INSTITUTE OF PHYSICS PUBLISHING PHYSIOLOGICAL MEASUREMENT

Physiol. Meas. 27 (2006) 1091-1106 doi:10.1088/0967-3334/27/11/004

Analysis of electroencephalograms in Alzheimer’s
disease patients with multiscale entropy

J Escudero', D Abasolo!, R Hornero', P Espino® and M Lépez!

LETS Ingenieros de Telecomunicacion, University of Valladolid, Camino del Cementerio s/n,
47011, Valladolid, Spain
2 Hospital Clinico San Carlos, c/Profesor Martin Lagos s/n, 28040, Madrid, Spain

E-mail: jescrod@gmail.com

Received 8 February 2006, accepted for publication 22 August 2006
Published 12 September 2006
Online at stacks.iop.org/PM/27/1091

Abstract

The aim of this study was to analyse the electroencephalogram (EEG)
background activity of Alzheimer’s disease (AD) patients using multiscale
entropy (MSE). MSE is a recently developed method that quantifies the
regularity of a signal on different time scales. These time scales are inspected by
means of several coarse-grained sequences formed from the analysed signals.
We recorded the EEGs from 19 scalp electrodes in 11 AD patients and 11 age-
matched controls and estimated the MSE profile for each epoch of the EEG
recordings. The shape of the MSE profiles reveals the EEG complexity, and it
suggests that the EEG contains information in deeper scales than the smallest
one. Moreover, the results showed that the EEG background activity is less
complex in AD patients than control subjects. We found significant differences
between both subject groups at electrodes F3, F7, Fpl, Fp2, T5, T6, P3, P4,
O1 and O2 (p-value < 0.01, Student’s #-test). These findings indicate that the
EEG complexity analysis performed on deeper time scales by MSE may be a
useful tool in order to increase our knowledge of AD.

Keywords: Alzheimer’s disease, electroencephalogram, multiscale entropy,
complexity, time scales

1. Introduction

Alzheimer’s disease (AD) is the most frequent cause of dementia in western countries (Bird
2001): approximately 50-60% of patients with dementia over 65 years are clinically related
to AD and the number of patients is expected to increase continuously (Lahiri et al 2002).
AD is characterized by generalized neuronal cell loss, neurofibrillary tangles inside the
cells and senile plaques among the neurons in different brain regions. Reduced brain weight,
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cortical atrophy and ventricular enlargement are also important deficiencies in the brain of AD
patients. All these neuropathologies cause progressive cognitive and intellectual deficits and
behaviour disturbance (Bird 2001).

AD can only be diagnosed without any probability of error by necropsy, but a differential
diagnosis with other types of dementia and major depression is usually attempted. Mental
status tests, such as the Folstein’s mini mental state examination (MMSE) (Folstein et al 1975),
are frequently used in order to help to determine the severity of the dementia, and methods of
medical imaging, such as magnetic resonance imaging or computed tomography, can also be
useful in diagnosis in medium stages of the AD. In order to complete the diagnosis, the use
of the EEG as a diagnostic tool for AD and other kinds of dementia has been researched for
several decades (Jeong 2004). Simple conventional visual analysis of the EEG in AD patients
has demonstrated a slowing of the dominant posterior rhythm, an increase in diffuse slow
activity, a reduction in beta and alpha activities and a decreased coherence among cortical
areas (Jeong 2004). However, at the early stages of AD the frequencies of the EEG may look
normal (Markand 1990). On the other hand, computerized EEG spectral analysis has also
shown a decrease in the mean frequency and an increase in delta and theta bands power with
a simultaneous decrease in alpha and beta power in AD patients (Jeong 2004). In general, the
severity of the cognitive impairments and the degree of the EEG abnormalities are correlated
(Jeong 2004).

