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Analysis of Eigenvalue Decomposition-Based Late

Reverberation Power Spectral Density Estimation
Ina Kodrasi, Member, IEEE, Simon Doclo, Senior Member, IEEE

Abstract—Many speech dereverberation techniques require an
estimate of the late reverberation power spectral density (PSD).
State-of-the-art multi-channel methods for estimating the late
reverberation PSD typically rely on 1) an estimate of the relative
transfer functions (RTFs) of the target signal, 2) a model for
the spatial coherence matrix of the late reverberation, and 3)
an estimate of the reverberant speech or reverberant and noisy
speech PSD matrix. The RTFs, the spatial coherence matrix,
and the speech PSD matrix are all prone to modeling and
estimation errors in practice, with the RTFs being particularly
difficult to estimate accurately, especially in highly reverber-
ant and noisy scenarios. Recently, we proposed an eigenvalue
decomposition (EVD)-based late reverberation PSD estimator
which does not require an estimate of the RTFs. In this paper,
this EVD-based PSD estimator is further analyzed and its
estimation accuracy and computational complexity is analytically
compared to a state-of-the-art maximum likelihood (ML)-based
PSD estimator. It is shown that for perfect knowledge of the
RTFs, spatial coherence matrix, and reverberant speech PSD
matrix, the ML-based and EVD-based PSD estimates are both
equal to the true late reverberation PSD. In addition, it is shown
that for erroneous RTFs but perfect knowledge of the spatial
coherence matrix and reverberant speech PSD matrix, the ML-
based PSD estimate is larger than or equal to the true late
reverberation PSD, whereas the EVD-based PSD estimate is
obviously still equal to the true late reverberation PSD. Finally,
it is shown that when modeling and estimation errors occur in
all quantities, the ML-based PSD estimate is larger than or equal
to the EVD-based PSD estimate. Simulation results for several
realistic acoustic scenarios demonstrate the advantages of using
the EVD-based PSD estimator in a multi-channel Wiener filter,
yielding a significantly better performance than the ML-based
PSD estimator.

Index Terms—Dereverberation, PSD estimation, EVD,
prewhitening, ML

I. INTRODUCTION

IN hands-free speech communication applications the

recorded microphone signals are often corrupted by rever-

beration, which arises from the superposition of delayed and

attenuated copies of the anechoic speech signal. While early

reverberation may be desirable [1], late reverberation may

degrade the perceived speech quality and intelligibility [2],

[3] as well as the performance of automatic speech recogni-

tion systems [4], [5]. Hence, speech enhancement techniques
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which effectively suppress the late reverberation are required.

In the last decades many single-channel and multi-channel

dereverberation techniques have been proposed [6]–[8], with

multi-channel techniques being generally preferred since they

are able to exploit both the spectro-temporal and the spatial

characteristics of the received microphone signals. Commonly

used techniques for speech dereverberation are acoustic multi-

channel equalization techniques [9]–[12], multi-channel linear

prediction-based techniques [13]–[15], and the multi-channel

Wiener filter (MWF) as well as various beamformer-postfilter

structures [16]–[28]. The MWF is typically implemented as

a minimum variance distortionless response (MVDR) beam-

former followed by a single-channel Wiener postfilter [20]–

[28]. Modeling the late reverberation as a spatially homoge-

neous sound field [20]–[28], the implementation of the MVDR

beamformer and Wiener postfilter requires (among other quan-

tities) an estimate of the spatial coherence matrix and of the

power spectral density (PSD) of the late reverberation. While

the spatial coherence matrix can be computed assuming a

reasonable sound field model for the late reverberation (e.g.,

diffuse), estimating the late reverberation PSD is challenging.

To estimate the late reverberation PSD several single-

channel estimators based on a temporal model of reverbera-

tion [29]–[31] and multi-channel estimators based on a model

for the spatial coherence matrix of the late reverberation [22]–

[28], [32] have been proposed. The multi-channel estimators

can be classified as non-blocking-based estimators [23], [26],

[28], where the target signal and late reverberation PSDs are

jointly estimated, and blocking-based estimators [22], [24],

[25], [27], [32], where the late reverberation PSD is estimated

at the output of a blocking matrix aiming to block the

target signal. For both classes of estimators, either maximum-

likelihood (ML)-based estimators [23], [25]–[27] or estimators

minimizing the Frobenius norm of an error PSD matrix [22],

[24], [28] have been proposed. Whereas for noisy scenarios

the ML-based estimators require an iterative optimization

procedure, e.g. based on Newton’s method [25], [26] or root

finding [27], in noise-free scenarios a closed-form solution

for the ML estimator can be derived [23], [27]. In [33] it

has been analytically shown that the ML-based PSD estimator

from [23] yields a higher PSD estimation accuracy than

the PSD estimator based on the Frobenius norm in [22]. It

should be realized that all multi-channel late reverberation

PSD estimators in [22]–[28], [32] require an estimate of the

relative transfer functions (RTFs) of the target signal from

the reference microphone to all microphones. In addition, all

estimators require a model for the spatial coherence matrix

of the late reverberation and an estimate of the reverberant

speech or reverberant and noisy speech PSD matrix. While
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the spatial coherence matrix can be computed assuming a

diffuse sound field model [22]–[28] and the PSD matrix can be

directly estimated from the received microphone signals, the

RTFs may be more difficult to estimate accurately, particularly

in highly reverberant and noisy scenarios. As experimentally

validated in [34]–[36], erroneously estimated RTFs degrade

the dereverberation performance of the speech enhancement

system.

Recently, we proposed a multi-channel late reverberation

PSD estimator which does not require an estimate of the

RTFs [36], [37]. The late reverberation PSD is estimated using

the eigenvalue decomposition (EVD) of the reverberant speech

PSD matrix prewhitened with the spatial coherence matrix of

the late reverberation. In this paper, we further analyze this

EVD-based PSD estimator, providing novel insights in terms

of 1) its estimation accuracy in comparison to the state-of-the-

art ML-based PSD estimator from [23], 2) its computational

complexity, and 3) its performance not only in reverberant

scenarios as in [36], but also in the presence of additive

noise. It is shown that when the true RTFs, spatial coherence

matrix, and reverberant speech PSD matrix are known, the

ML-based and EVD-based PSD estimators are equivalent and

yield the true late reverberation PSD. Furthermore, it is shown

that for erroneously estimated RTFs but perfect knowledge

of the spatial coherence matrix and reverberant speech PSD

matrix, the ML-based PSD estimate is larger than or equal to

the true late reverberation PSD, whereas the EVD-based PSD

estimate is obviously still equal to the true late reverberation

PSD. Finally, it is shown that when modeling and estimation

errors occur in all quantities, the ML-based PSD estimate

is larger than or equal to the EVD-based PSD estimate. On

the one hand, when such errors result in an overestimation

of the true late reverberation PSD for both estimators, the

ML-based PSD estimation error is larger than or equal to

the EVD-based PSD estimation error. On the other hand,

when such errors result in an underestimation of the true

late reverberation PSD for both estimators, the ML-based

PSD estimation error is smaller than or equal to the EVD-

based PSD estimation error. Simulation results for several

realistic acoustic scenarios with different reverberation times

and microphone configurations demonstrate the advantages of

using the EVD-based PSD estimator in the MWF, yielding

a significantly better performance than the ML-based PSD

estimator.

