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Analysis of Electrical Resonance Distortion

for Inductive Sensing Applications

Robert R. Hughes and Steve Dixon

Abstract— Resonating inductive sensors are increasingly
popular for numerous measurement techniques, not least in non-
destructive testing, due to the increased sensitivity obtained at
frequencies approaching electrical resonance. The highly unstable
nature of resonance limits the practical application of such
methods while no comprehensive understanding exists of the
resonance distorting behavior in relation to typical measurements
and environmental factors. In this paper, a study into the
frequency spectrum behavior of electrical resonance is carried
out exploring the effect of key factors. These factors, known
to distort the electrical resonance of inductive sensors, include
proximity to (or lift-off from) a material surface and the presence
of discontinuities in the material surface. Critical features of
resonance are used as metrics to evaluate the behavior of
resonance with lift-off and defects. Experimental results are
compared with results from a 2-D finite element analysis model
that geometrically mimics the inductive sensor used in the
experiments, and with results predicted by an equivalent circuit
transformer model. The findings conclusively define the physi-
cal phenomenon behind measurement techniques such as near
electrical resonance signal enhancement and show that lift-off
and defect resonance distortions are unique and measurable and
can be equated to exclusive variations in the induced variables
in the equivalence circuit model. The resulting understanding
found from this investigation is critical to the future development
and understanding of a complete model of electrical resonance
behavior, integral for the design of novel sensors, techniques, and
inversion models.

Index Terms— Resonance, inductive sensing, eddy-current,
ECT, NDT, electromagnetic testing, NERSE.

I. INTRODUCTION

ELECTRICAL resonance is a fundamental phenomenon of

many applications across a wide range of technologies

and applications, including radio engineering and wireless

power transfer [1]. One such application is in non-destructive

testing (NDT), where inductive sensors are used to

inspect industrial components for structurally compromising

damage [2], [3]. Recent research by Hughes et al, and others,
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has shown that operating these inductive sensors around elec-

trical resonance can enhance the sensivity of such techniques

allowing the detection of smaller defects [4]–[10].

In spite of these recent advances in resonance exploit-

ing measurements, typical inductive sensing systems used in

industry historically avoid electrical resonance for theoretical

simplicity and measurement stability. This is not unjustified,

as electrical resonance can be easily affected by a range of fac-

tors that could interfere with these measurements. Therefore,

in order to further the development of these techniques,

a greater practical and theoretical understanding of the behav-

ior of electrical resonance in inductive sensing applications is

required.

This paper presents experimental investigations into the

electrical resonance behavior of a typical industrial inductive

sensor due to changes in its primary electrical components,

namely; coaxial cable length, proximity of inductive coil to the

surface of an electrically conducting material, and the presence

of surface breaking discontinuities in that surface.

II. THEORY

Eddy-current testing probes require the generation of

alternating magnetic fields to induce eddy-currents in test

specimens. This is achieved through the use of inductive coils

and the simplest form of ECT sensors use these inductive coils

as both current-generator and detector by monitoring changes

in the electrical impedance, Z , of the coil during inspection.

This impedance will vary with the proximity and quality of

specimen. Coaxial cables are commonly used to connect the

excitation and monitoring system to the coil, adding additional

capacitance to the system, impacting the overall impedance

of the measurement. The combination of the cable and the

inductive coil is referred to as the sensor hereafter.

At a specific excitation frequency, called the resonant

frequency, f0, the electrical impedance, Z , of the sensor

transitions from an inductive to a capacitive system. This

transition, identified by a change in impedance phase, φ, from

positive to negative 90◦, is accompanied by a peak in the

magnitude of the impedance, |Z |.
Inductive ECT sensors are typically represented as a parallel

RLC equivalent circuit [11]. The frequency and shape of the

resonance transition of these circuits is directly related to the

inductive, L0, capacitive, C0 and resistive, R0, components of

the equivalent circuit, and is defined as [12],

Z =
R0 + iωL0

1 + iωR0C0 − ω2 L0C0
, (1)
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Fig. 1. Equivalent transformer circuit model representing the interaction
between an inductive coil probe and the surface of an electrically conducting
material.

