Clearly, the higher the proportional gain is, the less the force error
is [6]. The accuracy of the control is determined by the maximum
proportional gain of the applied PD controller within the limits of
stability (for short it is called the maximal stable proportional gain
hereafter).

Since dry friction decreases the total mechanical energy during
motion, the stability properties of a stable frictionless system do not
change in the presence of friction. Thus, the stability analysis in (1)
will be carried out with C =0. Introducing the perturbation x around
the desired position as q(t) = qd + x(t), the equation of motion (1)
assumes the form

ẍ(t) + D�2
nẋ(t) + P�2

nx(t) = 0, (3)

where�n=√
k/m is the natural angular frequency of the uncontrolled

mechanical system. According to the Routh--Hurwitz criterion, the
solution x(t) ≡ 0, and the corresponding contact force F(t) ≡ Fd, is
asymptotically stable for any control gains P >0, D >0. Although the
power constraint at the input provides a limit for the control forces,
the steady state force error could still be eliminated in principle with
large proportional gains.

It is easy to see that the force error expression (2) is preserved
also in case of digital control, but the force error cannot be simply
eliminated by increasing the proportional gain without the risk of
losing stability. This will be explained by analyzing the discrete-time
dynamics of the system.

2.2. Discrete-time model

The discrete-time nature of computer controlled systems is con-
sidered with a zero-order-hold (ZOH). The digital processor sets the
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control output at the time instants tn =n�t, n=0,1,2, . . . , where �t

is the sampling time. In practice, the time derivative of the measured
force can be estimated by finite differences sampled at amuch higher
sampling rate than that of the closed digital control loop. To avoid
noisy Ḟm(t) signals, a cascade of low-pass filters can be used [28]. For
this reason, we use Ḟm(t) = kq̇(t) = kẋ(t) in our mathematical model
as a derivative term. Thus, the control force defined in (1) becomes
piecewise constant, and the equation of motion (3) of the controlled
system can be rewritten as follows:

Q(t) = (1 − P)kx((n − 1)�t) − Dkẋ((n − 1)�t) + kqd, (4)

ẍ(t) + �2
nx(t) = (1 − P)�2

nx((n − 1)�t) − D�2
nẋ((n − 1)�t),

t ∈ [n�t, (n + 1)�t). (5)

Let us introduce the dimensionless time as T =�nt, and the notation
Tn = n�T for the nth dimensionless sampling instant, where �T =
�n�t is the dimensionless sampling time. The equation of motion
(5) simplifies to

x′′( T ) + x( T ) = (1 − P)xn−1 − D�nx′
n−1,

T ∈ [Tn, Tn+1) (6)

with prime standing for the dimensionless time derivative. Using the
state vector x= col(x x′) and xn−1 =x(Tn−1) we can arrange (6) into
the matrix form

x′(T ) = Ax(T ) + Bxn−1,

T ∈ [Tn, Tn+1), n = 0,1,2, . . . , (7)

where the corresponding coefficient matrices have the form

A =
[

0 1
−1 0

]
, B =

[
0 0

1 − P −D�n

]
. (8)

The stability of this state space model is analyzed in closed form
in the subsequent section.

3. Stability analysis

3.1. Discrete map

First, we construct a discrete mapping possessing the same sta-
bility properties as that of (7) [4]. The general solution of the non-
homogeneous system (7) is

x(T) = eA(T−Tn)c − A−1Bxn−1, T ∈ (Tn, Tn+1], (9)

where the substitution of the initial conditions x(Tn) = xn yields the
coefficient vector

c = xn + A−1Bxn−1. (10)

Thus, the state variables at the end of the nth sampling interval can
be calculated as

xn+1 = eA�Txn + (eA�T − I)A−1Bxn−1. (11)

Its scalar form

xn+1 = xn cos�T + x′
n sin�T + (1 − cos�T)

× ((1 − P)xn−1 − D�nx′
n−1),

x′
n+1 = − xn sin�T + x′

n cos�T

+ sin�T((1 − P)xn−1 − D�nx′
n−1) (12)

leads naturally to the following choice of a three-dimensional dis-
crete state vector:

xn = col((1 − P)xn−1 − D�nx′
n−1 xn x′

n). (13)

Fig. 2. Transformations used in this paper.