The paper is organized as follows. In Section II the consid-

ered acoustic configuration and the used notation is introduced.

In Section III the ML-based and EVD-based late reverberation

PSD estimators are reviewed and analytical insights on the

equivalence of both estimators are provided. In Section IV

the impact of modeling and estimation errors in the RTFs,

spatial coherence matrix, and reverberant speech PSD matrix

on the estimation accuracy of the ML-based and EVD-based

PSD estimators is theoretically analyzed. In addition, the

computational complexity of the ML-based and EVD-based

PSD estimators is compared. In Section V all analytical deriva-

tions are experimentally validated and the performance of the

MWF using the ML-based and EVD-based PSD estimators in

realistic acoustic scenarios is compared.

II. CONFIGURATION AND NOTATION

Consider a reverberant and noisy acoustic system with a

single speech source and M ≥ 2 microphones, as depicted

in Fig. 1. In the short-time Fourier transform (STFT) domain,

the m-th microphone signal Ym(k, l) at frequency bin k and

time frame index l is given by

Ym(k, l) = Xe,m(k, l) +Xr,m(k, l)
︸ ︷︷ ︸

Xm(k,l)

+Vm(k, l), (1)

with Xm(k, l) the reverberant speech component which

consists of the direct and early reverberation component

Xe,m(k, l) and the late reverberation component Xr,m(k, l),
and Vm(k, l) the noise component. In vector notation, the M -

dimensional microphone signal vector y(k, l) can be written

as

y(k, l) = xe(k, l) + xr(k, l)
︸ ︷︷ ︸

x(k,l)

+v(k, l), (2)

with y(k, l) = [Y1(k, l) Y2(k, l) . . . YM (k, l)]T and x(k, l),
xe(k, l), xr(k, l), and v(k, l) similarly defined. For a single

source scenario, the direct and early reverberation component

xe(k, l) can be expressed as

xe(k, l) = S(k, l)d(k, l), (3)

where S(k, l) denotes the target signal, i.e., direct and early

reverberation component received at the reference microphone,

and d(k, l) = [D1(k, l) D2(k, l) . . . DM (k, l)]T denotes the

M -dimensional vector of RTFs of the target signal from the

reference microphone to all microphones. The target signal

S(k, l) is often defined as the direct component only, such

that for calibrated microphones the RTF vector d(k, l) only

depends on the direction of arrival (DOA) of the speech source

and the microphone array geometry [22], [24]–[26], [28], [32].

Assuming that the components in (2) are mutually uncor-

related, the PSD matrix of the microphone signals y(k, l) is

given by

Φy(k, l) = E{y(k, l)yH(k, l)} (4)

= Φxe
(k, l) +Φxr

(k, l)
︸ ︷︷ ︸

Φx(k,l)

+Φv(k, l), (5)

where E denotes the expectation operator, Φx(k, l) =
E{x(k, l)xH(k, l)} is the reverberant speech PSD matrix,

Φxe
(k, l) = E{xe(k, l)x

H
e (k, l)} is the direct and early

reverberation PSD matrix, Φxr
(k, l) = E{xr(k, l)x

H
r (k, l)}

...

W ∗

1
(k, l)

Y1(k, l)

W ∗

2
(k, l)

Y2(k, l)

W ∗

M
(k, l)

YM (k, l)

...

...

Σ
Z(k, l)

C
X1

(k,
l)

X2(k, l)

X
M (k, l)

V1(k, l)
+

V2(k, l)
+

VM (k, l)
+

Fig. 1: Acoustic system configuration.
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is the late reverberation PSD matrix, and Φv(k, l) =
E{v(k, l)vH(k, l)} is the noise PSD matrix. The direct and

early reverberation PSD matrix Φxe
(k, l) is a rank-1 matrix

given by (cf. (3))

Φxe
(k, l) = Φs(k, l)d(k, l)d

H(k, l), (6)

with Φs(k, l) the time-varying PSD of the target signal, i.e.,

Φs(k, l) = E{|S(k, l)|2}. Modeling the late reverberation as a

spatially homogeneous sound field, the PSD matrix Φxr
(k, l)

can be expressed as

Φxr
(k, l) = Φr(k, l)Γ(k), (7)

with Φr(k, l) the time-varying PSD of the late reverberation

and Γ(k) the spatial coherence matrix of the late reverber-

ation which is assumed to be time-invariant. It is commonly

assumed that the sound field modeling the late reverberation is

diffuse [22]–[28], such that the spatial coherence matrix Γ(k)
can be analytically computed based on the microphone array

geometry [38]. Using (6) and (7), the reverberant speech PSD

matrix Φx(k, l) can be expressed as

Φx(k, l) = Φs(k, l)d(k, l)d
H(k, l) + Φr(k, l)Γ(k). (8)

Assuming that the reverberant speech PSD matrix is given

by (8) is a commonly used assumption when deriving multi-

channel late reverberation PSD estimators [21]–[28]. The ana-

lytical derivations provided in this paper are also based on this

assumption. It should however be noted that (8) does not hold

in practice, since 1) the late reverberation is typically not a

perfect spatially homogeneous sound field and 2) the early and

late reverberation components are not perfectly uncorrelated.

Given the M -dimensional filter vector w(k, l) =
[W1(k, l) W2(k, l) . . . WM (k, l)]T , the output signal Z(k, l)
of the speech enhancement system in Fig. 1 is equal to the

sum of the filtered microphone signals, i.e.,

Z(k, l) = wH(k, l)y(k, l). (9)

Dereverberation and noise reduction techniques aim at de-

signing the filter w(k, l) such that the output signal Z(k, l)
is as close as possible to the target signal S(k, l). Many

such techniques require (among other quantities) an estimate

of the late reverberation PSD Φr(k, l), e.g., [19]–[21]. For

conciseness, the frequency bin k and the frame index l

are omitted in the remainder of this paper, unless explicitly

required.

III. ML-BASED AND EVD-BASED LATE REVERBERATION

POWER SPECTRAL DENSITY ESTIMATORS

In this section, the ML-based late reverberation PSD esti-

mator from [23] and the EVD-based late reverberation PSD

estimator from [36] are reviewed and analytical insights on the

equivalence of both estimators are provided. For simplicity, in

the following we assume a noise-free scenario, i.e., y = x and

Φy = Φx. However, it should be noted that the considered

late reverberation PSD estimators can also be used in a noisy

scenario if an estimate of the reverberant speech PSD matrix

Φx can be obtained (cf. Section V-E).