Until the introduction of new analysis methods derived from nonlinear dynamics, the
only tools which were available to analyse EEG signals were the linear techniques based
on coherence and spectral calculations (Jeong 2004). Nevertheless, the ability of the brain
to perform sophisticated cognitive tasks supports the hypothesis that the brain may not be
completely stochastic (Zhang et al 2001). Furthermore, the neurons are governed by nonlinear
phenomena, like the threshold and saturation processes, so the behaviour of the brain can be
classified as nonlinear. Based on these hypotheses, the nonlinear dynamical techniques may
provide more suitable methods than the traditionally used linear tools to understand and
characterize pathologic brain states by means of the EEG activity examination.

The first nonlinear analysis techniques applied to EEGs were the correlation dimension
(D) (Grassberger and Procaccia 1983a) and the first Lyapunov exponent (L) (Wolf et al
1985). D, quantifies the number of independent variables which are necessary to describe
the dynamic of the system, so higher D, values have been related to more complex systems.
Several studies have proven that D, can provide potentially useful diagnostic information from
mental diseases using both time-delay (Babloyantz and Destexhe 1988, Besthorn et al 1995,
Hornero et al 1999, Jeong et al 1998) and spatial embedding (Stam et al 1995) methods to
reconstruct the attractor. In AD, the widespread loss of synapses and neurons may produce
lower D, values, as several studies have proven (Jelles ef al 1999, Jeong et al 1998, 2001a,
Stam et al 1995). Whereas D, provides a static characterization of the system, L is a relatively
dynamic measure, since it describes the divergence of trajectories that start at similar initial
states (Wolf et al 1985). L, is usually interpreted as a measure of the flexibility of the system
to reach different states from almost identical initial states. A few studies (Jeong et al 1998,
Stam et al 1995) have also revealed the potential usefulness of L in the diagnosis of AD.

Nevertheless, the application of both D, and L; on physiological data has some major
problems. First, the amount of data required to obtain meaningful results is beyond the
length of the physiological data that can be collected experimentally (Eckmann and Ruelle
1992). Besides, the algorithms used to estimate the D, require the recordings to be stationary,
something that is almost impossible when working with biological data (Grassberger and
Procaccia 1983b).
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Due to these major drawbacks of D, and L, it becomes necessary to use other nonlinear
methods to study the EEG background activity. Several of these alternative methods are based
on the concept of ‘complexity’. Roughly speaking, complexity is related to ‘meaningful
structural richness’ (Costa et al 2005). Several studies associate complexity with irregularity
or with the ability of the systems to create information. For instance, the approximate entropy
(ApEn) (Pincus 1991) quantifies the regularity of a time series by evaluating the appearance
of repetitive patterns. ApEn has been used on biological data providing potentially useful
information to diagnose different pathological states (Hornero et al 2005, Pincus 2001).
Another complexity measure that has been extensively applied to biological data is the
Lempel-Ziv (LZ) complexity (Lempel and Ziv 1976). LZ complexity is related to the number
of distinct substrings and the rate of their recurrence along the analysed signal, with larger
values corresponding to more ‘complex’ data (Lempel and Ziv 1976). Both ApEn and LZ
complexity have been already used to analyse EEGs of several brain states (Abasolo et al
2005, 2006b, Ferenets et al 2006, Radhakrishnan and Gangadhar 1998, Zhang et al 2001,
Zhang and Roy 2001).

On the other hand, for other authors ‘complexity’ has a more restricted meaning. In
this context, complex systems are neither absolutely regular nor absolutely random (Costa
et al 2005, Lépez-Ruiz et al 1995, Tononi et al 1998). Although measures like ApEn or
LZ complexity have shown potentially useful results, they return high values when they are
applied to random data (Hornero et al 2005). Thus, such kind of statistics would not be
strictly complexity measures, but regularity estimators (Goldberger et a/ 2002). From this
point of view, a complexity measure should vanish for both completely regular and completely
random systems (Costa et al 2005, Lépez-Ruiz et al 1995, Tononi et al 1994). Estimators of
complexity which satisfy this requirement were introduced in Costa et al (2002), Lépez-Ruiz
et al (1995), Tononi et al (1994). In this paper we adopt this idea of ‘complexity’.