where ω is the angular frequency. The resonant angular

frequency, ω0, is defined as the frequency at which the

imaginary component of impedance �{Z} = 0, such that the

phase is zero and the magnitude is completely real, and will

occur when,

ω0 = 2π f0 =

√

1

C0 L0
−

(

R0

L0

)2

, (2)

'

√

1

C0 L0
, (3)

when R2
0 C0 � L0. This condition is satisfied for the electrical

properties of ECT sensors.

A. The Transformer Model

When close to an electrically conducting material a coil will

inductively couple to the surface of the material (see Figure 1).

The effect of the material can be modelled as an inductor, Le,

in series with an unknown impedance, Ze = Re + i Xe, which

will vary depending on the surface properties of the material.

This coupling, parametrised by the coupling coefficient, k,

will alter the effective inductance and resistance (L 0
0 and R0

0

respectively) of the equivalent circuit model and will distort

the impedance such that it can be found via Kirchoff’s laws

to be [12],

Z =
R0

0 + iωL 0
0

1 + iωR0
0C0 − ω2 L 0

0C0
. (4)

where

L 0
0 = L0

[

1 − αk2(Xe + ωLe)
]

, (5)

R0
0 = R0 + αk2ωL0 Re, (6)

and,

α =
ωLe

R2
e + (Xe + ωLe)2

. (7)

Here it is assumed that the capacitance is largely unaffected by

the presence of the electrically conducting material. In reality

this is not necessarily true. The validity of this assumption

will be commented upon within this paper.

The scalar coupling coefficient is linked to the mutual

induction [13], M = k
√

L0 Le, between the two circuits.

The coefficient therefore represents the amount of flux

exchange between the 2 coils, and is as such dependent

on many of the variable parameters of the coupled system

including coil geometry, lift-off and tilt. All of these factors

influence the level of coupling between the primary coil

Fig. 2. Real and imaginary components of complex impedance of an inductor
showing the critical measurable features of electrical resonance; resonant
frequency, f0, peak impedance, |Z( f0)|, and the full width at half maximum,
1 f f whm .

and the material. As with any resonating system, even slight

changes to any of these parameters can have a large effect on

the amplitude of oscillation. A variation in the capacitance, C0,

material resistance, Re, and reactance, Xe, or the coefficient of

electromagnetic coupling, k, between the coil and the material

will result in a distortion of the electrical resonance. It is

expected that this distortion can be characterised by measuring

the changes in the coupled resonant frequency, ω0
0,

ω0
0 = 2π f 0

0 '

√

1

C0 L 0
0

, (8)

the peak impedance magnitude, |Z( f0)|,

|Z( f0)| '
L 0

0

R0
0C0

, (9)

and the full-width half maximum, 1ω f whm , of the real com-

ponent of the impedance peak (see Appendix A for the full

derivation),

1ω f whm = ω+ − ω−, (10)

where,

ω± =

√

√

√

√

1

L 0
0C0

(

1 −
Q2

2

[

1 ±

√

1 +
4

Q2

])

, (11)

and the quality factor,

Q = R0
0

√

C0

L00 . (12)

These measurable features of the resonating impedance profile

(see Figure 2) can be used to infer the behavior of the

equivalent circuit components of the system.

In order to exploit the sensitivity enhancing effects of

electrical resonance in reliable inductive sensing technology,

a full empirical and theoretical understanding of the behavior
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of electrical resonance is required. In this communication,

studies are presented exploring the behavior of electrical reso-

nance of a typical industrial eddy-current testing (ECT) probe

due to the most significant contributors to resonance shifting

phenomenon; coil lift-off (coupling-coefficient) and material

discontinuities (effective inductance, L 0
0, and resistance, R0

0).