A. ML-based PSD estimator

In [23] an ML-based estimator for the late reverberation

PSD has been derived, assuming the spectral coefficients of

the components xe and xr to be circularly-symmetric complex

Gaussian distributed. Maximizing the likelihood function com-

puted using these distributions results in the late reverberation

PSD estimate

Φml
r =

1

M − 1
tr

{(

I− d
dHΓ−1

dHΓ−1d

)

ΦxΓ
−1

}

, (10)

where tr{·} denotes the trace operator and I denotes the

M × M -dimensional identity matrix. Estimating the late re-

verberation PSD using (10) requires knowledge of the RTF

vector d, the spatial coherence matrix Γ, and the reverberant

speech PSD matrix Φx. While Γ can be computed assuming

a diffuse sound field model and Φx can be estimated from

the microphone signals, accurately estimating d may not be

straightforward, particularly in highly reverberant and noisy

environments. As will be analytically shown in Section IV-A,

erroneous RTFs degrade the accuracy of the ML-based PSD

estimate, hence resulting in a degradation of the dereverber-

ation performance of the speech enhancement system (cf.

simulation results in Section V-D).

B. EVD-based PSD estimator

Aiming to remove the dependency on the RTF vector d,

in [36] we proposed to estimate the late reverberation PSD

using the eigenvalues of the reverberant speech PSD matrix

prewhitened with the diffuse spatial coherence matrix. Using

the Cholesky decomposition of the positive definite spatial

coherence matrix Γ, i.e.,

Γ = LLH , (11)

with L an M × M -dimensional lower triangular matrix, the

prewhitened reverberant speech PSD matrix can be computed

as

Φw
x = L−1ΦxL

−H . (12)

Substituting (8) in (12), it can be observed that the matrix Φw
x

is equal to the sum of a rank-1 matrix and the identity matrix

scaled by the late reverberation PSD, i.e.,

Φw
x = Φs L

−1d
︸ ︷︷ ︸

dw

dHL−H

︸ ︷︷ ︸

dH
w

+ΦrL
−1ΓL−H (13)

= Φsdwd
H
w +ΦrI, (14)

with the vector dw introduced in order to simplify the notation.

Due to the structure in (14), the eigenvalues of the matrix Φw
x

(arranged in descending order) are equal to

λ1{Φ
w
x } = σ +Φr, (15a)

λj{Φ
w
x } = Φr, j = 2, . . . ,M, (15b)

with σ the only non-zero eigenvalue of the rank-1 matrix

Φsdwd
H
w . Based on (15), in [36] we proposed to estimate

the late reverberation PSD using either any of the last M − 1
eigenvalues of the matrix Φw

x , i.e.,

Φevd
r,j = λj{Φ

w
x }, j = 2, . . . , M, (16)
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or the mean of the last M − 1 eigenvalues of the matrix Φw
x ,

i.e.,

Φevd
r,µ =

1

M − 1
(tr {Φw

x } − λ1 {Φ
w
x }) , (17)

with (17) derived using the fact that the trace of a matrix is

equal to the sum of its eigenvalues. Obviously, when the true

spatial coherence matrix Γ and the true reverberant speech

PSD matrix Φx are known, the EVD-based PSD estimates

in (16) and (17) are equal.

Estimating the late reverberation PSD using (16) or (17)

only requires knowledge of the spatial coherence matrix Γ and

the reverberant speech PSD matrix Φx. Unlike the ML-based

PSD estimator in (10), it is important to note that our EVD-

based PSD estimator does not require an estimate of the RTF

vector d, which is advantageous in order to avoid propagation

of RTF estimation errors into the late reverberation PSD esti-

mate (cf. sensitivity analysis in Section IV-A and simulation

results in Section V-D).

C. Equivalence of the ML-based and EVD-based PSD esti-

mators

In the following, it is shown that when the true RTF

vector d, the true spatial coherence matrix Γ, and the true

reverberant speech PSD matrix Φx are known, the ML-based

PSD estimate in (10) and the EVD-based PSD estimates

in (16) and (17) are equivalent and equal to the true late

reverberation PSD.

Since the trace is invariant under cyclic permutations, the

ML-based PSD estimate in (10) can be written as

Φml
r =

1

M − 1

(

tr
{
ΦxΓ

−1
}
−

dHΓ−1ΦxΓ
−1d

dHΓ−1d

)

. (18)

Using Φx from (8), the terms in (18) can be simplified to

tr
{
ΦxΓ

−1
}
= Φsd

HΓ−1d+ΦrM, (19)

dHΓ−1ΦxΓ
−1d

dHΓ−1d
= Φsd

HΓ−1d+Φr. (20)

Substituting (19) and (20) in (18), it can be observed that when

the true d, Γ, and Φx are known, the ML-based PSD estimate

is equal to the true late reverberation PSD, i.e.,

Φml
r =

1

M − 1

(
Φsd

HΓ−1d+ΦrM − Φsd
HΓ−1d− Φr

)

(21)

= Φr. (22)

Clearly, when the true Γ and Φx are known, the EVD-based

PSD estimates in (16) and (17) are also equal to the true late

reverberation PSD (cf. (15)), i.e.,

Φevd
r,j = Φevd

r,µ = Φr, j = 2, . . . ,M. (23)

In summary, when the true RTF vector, spatial coherence

matrix, and speech PSD matrix are known (which is rarely the

case in practice, cf. Section IV), the ML-based and EVD-based

estimators are equivalent and yield the true late reverberation

PSD. It should be noted that this analytical result applies in

practice only to scenarios where the late reverberation is a

perfect spatially homogeneous sound field and the early and

late reverberation components are perfectly uncorrelated.

IV. IMPACT OF MODELING AND ESTIMATION ERRORS ON

THE ML-BASED AND EVD-BASED PSD ESTIMATORS

The analysis in Section III-C is based on the assumption that

the true RTF vector, spatial coherence matrix, and reverberant

speech PSD matrix are known. In practice however, modeling

and estimation errors typically occur in all quantities. First,

the RTF vector may differ from the true RTF vector, e.g.,

due to DOA estimation errors in highly reverberant and noisy

scenarios [39]–[42]. Second, since the spatial coherence matrix

is typically computed assuming a perfectly diffuse sound field

for the late reverberation whereas this is not the case in prac-

tice, it typically differs from the true spatial coherence matrix.