Based on this, Eq. (11) can be rewritten as

xn+1 = Hxn, H =
⎛
⎜⎝

0 1 − P −D�n

1 − cos�T cos�T sin�T

sin�T − sin�T cos�T

⎞
⎟⎠ (14)

which represents a generalized three-dimensional geometric series.
The convergence of (14) is equivalent to the asymptotic stability of
the force control described by (7). The stability of the system is de-
termined by the eigenvalues z of the transition matrix H. However,
the study of the possible bifurcations and vibration frequencies
along the stability limits also require the use of the characteristic
exponents s. Their relations are represented in Fig. 2 in accordance
with the following standard calculation.

The substitution of the exponential trial solution x(T)=KesT (s ∈
C,K ∈ R3) into (14) yields the characteristic equation det(es�T I −
H) = 0. This has an infinite number of roots sk, k = 1,2, . . . called
characteristic exponents, which are situated along a finite number
of vertical lines in the complex plane as shown in Fig. 2 [4]. Clearly,
there is only a finite number of characteristic multipliers defined by
z = es�T . These are, actually, the three eigenvalues of the transition
matrix H. The criterion for the exponential stability of the force con-
trol can be written as

det(zI − H) = 0, |z1,2,3| <1 ⇔ Re sk <0, k = 1,2, . . . .

(15)

The same stability condition is derived in books like [4,7,29] using
the Laplace transformation L and the Z-transformation, which
are also illustrated in Fig. 2, but the form of H is given in (14)
only.

3.2. Stability charts

As shown in Fig. 2, the bilinear transformation z = (� + 1)/(� − 1)

[4,29] maps the open unit disk back into the left half of the com-
plex plane. Thus, the stability condition (15) is formulated for the
polynomial

p3(�) = (� − 1)3 det
(

� + 1
� − 1

I − H
)

=
3∑

i=0

bi�
i, (16)
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Fig. 3. Possible shapes of the P--d stability charts.

where the Routh--Hurwitz criterion can be applied directly for the
coefficients

b3 = P(1 − cos�T),

b2 = D�n sin�T + (3 − 2P)(1 − cos�T),

b1 = −2D�n sin�T + (2 − P) cos�T + P,

b0 = D�n sin�T + cos�T + 1. (17)

The stability charts are constructed in the space of three, dimension-
less variables

P, d = �nD and
fn
fs

= �n/2�

1/�t
= �T

2�
, (18)

where P and d are the dimensionless proportional and differential
gains, respectively, while fn/fs is the ratio of the natural frequency
of the uncontrolled mechanical system and the sampling frequency
of the control.

For the coefficients in (17) and H2 = b1b2 − b3b0, the
Routh--Hurwitz criterion yields the following necessary and suffi-
cient exponential stability conditions:

b3 >0 ⇔ P >0 and fn/fs �= k, k = 0,1,2 . . . , (19)

b2 >0 ⇔ d >
(2P − 3)(1 − cos�T)

sin�T
, (20)

b1 >0 ⇔ d <
(2 − P) cos�T + P

2 sin�T
, (21)

b0 >0 ⇔ d > − cos�T + 1
sin�T

and fn/fs �= 2k + 1, k = 0,1,2 . . . ,

(22)

H2 >0 ⇔ 0< − 2(1 − cos�T)2P2

+ 2(1 − cos�T)(2d sin�T − 4 cos�T + 1)P

+ 2(cos�T − d sin�T)

× (d sin�T + 3(1 − cos�T)). (23)

Based on these equations, we can perform the detailed stabil-
ity analyses of the model. In the plane of the control parameters P
and d, the resulting stable domain is bounded by the straight lines
b1 = 0 and b3 = 0 together with the implicitly defined parabola
H2 = 0. Depending on the value of the frequency ratio chosen in
(0, 1

2 ), three possible shapes can be determined for the stable do-
mains shown shaded in Fig. 3. The coordinates of the characteristic
points A . . .G of the charts are given in closed form in Table 1. Among
these points, we can find the maximum proportional gain at C or E.
These formulas and stability charts have importance at the design
stage of force control to synchronize basic mechanical and control
parameters.