III. EXPERIMENTAL METHOD

Two studies were carried out exploring the behavior of the

electrical resonance of an induction probe due to changes in

the coils environment. The first study investigated the effect

of changing the coupling-coefficient on electrical resonance

by varying the probe lift-off from the surface of a non-

ferromagnetic aerospace superalloy, Titanium 6Al-4V (Ti6-4).

The second study investigated the effect of surface discontinu-

ities in Ti6-4. The experimental data are compared to results

from a 2D finite element analysis (FEA) model of the exper-

imental set-up and to predicted equivalent circuit behavior.

Ti6-4 was selected due to its low electrical conductivity

which traditionally limits the sensitivity of ECT inspections.

As such, resonance effects observed in Ti6-4 represent a worst-

case-scenario for non-ferromagnetic materials, such that these

effects will be amplified for other, more conducting, materials.

An Agilent A4294A impedance analyser was used to mea-

sure the complex sensor impedance as a function of frequency

for experimental measurements. Each spectra was made up

of 801 samples between 1-5MHz.

A. Measurement Coil

A single coil GE (Coventry, UK) ECT pen probe

(Part No. 379-012-060) of measured inductance, L0 =
10.3±0.1 µH was used to investigate how some of the typical

contributors to ECT signals affect the electrical resonance of

the system. The physical and electrical properties of the probe

coil and cable are shown in Tables III & IV (see Appendix B)

and a cross-sectional X-ray CT image is shown in Figure 4.

The probe was operated using a 1.54 ± 0.02 m long RG174,

50� coaxial cable of total capacitance C = 155.5 pFm−1.

This was long enough to minimise any potential resonance

instabilities that may exist in shorter coaxial cable lengths.

In air, the electrical resonance of the probe occurs at

frequency f0 = 3.93 ± 0.01 M H z. The properties of electrical

resonance for these two probe environments are compared

in Table I. The resonant frequencies were calculated via the

zero crossing point of the impedance phase for each case.

For the case of the probe in proximity of a non-

ferromagnetic material, such as Ti6-4, the impedance maxi-

mum at resonance decreases with proximity to the material

surface and the resonance frequency shifts to higher frequen-

cies. This is analogous to a reduction in the inductance and

an increase in the resistance of the system, as predicted by

equations 5 & 6.

Two studies were carried out on the behavior of the probes

electrical resonance in the presence of Ti6-4: The effect of lift-

off from the material surface and, the effect of discontinuities

at the material surface.

TABLE I

KEY PROPERTIES OF ELECTRICAL RESONANCE FOR THE SYSTEM IN AIR,
AND POSITIONED AT ZERO LIFT-OFF ON THE SURFACE

OF UNDAMAGED TI6-4

Fig. 3. Schematic diagram of lift-off investigation experimental setup.

B. Lift-Off Characterization

The impedance frequency spectrum, Z( f ), of the ECT

probe was measured as a function of lift-off from the surface

of undamaged Ti6-4.

The ECT probe was fixed onto a sliding stage with the

probe orientated parallel to the sliding rail. The test sample

was positioned on a stage and locked in place facing the probe

head. This limited the relative probe tilt angle of the probe

normal to the surface to 0 ± 1◦.

A digital Vernier Caliper was used to measure the lift-off

separation between the probe head and the material surface.

The two arms of the caliper were fixed to the two stages and

the digital reader was zeroed when the probe tip and material

surface were brought into contact. An initial measurement was

made with the probe in contact with the material surface (true

zero lift-off). A protective tape layer (of thickness ≈0.1 mm)

was then applied to the tip of the probe and another impedance

spectrum measurement made for the taped probe in contact

with the material. This measurement replicates typical indus-

trial ECT arrangements and will be referred to as industrial

zero lift-off, fT i,i0 , until stated otherwise. Impedance spectra

were recorded over a range of distances from the surface, with

each distance recorded. Figure 3 shows a schematic diagram

of the experimental setup.