Third, since the reverberant speech PSD matrix is typically

estimated via recursive averaging of a single realization of the

microphone signals or by subtracting the noise PSD matrix

from the reverberant and noisy PSD matrix (cf. Section V), it

will also typically differ from the true reverberant speech PSD

matrix. In this section, we analyze the impact of modeling and

estimation errors in the RTFs, spatial coherence matrix, and

reverberant speech PSD matrix on the estimation accuracy of

the ML-based and EVD-based PSD estimators. It should again

be noted that the analytical results derived in this section apply

in practice only to scenarios where the late reverberation is a

perfect spatially homogeneous sound field and the early and

late reverberation components are perfectly uncorrelated.

The estimated RTF vector, spatial coherence matrix, and

reverberant speech PSD matrix are denoted by d̂, Γ̂, and Φ̂x,

respectively. Using the estimated quantities d̂, Γ̂, and Φ̂x, the

ML-based PSD estimate in (18) is given by

Φ̂ml
r =

1

M − 1

(

tr
{

Φ̂xΓ̂
−1
}

−
d̂H Γ̂

−1
Φ̂xΓ̂

−1
d̂

d̂H Γ̂
−1

d̂

)

. (24)

Using Φ̂x and the Cholesky decomposition of Γ̂, i.e.,

Γ̂ = L̂L̂H , (25)

the estimated prewhitened reverberant speech PSD matrix Φ̂
w

x

can be defined similarly to (12), i.e.,

Φ̂
w

x = L̂−1Φ̂xL̂
−H , (26)

such that the EVD-based PSD estimates in (16) and (17) are

given by

Φ̂evd
r,j = λj{Φ̂

w

x }, j = 2, . . . , M, (27)

Φ̂evd
r,µ =

1

M − 1

(

tr{Φ̂
w

x } − λ1{Φ̂
w

x }
)

. (28)

In the presence of modeling and estimation errors in the spatial

coherence matrix and reverberant speech PSD matrix, i.e.,

Γ̂ 6= Γ and Φ̂x 6= Φx, the EVD-based PSD estimates in (27)

and (28) are (typically) not equal, i.e., Φ̂evd
r,j 6= Φ̂evd

r,µ. The

theoretical analysis in this section is conducted for the EVD-

based PSD estimate Φ̂evd
r,µ in (28). In the simulation results in

Section V, the performance also when using the EVD-based

PSD estimate Φ̂evd
r,2 (j = 2) in (27) will be investigated. It

should be noted that Φ̂evd
r,2 ≥ Φ̂evd

r,µ, with equality holding when

using M = 2 microphones.
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In order to evaluate the estimation accuracy of the PSD

estimators in (24) and (28), we define the ML-based and EVD-

based PSD estimation errors ξml
r and ξevd

r,µ as

ξml
r = | Φ̂ml

r − Φr
︸ ︷︷ ︸

δml
r

|, ξevd
r,µ = | Φ̂evd

r,µ − Φr
︸ ︷︷ ︸

δevd
r,µ

|, (29)

where | · | denotes the absolute value. If δml
r > 0 and δevd

r,µ > 0,

the estimators overestimate the true late reverberation PSD,

whereas if δml
r < 0 and δevd

r,µ < 0, the estimators underestimate

the true late reverberation PSD.

A. Impact of erroneous RTFs

In the following, the estimation accuracy of the ML-based

PSD estimator in (24) is analyzed for erroneous RTFs, i.e.,

d̂ 6= d, but perfect knowledge of the spatial coherence matrix

and reverberant speech PSD matrix, i.e., Γ̂ = Γ and Φ̂x =
Φx. Since the EVD-based PSD estimator in (28) does not

depend on the RTF vector, and hence, is not affected by RTF

estimation errors, it always yields the true late reverberation

PSD for Γ̂ = Γ and Φ̂x = Φx (cf. (15)).

The ML-based PSD estimate in (24) using d̂ 6= d, Γ̂ = Γ,

and Φ̂x = Φx is given by

Φ̂ml
r =

1

M − 1

(

tr
{
ΦxΓ

−1
}
−

d̂HΓ−1ΦxΓ
−1d̂

d̂HΓ−1d̂

)

. (30)

Substituting Φx from (8), the second term in (30) can be

expressed as

d̂HΓ−1ΦxΓ
−1d̂

d̂HΓ−1d̂
= Φs

(d̂HΓ−1d)2

d̂HΓ−1d̂
+Φr. (31)

Using (19) and (31), the ML-based PSD estimate in (30) can

be written as

Φ̂ml
r =

Φs

M − 1

(

dHΓ−1d−
(d̂HΓ−1d)2

d̂HΓ−1d̂

)

︸ ︷︷ ︸

δml
r

+Φr, (32)

with δml
r the difference between the ML-based PSD estimate

and the true PSD in the presence of RTF estimation errors. In

the following, the Cauchy-Schwarz inequality is used to show

that δml
r ≥ 0 and ξml

r ≥ 0.

In order to simplify the notation, we use the vector dw

in (14) and additionally define the vector d̂w as

d̂w = L−1d̂, (33)

such that the difference δml
r in (32) can be expressed as

δml
r =

Φs

M − 1

(dH
wdw)(d̂

H
w d̂w)− (d̂H

wdw)
2

d̂H
w d̂w

. (34)

Based on the Cauchy-Schwarz inequality, it can be shown that1

(dH
wdw)(d̂

H
w d̂w)− (d̂H

wdw)
2 > 0. (35)

1It should be noted that since the RTF vectors d and d̂ are linearly

independent, the vectors dw and d̂w are also linearly independent, hence,
the Cauchy-Schwarz inequality in (35) is sharp.

Given (35) and since Φs ≥ 0, M − 1 > 0, and d̂H
w d̂w > 0

(assuming that d̂w 6= 0, i.e., d̂ 6= 0), we conclude that in the

presence of RTF estimation errors

δml
r ≥ 0 and ξml

r ≥ 0, (36)

with equality only holding when the target signal PSD is equal

to zero, i.e., Φs = 0.

In summary, in the presence of RTF estimation errors

but perfect knowledge of the spatial coherence matrix and

reverberant speech PSD matrix, the ML-based PSD estimate

is larger than or equal to the true late reverberation PSD,

whereas the EVD-based PSD estimate is obviously still equal

to the true late reverberation PSD. Overestimation of the

true late reverberation PSD will lead to undesired speech

distortion when used in a speech enhancement algorithm,

e.g., a postfilter. This derivation can hence be valuable in

practice to decide against using the ML-based PSD estimate in

applications where the RTF is difficult to estimate accurately

and speech distortion is unacceptable.

B. Impact of modeling and estimation errors in all quantities

In the following, the estimation accuracy of the ML-based

and EVD-based PSD estimators in (24) and (28) is analyzed

in the presence of modeling and estimation errors in the RTFs,

spatial coherence matrix, and reverberant speech PSD matrix,

i.e., d̂ 6= d, Γ̂ 6= Γ, and Φ̂x 6= Φx. Note that the analytical

results derived in this section also hold for scenarios when

modeling and estimation errors occur only in one (or two)

of the required quantities, with the remaining quantities (or

quantity) perfectly estimated. In realistic acoustic scenarios

however, modeling and estimation errors typically occur in all

quantities.