Table 1
Characteristic points of the P--d stability charts

Proportional gain Differential gain

A 0
1

tan�T

B 0 − 3(1 − cos�T)

sin�T

C
(2 cos�T − 3)2

8(1 − cos�T)

(2 cos�T + 3)(2 cos�T − 1)

8 sin�T

D 0 − 1 + cos�T

sin�T

E
1 − 2 cos�T

1 − cos�T
− 1 + cos�T

sin�T

F − 2 + 4 cos�T

1 − cos�T
− 1 + cos�T

sin�T

G
(2 cos�T − 1)(2 cos�T − 5)

8(1 − cos�T)

(2 cos�T + 1)2

8 sin�T

In order to see the structure of the stable domains for frequency
ratios in the range of ( 12 ,1) and further, we also construct fn/fs − P

charts shown in Fig. 4 for three different values of dimensionless
differential gains. These charts are periodic in the frequency ratio
with periodicity 1 (see later at Fig. 5).

We note that this periodicity may not have great significance for
several practical applications. This is because, according to Shan-
non's sampling theorem [7], frequency ratios greater than 1

2 should
be avoided. However, regardless of this, the periodicity of the sta-
bility charts can still be seen as an important physical phenomenon
observed in mechanical systems with digital force feedback. For ex-
ample, it can have practical importance in applications where the
sampling frequency is limited by the hardware.

The first chart in Fig. 4 shows a simple proportional controller, i.e.,
d=0, where the maximal stable proportional gain is 1.5. According to
(2), this means that the steady state force error cannot be guaranteed
to be below 66% of the magnitude of the generalized friction force
in the system.

In contrast, when d has a relatively high positive value, the upper
limit of the stable domain tends to infinity in a narrow range of low
frequency ratios. In principle, this gives the possibility to eliminate
the steady state error of a digital force controller. In practice, this
can be difficult to achieve because, apart of the power constraint
at the input, the stable domain becomes narrow with respect to
the frequency ratio. This narrow stable domain also shows up at
fn/fs = 1+,2+, · · · (see Fig. 5).

Another important property of the charts presented in Fig. 4 is
that the stable domains become disjoint and some of them disap-
pear by increasing the differential gain. For high differential gains,
only narrow stable domains exist at certain frequency ratios. This
can offer an explanation for why the differential gain is avoided
in practice even when the noisy force derivative signal is properly
filtered.
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4. Dynamic behavior

In the case of discrete-time systems, three different kinds of bi-
furcation may occur along the stability limits [30]. The characteristic
multiplier z may cross the unit circle at −1, at +1, or at a complex
conjugate pair z1,2=exp(±i��T). As an illustration, the fn/fs−P chart
corresponding to d = 0.2 is presented in Fig. 5 showing the periodic
nature of the stable regions and also the three kinds of bifurcations
mentioned above.

If we substitute z = 1 into the characteristic polynomial in (15),
the resulting expression is b3 = 0. Using Eq. (17), b3 = 0 is satisfied
when fn/fs = k, k = 1,2, . . ., or P = 0. Along these stability limits,
saddle-node bifurcation may occur [30]. In the case of P = 0, the
physical meaning of this bifurcation is obvious: the control works in
the opposite way, of course, for negative gains.

The substitution of z = −1 into the characteristic polynomial in
(15) yields b0 = 0. This equation can be solved using (17). These
boundaries refer to period-doubling bifurcations [30]. In this case,
the system starts to oscillate with the period of 2�t, which is just
the double of the sampling time. Among the corresponding sta-
bility boundaries, we can find the straight lines characterized by
fn/fs = 0.5 + k, k = 1,2, . . ., which are independent of the value of
the differential gain.

In the third case, when z1,2 =exp(±i��T), the secondary Hopf (or
Neimark--Sacker) bifurcation [30] may occur along the stability limit
H2 =0 (see formula (23)). This kind of bifurcation is the most typical
in practical cases (see Fig. 5), when self-excited vibrations are expe-
rienced. Fig. 2 shows that the frequencies of these vibrations can be
obtained by the inverse of the definition of characteristic multipliers
s = ln z/�T . This transformation maps the unit circle of the complex
plane into the imaginary axis, where �±k�, k=1,2, . . . give the dif-
ferent vibration frequencies of the developing oscillatory motion in
the dimensionless time domain. It is easy to see that there are in-
finitely many of these vibration frequency components. Physically,
the lowest one is the most important, since it has the strongest peak
in the spectrum.