C. Material Discontinuities

Three large electrical discharge machined (EDM) calibra-

tion slots in a Ti6-4 specimen were inspected to investigate

the effects of resonance-shifts on discontinuity signals. The

slots spanned the width of the test sample, had equal gaps

of 0.5 mm, and depths of 0.20, 0.50 and 1.00 mm. These

machined discontinuities are not representative of real material

cracks but are a useful starting point for investigating the

behavior of resonance in the presence of discontinuities.

Circular disc discontinuities were simulated in the 2D-FEA

model with varying depth and radius (see Figure 4) and
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Fig. 4. (Left) X-ray computed tomography (CT) cross-sectional image of the
induction probe coil around a ferrite core and surrounded by a ferrite shield -
Core radius rin = 0.51 ± 0.01 mm, coil outer radius rout = 1.10 ± 0.01 mm,
coil height h = 0.84 ± 0.01 mm, intrinsic lift-off l0 = 0.59 ± 0.01 mm and
coil thickness τc = 0.52 ± 0.01 mm. (Right) 2D axially symmetric finite
element analysis (FEA) model geometry mimicking the actual coil geometry
and showing the geometry of a simple material hole feature beneath.

compared to experimental data. Two discontinuity stud-

ies were simulated; the effect of increasing hole radius

(rdef = 0.1 − 1 mm) with fixed depth (ddef = 0.25 mm)

and the effect of hole depth (ddef = 0.01 − 3 mm) with fixed

radius (rdef = 0.6 mm). The lift-off, l, from the surface was

set to 0.15 mm.

D. 2D FEA Modeling

A 2D finite element analysis (FEA) model was developed

in COMSOL 5.3 to simulate the frequency spectra of the

induction probe above materials. The geometric properties of

the measurement coil were measured from the cross-sectional

CT image and used to replicate the coil virtually, as shown

in Figure 4.

Due to the unknown grade of Ferrite used for the core and

shield, a relative permeability of µr = 800 was assigned.

This value, selected based on a coarse parametric optimisation,

is consistent with typical permeabilities of RF ferrite cores

and, when combined with the known sensor parameters (see

Appendix B), produced resonance peaks comparable to exper-

imental results. An evaluation of the imaginary component

of µr was also performed and produced negligible impact on

the resonance behavior and so µr was assumed to real within

the range of frequencies concerned. A thorough parametric

optimisation would be required to definitively evaluate the

optimum value of µr for the FEA model to more accurately

represent experimental results. However, an approximate µr

value was deemed satisfactory because this investigation is

concerned only with the relative behavior of electrical reso-

nance and not the accurate matching of FEA to experimental

results.

The FEA model of the coil was connected to an equiv-

alent circuit representing the lumped capacitive (155.5 pF),

resistive (3.6 p�) and inductive (348.0 nH ) components of the

rest of the coaxial cable. The values of the FEA circuit were

calculated from the values shown in Table IV (Appendix B)

multiplied by the cable length.

IV. RESULTS AND DISCUSSION

A. Lift-Off Characterization

The resonant frequency and peak impedance magnitude

of the probe on Ti6-4 at true zero lift-off are referred

Fig. 5. Experimental impedance peak magnitude vs resonant frequency as
a function of lift-off from the surface of undamaged Ti6-4. Plot shows linear
fit at low lift-off distances and indicates the probe resonance peak in air
( f0 & |Z0|), at true zero lift-off ( fT i,0 & |ZT i,0 |), and at industrial zero
lift-off ( fT i,i0 & |ZT i,i0 |).

to as fT i,0 and |ZT i,0| respectively. The same values for

industrial zero lift-off are referred to as fT i,i0 and |ZT i,i0 |
respectively.

Figure 5 shows the relationship between experimentally

measured impedance peak and resonant frequency identifying

the direction of lift-off and the features of the system; in

air, at true zero lift-off, and industrial zero lift-off. At a

small lift-off from the surface (0.0-0.25 mm) the change in

resonant frequency and impedance peak are approximately

linear, as shown by the best fit in Figure 5. The parame-

ters of the linear fit, of the form |Z0| = a1 f0 + a2, are

a1 = −5.9 ± 0.2 k� and a2 = 26.7 ± 0.7 k�. The fit is

in excellent agreement for small lift-off distances, with a root

mean squared error of σrms = 0.004 k�.