Based on the Cholesky decomposition of Γ̂ in (25) and since

the trace is invariant under cyclic permutations, the first term

in the ML-based estimate in (24) can be written as

tr{Φ̂xΓ̂
−1

} = tr{L̂−1Φ̂xL̂
−H} = tr{Φ̂

w

x }. (37)

In order to simplify the notation, we define the vector û as

û = L̂−1d̂, (38)

and express the second term in (24) as

d̂H Γ̂
−1

Φ̂xΓ̂
−1

d̂

d̂H Γ̂
−1

d̂
=

ûH L̂−1Φ̂xL̂
−H û

ûH û
=

ûHΦ̂
w

x û

ûH û
. (39)

Substituting (37) and (39) in (24), the ML-based PSD estimate

in the presence of modeling and estimation errors in all

quantities can be written as

Φ̂ml
r =

1

M − 1

(

tr{Φ̂
w

x } −
ûHΦ̂

w

x û

ûH û

)

. (40)

It is well known that the Rayleigh quotient of a matrix is

bounded by its maximum eigenvalue, i.e.,

ûHΦ̂
w

x û

ûH û
≤ λ1{Φ̂

w

x }, (41)

with equality only holding when the vector û corresponds

to the (scaled) eigenvector of Φ̂
w

x associated with its largest
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eigenvalue λ1{Φ̂
w

x }. By comparing the PSD estimates in (28)

and (40), it can now be observed that for erroneous RTFs,

spatial coherence matrix, and reverberant speech PSD matrix,

the ML-based PSD estimate is larger than or equal to the

EVD-based PSD estimate, i.e.,

Φ̂ml
r ≥ Φ̂evd

r,µ. (42)

In order to compare the ML-based and EVD-based PSD

estimation errors ξml
r and ξevd

r,µ, we use (42) and distinguish

between the following cases:

• If the true late reverberation PSD is overestimated by both

estimators, i.e., if δml
r > 0 and δevd

r,µ > 0, the ML-based

PSD estimation error is larger than or equal to the EVD-

based PSD estimation error, i.e., ξml
r ≥ ξevd

r,µ. As already

mentioned, overestimation of the true late reverberation

PSD is particularly detrimental to the speech quality,

since it results in speech distortion.

• If the true late reverberation PSD is underestimated by

both estimators, i.e., if δml
r < 0 and δevd

r,µ < 0, the ML-

based PSD estimation error is smaller than or equal to

the EVD-based PSD estimation error, i.e., ξml
r ≤ ξevd

r,µ.

Underestimation of the true late reverberation PSD results

in an unnecessary amount of residual reverberation in

the output signal of the speech enhancement algorithms,

while preserving the speech quality.

• If the true late reverberation PSD is overestimated by

the ML-based estimator but underestimated by the EVD-

based estimator, i.e., if δml
r > 0 and δevd

r,µ < 0, no

conclusions can be drawn on the PSD estimation errors

ξml
r and ξevd

r,µ.

These derivations can be valuable in practice to decide 1)

to use the ML-based PSD estimate in applications where

late reverberation suppression is more important than speech

quality preservation, or 2) to use the EVD-based PSD estimate

in applications where speech quality preservation is more

important than late reverberation suppression.

C. Computational complexity

In this section, we provide some insights on the compu-

tational complexity of the ML-based and EVD-based PSD

estimators. The computational complexity of the ML-based

PSD estimator in (10) is dominated by matrix multiplication,

for which the best known upper bound is O(M2.373) [43].

In contrast, the dominating operation for the EVD-based

PSD estimators in (16) and (17) is the computation of the

eigenvalues using an EVD. Although many algorithms exist

for computing the EVD, we consider the QR decomposition-

based algorithm [44], which is one of the most widely used

algorithms to compute eigenvalues. The complexity of the

QR decomposition-based algorithm for Hermitian matrices is

O(M3) [45], also when the matrix is first transformed into real

tridiagonal form using Householder reflections [44]. However,

it should be noted that the EVD-based PSD estimators in (16)

or (17) require only a single eigenvalue, for which more effi-

cient algorithms exist, e.g., based on subspace tracking [46].

V. SIMULATION RESULTS

In this section, the impact of modeling and estimation

errors in the RTFs, spatial coherence matrix, and reverberant

speech PSD matrix on the ML-based and EVD-based PSD

estimates is experimentally validated. In addition, the per-

formance of the MWF using the considered PSD estimators

is compared for several realistic acoustic scenarios with and

without background noise. In Section V-A the considered

acoustic systems, algorithmic settings, and instrumental perfor-

mance measures are presented. In Section V-B the analytical

results of Section III-C and Section IV are experimentally

validated. For noise-free scenarios, Section V-C compares the

dereverberation performance of the MWF using the ML-based

and EVD-based PSD estimators when the true RTF vector is

known, whereas Section V-D compares the dereverberation

performance of the MWF using the ML-based and EVD-

based PSD estimators in the presence of RTF estimation errors.

For noisy scenarios, the dereverberation and noise reduction

performance of the MWF using the ML-based and EVD-

based PSD estimators is investigated in Section V-E. The

computation of the required quantities (RTF vector, spatial

coherence matrix, reverberant speech PSD matrix) as well as

the MWF implementation is presented at the beginning of each

section.

A. Acoustic systems, algorithmic settings, and instrumental

performance measures

We have considered two acoustic systems with a single

speech source and M ∈ {2, 4} microphones. The first acoustic

system AS1 consists of a circular microphone array with

a radius of 10 cm [47] and the second acoustic system

AS2 consists of a linear microphone array with an inter-

microphone distance of 6 cm [48]. Table I presents the room

reverberation time T60, the DOA θ of the speech source, and

the direct-to-reverberation ratio (DRR) for both considered

acoustic systems. The sampling frequency is fs = 16 kHz.

The speech components are generated by convolving a 38 s

long clean speech signal with the measured room impulse

responses (RIRs). The noise components either consist of non-

stationary diffuse babble noise, representing background noise

typically encountered in large crowded rooms, or stationary

uncorrelated noise, representing e.g. microphone self-noise.

The speech-plus-noise signal is preceded by a 1 s long noise-

only segment. The signals are processed in the STFT domain

using a weighted overlap-add framework with a Hamming

window, a frame size N = 1024 samples, and an overlap

of 75%. The target signal is defined as the direct component

only, such that the RTF vector can be computed based on the

DOA of the speech source. The first microphone is arbitrarily

selected as the reference microphone.

TABLE I: Characteristics of the considered acoustic systems.