The relative vibration frequencies � = (��n/(2�))/(1/�t) = �fn/fs
corresponding to these relevant lowest frequencies � are shown
above the stability charts in Fig. 4. The highest values of � are at fs/2
(the half of the sampling frequency), where the stability bounds as-
sociated with the secondary Hopf bifurcations intersect the stability
bounds related to the period doubling bifurcations.

An important consequence of these results is that the system
will oscillate at a relatively low frequency when it loses its stability
along the limit H2 = 0. This could be the case in practice when the
proportional gain is increased to achieve a better accuracy at low
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frequency ratios. As was already mentioned in the introduction,
these unexpected low frequency vibrations are reported in several
papers [14,15,31]. For small frequency ratios, the frequency of the
possible vibrations is far smaller than the sampling frequency of the
controller no matter if a differential gain is applied or not. In the
case, when a PD controller is applied and the sampling frequency
and the proportional gain are both set to be high in order to improve
the accuracy of the control, the frequency of the possible vibrations
is only 10--15% of the sampling frequency.

5. Conclusions

The dynamics of mechanical systems with digital force control
was investigated in this paper. Many undesired events in force con-
trolled systems (e.g., instability, oscillations) are often explained by
referring to ''unmodelled high frequency dynamics'', but some of
these events are caused directly by the discrete-time nature of the
controller. The underlying physical cause for the stability problems
having unexpected parameter dependences in force control is the
peculiar behavior of the so-called delayed oscillator [32]. It is well
known that the discrete-time controller introduces time delay, which
can have destabilizing effects depending on the system parameters.
In case of second order systems, like an oscillator with low viscous
damping, the parameter dependence is intricate. Since robotic force
control is often applied to systems of large stiffness and low damp-
ing, vibration problems are typical in practice.

In this paper, particular attention has been paid to the effects of
the differential gain. The differential gain is commonly used in posi-
tion control, but it has usually been avoided in force control without
much analytical explanation. In this work, detailed stability and per-
formance analyses were carried out to characterize the derivative
feedback term under the condition that the force derivative signal is
ideally filtered. The main effects of the differential gain are summa-
rized in the following:

• As illustrated in Fig. 4, introducing a differential gain will
reduce significantly the area of the stable domains in the
fn/fs − P (natural frequency and sampling frequency ratio −
proportional gain) stability charts.

• By adding a differential gain, the stability domains become disjoint
and narrow (see Fig. 4). There are certain frequency ratios where
no stable control is possible with a fixed differential gain in the
control. The narrow stable domains become very elongated along
the P-axis. The proportional gain can be further increased within
the limits of stability to minimize the steady state force error,
but the system becomes very sensitive even to slight frequency
parameter variations.

• The dynamic behavior of the system in the neighborhood of the
stability boundaries can lead to three different kinds of bifurca-
tions. The two relevant ones are the period-doubling and the sec-
ondary Hopf bifurcations. Typically, these lead to self-excited low
frequency oscillations with frequencies of 10--15% of the sampling
frequency, but they will always be less than the 50% of the sam-
pling frequency. The differential gain does not have a dominant
influence on these low vibration frequencies, but it makes the self-
excited vibration frequencies even less likely to be in the 30--50%
region of the sampling frequency (see Fig. 4).

The stability charts are periodic as the frequency ratio is in-
creased, the stable domains are repeated in every (k, k + 1), k ∈ N+
intervals of the frequency ratio. At properly tuned low sampling
frequencies, it is still possible to select gains under which the sys-
tem becomes stable, while the periodic nature also implies that at
high sampling frequencies, the system can loose its stability if the
gains are not selected properly. The proper tuning and selection of

the control gains are equally important for both low and high sam-
pling frequencies, especially when the force controlled mechanical
system has many natural frequencies with low modal damping ra-
tios. The periodicity of the stability charts is an interesting physical
phenomenon in mechanical systems with digital force feedback.
However, we have to note that for practical systems the frequency
ratio should be kept below 1

2 according to Shannon's sampling
theorem.

Most of the investigations were based on the assumption of the
availability of the time derivative of the measured force. In prac-
tice, however, this derivative can be approximated using finite dif-
ferences of measured force values, which also provide some kind
of filtering. The more detailed analysis of this finite difference ap-
proximation shows that the above conclusions still hold if the force
sensor's internal sampling frequency is high enough.
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