It can be seen in Figure 5 that there is a significant shift

in the resonance between the industrial zero (≈0.1 mm)

and true zero lift-off positions. It is likely this is due to

a combination of the sensor experiencing additional stray

parasitic capacitance between the coil and the surface, as well

as the magnetic circuit being completed by the contact of the

ferrite core with the surface, thus minimising stray magnetic

flux between the surface and the coil. As such there will be

greater magnetic coupling to the sample causing a significant

jump in the resistive and reactive components. Further work

and finite element modeling is required to fully characterise

and understand this behavior, however this was outside the

scope of this paper.

In order to properly represent industrial ECT measurements,

a layer of Kapton® tape (DuPont™, Delaware, US) is used

on the tip of the measurement probe for all subsequent

investigations. As such, industrial zero lift-off will now be

more simply referred to as zero lift-off. The next section

explores the resonance behavior in the presence of artificial

material discontinuities.
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Fig. 6. Difference in the impedance frequency spectrum of the ECT probe
above 3 long slots of varying depth in the same material: 0.20 mm deep (dotted
blue), 0.50 mm deep (dashed red), and 1.00 mm deep (solid yellow). Showing
the change in impedance magnitude (left) and impedance phase (right).

B. Material Discontinuities

The effect of discontinuities in the test material on reso-

nance was investigated by positioning the inductive sensor

above long, wire-cut slots and measuring the impedance

frequency spectra.

1) Defining NERSE: Frequencies around the electrical res-

onance exhibit the greatest impedance changes, relative to the

undamaged Ti6-4 impedance. This is more clearly observed

once the background impedance of the undamaged Ti6-4 is

subtracted from the impedance measurements of the probe

above the slots (Figure 6). Figure 6 shows the background

subtracted frequency spectra for the magnitude and phase of

the complex impedance. It is clear from the results that the

signal intensity from a discontinuity is greater at frequencies

close to electrical resonance compared to standard operational

frequencies (1-3 MHz).

The resonance shifting phenomenon results in a signal

enhancement within a band of frequencies either side of

the resonant frequency, for impedance magnitude (|Z |), and

around electrical resonance, for impedance phase (φ). The

magnitude of the measurement signal enhancement effect

will be dependent on the resonance frequency shift and

magnitude distortion of the system and not on the rate of

change of the impedance spectra as previously proposed by

Hughes et. al. [4]. This is an important distinction to make

for the effective design and operation of novel near electri-

cal resonance signal enhancement (NERSE) sensors that can

intelligently exploit the resonance distortion phenomena.

2) Distortion of Resonance Features: The results are com-

pared to data from the 2D-FEA model where circular hole

defects of varying radius and depth are simulated directly

beneath the coil (see Figure 4).

The discontinuities in the Ti6-4 cause a change in the

equivalent components of the effective circuit model for the

ECT probe system (see section II-A). This results in a shift

in f0, a change in |Z( f0)| and 1 f f whm of the impedance.

The key features of resonance for each of the experimental

impedance spectra are summarised in Table II and the path of

the resonance peak due to discontinuities displayed in Figure 7

relative to the path due to lift-off from section III-B.

Figure 7 demonstrates that material discontinuities pro-

duce different resonance behavior to lift-off, thereby making

it possible to differentiate between these two indications.

Fig. 7. Experimental impedance peak magnitude vs resonant frequency as
a function of discontinuity depth in Ti6-4. Plot shows the linear path of the
impedance peak due to small lift-off distances (red dotted) and indicates the
probe resonance peak at industrial zero lift-off. (a) Experimental. (b) 2D FEA
model.