Acoustic system T60 [s] θ DRR [dB]

AS1 0.73 45◦ 1.43
AS2 1.25 −15◦ −0.05
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In order to evaluate the performance, we use the

perceptual evaluation of speech quality (PESQ) mea-

sure [49], the frequency-weighted segmental signal-to-noise

ratio (fSNR) [50], the cepstral distance (CD) [51], and the

short-time objective intelligibility measure (STOI) [52]. These

instrumental performance measures are intrusive measures

generating a similarity score between a test signal and a

reference signal. The reference signal used in this paper is the

clean speech signal. The improvement in these instrumental

measures, i.e., ∆PESQ, ∆fSNR, ∆CD, and ∆STOI, is com-

puted as the difference between the PESQ, fSNR, CD, and

STOI values of the output signal and the reference microphone

signal. Note that a positive ∆PESQ, ∆fSNR, and ∆STOI and

a negative ∆CD indicate a performance improvement.

B. Validation of analytical results

In this section, the analytical results of Sections III-C, IV-A,

and IV-B are experimentally validated for the exemplary

acoustic system AS1 with M = 4 microphones. It is ex-

perimentally validated that when the true RTF vector, spatial

coherence matrix, and reverberant speech PSD matrix are

known, the ML-based and EVD-based PSD estimates are

equal to the true late reverberation PSD. In addition, it is

experimentally validated that for erroneous RTFs but perfect

knowledge of the spatial coherence matrix and reverberant

speech PSD matrix, the ML-based PSD estimate is larger than

or equal to the true late reverberation PSD, whereas the EVD-

based PSD estimate is still equal to the true late reverberation

PSD. Finally, it is experimentally validated that in the presence

of modeling and estimation errors in all quantities, the ML-

based PSD estimate is larger than or equal to the EVD-based

PSD estimate.

In this section, the true quantities d, Γ, and Φx are

computed as follows. The true RTF vector d is computed using

the true DOA θ = 45◦ of the speech source as

d = [1 e−j2πfτ2(θ) . . . e−j2πfτM (θ)]T , (43)

with f the frequency and τm(θ) the relative time delay of

arrival between the m-th microphone and the 1st (reference)

microphone. The true spatial coherence matrix Γ is computed

from the late reverberation components as

Γp,q(k) =

∑L−1
l=0 Xr,p(k, l)X

∗

r,q(k, l)
√
(
∑L−1

l=0 |Xr,p(k, l)|2
)(
∑L−1

l=0 |Xr,q(k, l)|2
) ,

(44)

with Γp,q(k) the {p, q}-th element of Γ(k), L the total

number of time frames, and the late reverberation components

generated by convolving the clean speech signal with the late

reverberant tail of the measured RIRs (and transforming the

resulting signal to the STFT domain). Using d and Γ, the true

reverberant speech PSD matrix Φx is computed as

Φx = Φsdd
H +ΦrΓ, (45)

where the PSDs Φs and Φr are computed from the target signal

Xe,1 and the late reverberation component Xr,1 using recursive

averaging with a smoothing factor α as

Φs(k, l) = α|Xe,1(k, l)|
2 + (1− α)Φs(k, l − 1), (46)

Φr(k, l) = α|Xr,1(k, l)|
2 + (1− α)Φr(k, l − 1). (47)

The target signal Xe,1 is generated by convolving the clean

speech signal with the direct part of the RIR (and transforming

the resulting signal to the STFT domain). The used smoothing

factor is α = 0.67, corresponding to a time constant of 40 ms.

It should be noted that since the objective of this section is

only to validate the analytical results, the true Φx is computed

as in (45) in order to ensure that (8) perfectly holds.

The estimated quantities d̂, Γ̂, and Φ̂x are computed as

follows. The estimated RTF vector d̂ is computed using an

exemplary erroneous DOA θ̂ = 30◦. The estimated spatial

coherence matrix Γ̂ is computed assuming a spherically diffuse

sound field as [38]

Γ̂p,q(k) = sinc

(
2πkfs
Nc

rpq

)

, (48)

with c = 340 m/s the speed of sound and rpq the distance

between the p-th and q-th microphone. The reverberant speech

PSD matrix Φ̂x is estimated from the received microphone

signals using recursive averaging as

Φ̂x(k, l) = αX(k, l)XH(k, l) + (1− α)Φ̂x(k, l − 1). (49)

Equivalence of the ML-based and EVD-based PSD estima-

tors (d̂ = d, Γ̂ = Γ, Φ̂x = Φx). Using the true RTF vector

d in (43), the true spatial coherence matrix Γ in (44), and

the true reverberant speech PSD matrix Φx in (45), the late

reverberation PSD is estimated using the ML-based estimator

in (24) and the EVD-based PSD estimator in (28). Fig. 2

depicts the true late reverberation PSD Φr, the ML-based

PSD estimate Φ̂ml
r , and the EVD-based PSD estimate Φ̂evd

r,µ

averaged over all time frames. Obviously, in this case both

PSD estimates are equal to the true late reverberation PSD,

confirming the derivations in Section III-C.

Impact of erroneous RTFs (d̂ 6= d, Γ̂ = Γ, Φ̂x = Φx).

Using the estimated erroneous RTF vector d̂, the true spatial

coherence matrix Γ in (44), and the true reverberant speech

PSD matrix Φx in (45), the late reverberation PSD is estimated

using the ML-based estimator in (24) and the EVD-based PSD
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Φr Φ̂ml
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Fig. 2: True and estimated late reverberation PSDs averaged

over all time frames when the true RTF vector, spatial coher-

ence matrix, and reverberant speech PSD matrix are known

(AS1, M = 4).
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Fig. 3: Difference between the ML-based PSD estimate and the

true late reverberation PSD in the presence of RTF estimation

errors but perfect knowledge of the spatial coherence matrix

and reverberant speech PSD matrix (AS1, M = 4).
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Fig. 4: Difference between the ML-based and EVD-based PSD

estimates in the presence of modeling and estimation errors in

all quantities (AS1, M = 4).

estimator in (28). Clearly, the EVD-based estimator is not

affected by RTF estimation errors and still yields the true late

reverberation PSD Φr as in Fig. 2. Fig. 3 illustrates the dif-

ference between the ML-based PSD estimate and the true late

reverberation PSD in dB, i.e., 10 log10 Φ̂
ml
r − 10 log10 Φr, for

all time-frequency bins. For the sake of clarity, the maximum

difference has been limited to 20 dB. It can be observed that in

the presence of RTF estimation errors, the difference between

the ML-based estimate and the true late reverberation PSD is

always larger than or equal to 0, confirming the derivations in

Section IV-A. For the considered scenario, it appears that the

difference between the ML-based estimate and the true late

reverberation PSD is larger at higher frequencies.