A new complexity measure that fulfils the requirement of vanishing for absolutely random
or regular systems was proposed in Costa et al (2002). This complexity measure is multiscale
entropy (MSE) (Costa et a/ 2002, 2005). MSE has been proposed to give potentially useful
information for diagnosis (Costa et al 2005, Ferrario et al 2006) or to analyse complex
biological systems (Bhattacharya et al 2005). MSE focuses on determining the information
expressed by the signals on multiple time scales, and it has the advantage of being applicable
to series of finite length (Costa et al 2005).

In this pilot study, we have examined the EEG background activity in AD patients and
age-matched control subjects using MSE. We wanted to test the hypothesis that the MSE
analysis of EEG background activity might differentiate AD patients from control subjects.

This paper is organized as follows. In section 2 we explain the selection of patients
and controls, and how the EEG was recorded and reviewed by a specialist physician to get
artefact-free epochs. The MSE and the statistical analysis carried out are also introduced in
this section. Section 3 summarizes our results. Finally, in section 4 we discuss the results
previously presented and relate them with other studies of EEG background activity in AD
patients with nonlinear analysis method. We present our conclusions in the last part of this

paper.

2. Materials and methods

2.1. Selection of patients and control subjects

In the current pilot study, the EEG was recorded from 11 AD patients and 11 control subjects.
The 11 patients—35 men and 6 women; age = 72.5 £ 8.3 years, mean = standard deviation
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(SD)—were recruited from the Alzheimer’s Patients’ Relatives Association of Valladolid
(AFAVA). All of them fulfilled the criteria of probable AD. The EEG was registered in the
University Hospital of Valladolid (Spain) after all the patients had undergone a meticulous
clinical evaluation which included clinical history, neurological and physical examinations,
brain scans and a MMSE in order to evaluate their cognitive ability (Folstein et al 1975).
Although the mean MMSE score for the AD group was 13.1 + 5.9 points (mean £ SD),
indicating that the average degree of the disease is moderate, five patients had a MMSE score
below 12 points, and therefore their degree of dementia is severe. Two subjects were having
a lorapezam treatment, which may enhance beta activity with therapeutic doses, although no
prominent rapid rhythms were observed in the visual inspection of these two subjects’ EEG
recordings. The other patients did not use any medication that could be expected to influence
the EEG.

The 11 age-matched, elderly subjects who made up the control group—7 men and
4 women; 72.8 £ 6.1 years £ SD—did not have any past or present mental disorder. The
MMSE score values for all of them were 30.

The local ethics committee approved the study. All control subjects and all caregivers of
the patients gave their informed consent for participation in the current study. An EEG was
recorded from all patients and controls.

2.2. EEG recording

The EEG data were recorded from each subject by a Profile Study Room 2.3.411 EEG
equipment (Oxford Instruments) at electrodes F3, F4, F7, F8, Fpl, Fp2, T3, T4, T5, T6, C3,
C4, P3, P4, O1, 02, Fz, Cz and Pz of the international 10-20 system. More than 5 min of
EEG data were recorded from each subject. While the recording process was taking place,
the subjects were asked to remain in a relaxed state, with closed eyes and awake in order to
reduce the presence of artefacts in the recordings. EEG data were sampled at 256 Hz, with a
12 bit A-to-D precision.

The recordings were visually inspected by a specialist physician to select data with
minimal movement, electromyographic activity or electrooculographic artefacts. Artefact-
free epochs of 5 s (1280 points) were chosen from the EEG data. Thus, an average number of
30.0 £ 12.5 artefact-free epochs (mean = SD) were selected at each electrode for each one of
the subjects.

These data were copied to ASCII files for off-line analysis on a personal computer. Before
the nonlinear analysis, the selected epochs were digitally filtered with a bandpass filter with
cut-off frequencies at 0.5 Hz and 40 Hz developed with MATLAB®.