TABLE II

KEY PROPERTIES OF ELECTRICAL RESONANCE FOR THE SYSTEM IN

AIR, AND POSITIONED AT ZERO LIFT-OFF ON THE SURFACE

OF UNDAMAGED TI6-4

This is commonly seen at frequencies below electrical reso-

nance, but has yet to be demonstrated with respect to resonance

measurements. The discontinuities measured here, cause trace-

able downward shifts in f0 of impedance whilst exhibiting

only small changes in |Z( f0)| and maintaining approximately

the same 1 f f whm (see Table II). This indicates that the

effective inductance component of the equivalence circuit

model, L 0
0, increases, implying a reduction in the reactive

component of the secondary circuit, Xe + ωLe, (equation 5).

Conversely, the effective resistance component, R0
0, is largely
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Fig. 8. Relationships between (a) resonant frequency, f0, (b) the impedance peak, |Z( f0)|, and (c) the full width at half maximum, 1 f f whm , showing
normalised experimental results with respect to circuit model predicted distortions resulting from independently increasing (in arrowed directions) secondary-
circuit variables (k, Re , Xe and Le).

unaffected hence implying that the presence of discontinuities

has minimal affect on Re.

Although the circular 2D axially symmetric discontinuities

within the FEA simulation do not accurately mimic the exper-

imental discontinuities, it can be seen from Figure 7 that the

model predicts the same separable behavior between lift-off

and surface discontinuities as shown in the experiment.

3) Resonance Relationship to Induced Circuit Variables:

The resonance features of experimental lift-off and defect

measurements ( f1, |Z( f1)| and 1 f1, f whm ) were normalised

to the values for the sensor coupled to an undamaged material

(defined as f0, |Z( f0)| and 1 f0, f whm in Figure 8) and com-

pared to predicted results, using equations 8- 12, for changes

due to independent variations in the induced circuit compo-

nents (k, Re, Xe and Le). The results, shown in Figure 8,

demonstrate the relationships between these variables and

the resonance features and indicate how the circuit variables

change in lift-off and defect measurements.

The normalised experimental results in Figure 8 can be

qualitatively interpreted with respect to the circuit model

predicted changes as a result of independent variations in the

induced circuit variables. By considering the induced circuit

variables as new axes, vector functions of these variables can

be evaluated for describing the variation in lift-off and defect

measurements with respect to each of the 3 resonance metrics,

f0, |Z( f0)| and 1 f f whm , in Figure 8. By considering all

metrics, unique relationships are exposed.

First, lift-off is examined. Here, it is known that the coupling

coefficient will decrease with lift-off but, it is clear from

Figure 8 that this cannot alone explain the experimental lift-

off measurements. Although, highly aligned with Xe at small

lift-off distances in Figure 8.a, the same cannot be said with

respect to the 1 f f whm metric in Figure 8.b. As such, different

combinations of the circuit variables must be considered to

fully describe the lift-off. By observation again, it was be

seen that decreasing Re does not explain lift-off in both

Figure 8.a & b. Instead the only other variable that can explain

all metrics in both Figure 8.a & b for lift-off measurements is

an increase in Le. This does not imply that Xe and Re do

not vary with lift-off, it simply implies that an increasing Le

will dominate. This is an interesting observation that could

be explained by an increase in the induced current footprint

beneath the coil due to the geometric shape of the sensors

magnetic field. An increase in the radius, r , of the induced

current results in an increase in the inductance as defined by

the analogous equation for coil inductance,

L ' µN2πr2/h, (13)

where N is the number of coil turns and h is the coil height.

The defect measurement results can be examined in a

similar way. Here it is assumed that the coupling coefficient k

remains constant and that only the induced circuit components

vary in the presence of a defect. Equally, it is observed

that defect measurements distort the resonance metrics per-

pendicular to the Re axis. As such we can assume that

resistance is largely unchanged in the presence of defects.