Impact of errors in all quantities (d̂ 6= d, Γ̂ 6= Γ,

Φ̂x 6= Φx). Using the estimated erroneous RTF vector d̂,

the estimated spatial coherence matrix Γ̂ in (48), and the

estimated reverberant speech PSD matrix Φ̂x in (49), the late

reverberation PSD is estimated using the ML-based estimator

in (24) and the EVD-based estimator in (28). Fig. 4 illustrates

the difference between the ML-based and EVD-based PSD

estimates in dB, i.e., 10 log10 Φ̂
ml
r − 10 log10 Φ̂

evd
r,µ, for all

time-frequency bins. For the sake of clarity, the maximum

difference has been limited to 20 dB. It can be observed

that in the presence of modeling and estimation errors in all

quantities, the ML-based estimate is larger than or equal to

the EVD-based PSD estimate, confirming the derivations in

Section IV-B.

C. Dereverberation performance for perfectly estimated RTFs

In this section, the dereverberation performance of the

MWF using different late reverberation PSD estimators is

investigated for the noise-free case assuming that the RTF

vector is perfectly estimated, i.e., assuming that the true DOA

of the speech source is known. Both acoustic systems and

configurations are considered.

The MWF is implemented as an MVDR beamformer w
MVDR

followed by a single-channel Wiener postfilter G applied to the

MVDR output, i.e.,

w
MWF

=
Γ̂
−1

d̂

d̂H Γ̂
−1

d̂
︸ ︷︷ ︸

w
MVDR

Φ̂s

Φ̂s +
Φ̂r

d̂H Γ̂
−1

d̂
︸ ︷︷ ︸

G

, (50)

with Γ̂ the diffuse spatial coherence matrix computed as

in (48), d̂ = d the RTF vector computed using the true DOA

of the speech source, Φ̂r the estimated late reverberation PSD,

and Φ̂s the target signal PSD estimated using the decision

directed approach [53]. Using d̂ = d, Γ̂, and Φ̂x estimated

using recursive averaging as in (49), three different estimates

are considered for the late reverberation PSD Φ̂r, i.e., the ML-

based PSD estimate Φ̂ml
r in (24), the EVD-based PSD estimate

Φ̂evd
r,µ in (28), and the EVD-based PSD estimate Φ̂evd

r,2 (j = 2)

in (27). Note that Φ̂evd
r,2 ≥ Φ̂evd

r,µ, with equality holding for

M = 2 microphones.

Figs. 5 and 6 depict the ∆PESQ, ∆fSNR, ∆CD, and

∆STOI values obtained using the MWF with different PSD

estimators for both acoustic systems and configurations. For

completeness, the performance of the MVDR beamformer

implemented as in (50) is also depicted. As expected, the per-

formance of the MVDR beamformer and the MWF improves

with increasing number of microphones for both acoustic

systems. In addition, for both acoustic systems it can be

observed that the MWF using any of the considered late

reverberation PSD estimates improves the performance in

comparison to the MVDR beamformer. When comparing the

performance of the MWF for the different late reverberation

PSD estimates, it can be observed that the performance is in

general rather similar independently of the used PSD estimate.

In terms of ∆PESQ, the ML-based PSD estimate Φ̂ml
r yields a

slightly better performance for acoustic system AS1, whereas

the EVD-based PSD estimate Φ̂evd
r,2 yields a slightly better

performance for acoustic system AS2. In terms of ∆fSNR,

∆CD, and ∆STOI, the EVD-based PSD estimate Φ̂evd
r,µ yields a

slightly better performance than Φ̂ml
r and Φ̂evd

r,2 for both acoustic

systems.

In summary, these simulation results show the applicability

of the EVD-based PSD estimator for dereverberation, yielding

a similar or slightly better performance than the state-of-the-art

ML-based PSD estimator when the true RTFs are known.

D. Dereverberation performance for erroneous RTFs

In this section, the dereverberation performance of the

MWF using different late reverberation PSD estimators is

investigated for the noise-free case assuming that the RTF

vector is erroneously estimated, i.e., using an erroneous DOA



9

2 4
0

0.1
0.2
0.3
0.4
0.5
0.6

M

∆
P

E
S

Q
MVDR MWF-Φ̂ml

r MWF-Φ̂evd
r,µ MWF-Φ̂evd

r,2

2 4
0

1

2

3

4

M

∆
fS

N
R

[d
B

]

2 4

0

-0.25

-0.5

-0.75

-1

M

∆
C

D
[d

B
]

2 4
0

0.05

0.1

M

∆
S

T
O

I

Fig. 5: Dereverberation performance of the MVDR beamformer and the MWF for acoustic system AS1 using the true RTF

vector: (a) ∆PESQ, (b) ∆fSNR, (c) ∆CD, and (d) ∆STOI.
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Fig. 7: Dereverberation performance of the MVDR beamformer and the MWF for acoustic system AS1 with M = 4 microphones

using erroneous RTF vectors: (a) ∆PESQ, (b) ∆fSNR, (c) ∆CD, and (d) ∆STOI.
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Fig. 8: Dereverberation performance of the MVDR beamformer and the MWF for acoustic system AS2 with M = 4 microphones

using erroneous RTF vectors: (a) ∆PESQ, (b) ∆fSNR, (c) ∆CD, and (d) ∆STOI.

of the speech source. We consider both acoustic systems and

M = 4 microphones. The MWF is implemented as in (50),

with the estimated RTF vector d̂ computed based on several

erroneous DOAs

θ̂ ∈ {−90◦, −75◦, . . . , 90◦}, (51)

and the remaining quantities computed as in Section V-C. It

should be noted that independently of the estimator used for

the late reverberation PSD, the MWF implemented as in (50)

is sensitive to RTF estimation errors due to the sensitivity of

the MVDR beamformer to RTF estimation errors. However, as

will be shown, a significantly higher sensitivity of the MWF

is observed when the late reverberation PSD estimator is also

affected by RTF estimation errors.

Figs. 7 and 8 depict the ∆PESQ, ∆fSNR, ∆CD, and

∆STOI values obtained using the MWF with different late
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Fig. 9: Dereverberation and noise reduction performance of the MWF in the presence of non-stationary diffuse babble noise

(AS1, M = 4).
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Fig. 10: Dereverberation and noise reduction performance of the MWF in the presence of stationary uncorrelated noise (AS1,

M = 4).

reverberation PSD estimators for both acoustic systems in the

presence of RTF estimation errors. In addition, the perfor-

mance obtained using the true RTF vector (i.e., θ̂ = 45◦ for

acoustic system AS1 and θ̂ = −15◦ for acoustic system AS2)

is depicted. For completeness, the performance of the MVDR

beamformer implemented as in (50) is also presented. As ex-

pected, it can be observed that the performance of the MVDR

beamformer deteriorates in the presence of RTF estimation

errors in terms of all instrumental performance measures.

Since the MWF is equivalent to an MVDR beamformer

followed by a single-channel Wiener postfilter, cf. (50), it can

be observed that RTF estimation errors yield a performance

deterioration also for the MWF using any of the considered

late reverberation PSD estimates. However, since the ML-

based PSD estimate additionally relies on the RTF vector,

Figs. 7 and 8 clearly show that the performance of the MWF

using the ML-based PSD estimate is substantially lower than

using any of the proposed EVD-based PSD estimates. For

large DOA estimation errors, the performance of the MWF

using the ML-based PSD estimate can even be worse than the

performance of the MVDR beamformer, illustrating that PSD

estimation errors arising due to RTF estimation errors have a

large impact on the MWF performance. When comparing the

performance of the MWF using the EVD-based PSD estimates

Φ̂evd
r,µ and Φ̂evd

r,2 , Figs. 7 and 8 show that the performance

of the MWF is rather similar independently of the EVD-

based PSD estimate used. In terms of ∆PESQ, both PSD

estimates achieve a very similar performance for acoustic

system AS1, while Φ̂evd
r,µ appears to achieve a slightly better

performance than Φ̂evd
r,2 for acoustic system AS2 (particularly

for θ̂ ∈ {45◦, . . . , 90◦}). In terms of ∆fSNR and ∆CD, Φ̂evd
r,µ

appears to achieve a slightly better performance than Φ̂evd
r,2 for

both acoustic systems. In terms of ∆STOI, both PSD estimates

achieve a very similar performance for both acoustic systems.

In summary, the presented simulation results show that

compared to the ML-based PSD estimator, the EVD-based

PSD estimator yields a similar dereverberation performance

when the true RTF vector is known and a significantly better

dereverberation performance in the presence of RTF estimation

errors, making the EVD-based PSD estimator an advantageous

PSD estimator to use in realistic reverberant scenarios.

E. Dereverberation and noise reduction performance

In this section, the dereverberation and noise reduction

performance of the MWF using the ML-based and EVD-based

PSD estimates is investigated for two different additive noise

scenarios, i.e., non-stationary spherically diffuse babble noise

simulated using [54] and stationary temporally and spatially

uncorrelated noise. The broadband reverberant signal-to-noise

ratio (RSNR) for both considered noisy scenarios is varied

between 10 dB and 50 dB. We consider acoustic system AS1

with M = 4 microphones and compute the RTF vector using

the true DOA θ = 45◦ of the speech source as in (43).

For the diffuse noise scenario, the ML-based and EVD-

based PSD estimators can be readily used to estimate the joint

late reverberation and noise PSD by prewhitening the noisy

PSD matrix Φ̂y, such that the MWF can be implemented as

in the noise-free scenario in Section V-C. The PSD matrix

Φ̂y can be estimated from the received microphone signals

using recursive averaging, similarly as in (49). The MWF

can then be implemented as in (50) using the estimated joint

late reverberation and noise PSD, the diffuse spatial coherence

matrix Γ̂ in (48) (modeling both late reverberation and noise),

and the RTF vector d̂ computed using the true DOA.
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For the uncorrelated noise scenario, the MWF is imple-

mented as

w
MWF

=
(Φ̂rΓ̂+ Φ̂v)

−1
d̂

d̂H(Φ̂rΓ̂+ Φ̂v)−1d̂
︸ ︷︷ ︸

w
MVDR

Φ̂s

Φ̂s + (d̂H(Φ̂rΓ̂+ Φ̂v)−1d̂)−1

︸ ︷︷ ︸

G

,

(52)

with Φ̂v the estimated noise PSD matrix. Assuming stationary

noise, Φ̂v is estimated from Lv noise-only frames (corre-

sponding to 1 s) as

Φ̂v(k) =
1

Lv

Lv−1∑

l=0

V(k, l)VH(k, l). (53)

Furthermore, the PSD matrix Φ̂x required for the late rever-

beration PSD estimators is computed as

Φ̂x = Φ̂y − Φ̂v. (54)

Since the reverberant speech PSD matrix in (54) may not be

positive semi-definite, particularly at low input RSNRs, the

matrix Φ̂x is forced to be positive semi-definite by setting its

negative eigenvalues to 0. The MWF is then implemented as

in (52) using the estimated late reverberation PSD, the diffuse

spatial coherence matrix Γ̂ in (48), the noise PSD matrix Φ̂v

in (53), and the RTF vector d̂ computed using the true DOA.

For different broadband RSNRs, Figs. 9 and 10 depict the

∆PESQ, ∆fSNR, ∆CD, and ∆STOI values obtained using the

MWF with the ML-based and EVD-based PSD estimates for

the diffuse and uncorrelated noise scenarios, respectively. It

can be observed that in terms of all instrumental performance

measures, all PSD estimators yield a similarly large derever-

beration and noise reduction performance. In terms of ∆PESQ,

the ML-based PSD estimate generally yields a slightly better

performance than the EVD-based PSD estimates. In terms of

∆fSNR, ∆CD, and ∆STOI, the EVD-based PSD estimate

Φ̂evd
r,µ consistently yields a slightly better performance than Φ̂ml

r

and Φ̂evd
r,2 .

In summary, these simulation results show the applicability

of the EVD-based PSD estimator in realistic reverberant and

noisy scenarios, yielding a similar or slightly better perfor-

mance than the state-of-the-art ML-based PSD estimator when

the true RTFs are known.

VI. CONCLUSION

In this paper, the recently proposed EVD-based late rever-

beration PSD estimator has been analyzed and its estimation

accuracy has been analytically compared to a state-of-the-art

ML-based PSD estimator. It has been shown that when the

true RTFs, late reverberation spatial coherence matrix, and

reverberant speech PSD matrix are known, the ML-based and

EVD-based PSD estimators are equivalent and yield the true

late reverberation PSD. Furthermore, it has been shown that in

the presence of RTF estimation errors but perfect knowledge

of the spatial coherence matrix and reverberant speech PSD

matrix, the ML-based PSD estimate is larger than or equal

to the true late reverberation PSD, whereas the EVD-based

PSD estimate is still equal to the true late reverberation PSD.

Finally, it has been shown that in the presence of modeling and

estimation errors in all quantities (which is typically the case

in practice), the ML-based PSD estimate is larger than or equal

to the EVD-based PSD estimate. Simulation results for several

realistic reverberant acoustic scenarios have demonstrated that

compared to the ML-based PSD estimator, the EVD-based

PSD estimator yields a similar dereverberation performance

when the true RTF vector is known and a significantly better

dereverberation performance in the presence of RTF estimation

errors. In addition, it has been experimentally validated that

the EVD-based PSD estimator can also be successfully used in

reverberant and noisy scenarios, as long as an estimate of the

reverberant speech PSD matrix can be obtained. Conveniently,

if the noise can also be modeled as a diffuse sound field, an

estimate of the reverberant speech PSD matrix is not required

and the EVD-based estimator can be readily used to estimate

the joint late reverberation and noise PSD.
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