Instead, the defect distortion of resonance can be predom-

inately described through a combination of an increasing

Xe and a decreasing Le. The physical implications of this

are that defects predominately distort the quality of induced

magnetic field generated (directly related to the inductance,

Le, decrease) and contribute an additional phase delay in the

coupling interaction (related to an increase in the reactive

component, Xe) due to the change in current path.

While this qualitative analysis is a useful exercise for

inferring the dominance of induced circuit variables on the

electrical resonance of a sensor, a complete understanding

of resonance behavior is required to fully model resonance

measurements. This can only be achieved through a thor-

ough investigation into coil design and the multi-dimensional

optimization of the equivalent circuit model.

V. CONCLUSION

Variations in the electromagnetic environment of an ECT

probe, alters the electrical resonance of the sensor. This shift-

ing was shown to lead to the large changes in the impedance
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of the system at frequencies near electrical-resonance (NER)

when the system encounters any disturbance i.e. changes in

lift-off from a sample, or material discontinuities. This effect

was previously proposed to be proportional to the rate of

change of impedance but is shown herein to be directly related

to the resonance shifting behavior. This observation is critical

to the successful design of resonance exploiting measurement

sensors and techniques such as near electrical resonance signal

enhancement (NERSE).

Material discontinuities were shown to cause the electrical

resonance of an induction coil to distort in a manner that

is unique from the distortions observed for lift-off. This

finding, validated using 2D-FEA simulations modeling the

geometry of a sophisticated coil sensor, will be fundamental

in the successful signal analysis and inversion of resonance

measurements.

An equivalent circuit analogue was employed to analyse the

resonance behavior of experimental lift-off and discontinuity

measurements. The results were qualitatively evaluated to

determine the dominant variables in the equivalent circuit

model that could produce distortions consistent with lift-

off or defect measurements. It was observed that the resonance

behavior of a sensor is dominated by the coupling coefficient

(for lift-off variations), the induced current inductance (for

both lift-off and defect depth variations) and the material

reactance (for defect depth variations). The induced current

inductance increases with increasing lift-off and decreases

with increasing defect depth, whereas the material reactance

is relatively constant with increasing lift-off and increases

with increasing defect depth. A more comprehensive study

is required to further develop a model of resonance behavior

for these measurements. This will be the subject of subsequent

investigations.

The finding’s herein are fundamental for the successful

development of novel high sensitivity resonance measurement

sensors and techniques, as well as for developing critical inver-

sion and forward models for measurement characterization.

APPENDIX A

DERIVATION OF FULL WIDTH HALF MAXIMUM

To derive an expression for the full-width half maximum,

1 f f whm , the real component of the impedance, Z , from

equation 4 is equated to half the maximum impedance (see

equation 9),

R0
0

(1 − ω2 L 0
0C0)2 + ω2 R2

0C2
0

=
1

2

L 0
0

R0
0C 0

0

, (14)

and rearranged to give the quadratic expression,

L 02
0 C2

0ω4 + 2L 0
0C0

(

1

2
Q2 − 1

)

ω2 +
(

1 − 2Q2
)

= 0, (15)

where Q is the quality-factor and is defined in equation 12.

The resulting solutions to equation 15 provide expressions for

the upper and lower bounds of the FWHM,

ω± =

√

√

√

√

1

L 0
0C0

(

1 −
Q2

2

[

1 ±

√

1 +
4

Q2

])

. (16)

TABLE III

PHYSICAL AND ELECTRICAL PROPERTIES OF EDDY-CURRENT

PROBE USED TO MEASURE INDUCTIVE RESONANCE

SHIFTING PHENOMENON, ZL

TABLE IV

PHYSICAL PROPERTIES OF RG174, 50� COAXIAL CABLE,
RS PART 665-5855 - RG174 A/U PVC [14]

APPENDIX B

PHYSICAL PROPERTIES

A. Coil Parameters

The geometric and electrical properties of the inductive

sensor used in this study are detailed in Table III.

B. Cable Parameters

The geometric and electrical properties of the coaxial cable

used in this study are detailed in Table IV.
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