2.3. Multiscale entropy (MSE)

MSE was introduced as a tool to achieve a quantification of the signal complexity considering
several time scales (Costa ef al 2002). It is based on successive computations of the sample
entropy (SampEn) (Richman and Moorman 2000) estimated on coarse-grained sequences,
each of which represents the system dynamics on a different time scale. The use of the
SampEn has important positive aspects: it is independent of the sequence length and the
model. Moreover, it can be applied to relatively short, noisy data sets (Richman and Moorman
2000).

Formally, given a one-dimensional discrete time series, {xi,...,X;, ..., Xy}, first we
must build successive coarse-grained time series, {¥ 7}, corresponding to the scale factor 7.
To accomplish this task, we divide the original time series into non-overlapping windows of
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length t, and then we average the values of the data points inside each window. It is possible
to summarize this process (Costa et a/ 2005) in the following way:

- N
V=2 )Y mo 1<i<o =N (1)
i=(G—-1Dr+l
Obviously, the coarse-grained sequence for time scale © = 1, {YV}, is simply the

original time series, and the length of each coarse-grained sequence is t times shorter than the
length of the original signal.

Once those coarse-grained time series are built, we calculate their SampEn, which
assigns a non-negative value to each coarse-grained sequence. This procedure is called
multiscale entropy analysis (Costa et al 2005). Briefly, SampEn measures the negative of
the logarithmic conditional probability that sets of patterns which are closer than a tolerance,
r, for m contiguous points remain similar at the next point (pattern length m + 1), where
self-matches are not included in calculating the probability. More irregularity in the data
produces larger SampEn values (Richman and Moorman 2000). The algorithm that computes
the SampEn can be found in Richman and Moorman (2000), Costa et a/ (2005) or Abésolo et al
(2006a).

Like ApEn or SampEn, the values of m and r are critical in the performance of MSE,
and comparisons between time series can only be done with values of m, r and N unchanged
(Costa et al 2005). However, there are no guidelines to determine the optimum values for
m and r. In order to avoid a significant contribution of noise in the estimation of SampEn,
r must be higher than most of the signal noise (Pincus 1991). In addition, if a too narrow
tolerance (too small r) is used, the estimation of the SampEn might fail. The reason is that
runs of m + 1 points that match continuous patterns of 7 points may not be found if r is too
small and the analysed time series is not large. Furthermore, the accuracy and confidence of
the SampEn improve as smaller values for m (short templates) and larger values for r (wide
tolerance) are used, since the number of matches of lengths m and m + 1 increases (Lake et al
2002). However, some problems may arise when the matching criteria are too relaxed (Pincus
1991). Itis convenient to normalize the tolerance by the standard deviation of the original time
series (Costa et al 2005). Nikulin and Brismar (2004) have recently indicated that the MSE
profiles are sensitive to both variance and entropy because the effective filter, r, is fixed but not
normalized for the estimation of the SampEn on larger time scales. However, the entropy of a
sequence depends on both its variance and correlation properties (Costa et al 2004), and there
is no straightforward relationship between variance and entropy for non-trivial signals (Costa
et al 2005). Hence, the value of the r parameter should not be normalized again in larger time
scales because the changes of the variance of the coarse-grained sequences have information
about the whole original signal (Costa et al 2005).

In this study we have chosen m = 1 and r = 0.25 times the standard deviation of the
original time series. This set of parameters has been used in a previous study of EEG
background activity in AD patients using SampEn (Abasolo et al 2006a). The maximum
analysed time scale was Tyax = 12. In such a way, the shortest coarse-grained sequence built
has more than 100 points. Our selection of the m and r parameters is able to produce good
statistical reproducibility when the length of the analysed series is larger than 100 points, as
the coarse-grained sequences we are considering (Lake et al 2002).

Owing to the nonlinear character of the EEG signals and several studies related to AD
and nonlinear dynamics (Abasolo et al 2005, 2006a, 2006b, Jelles et al 1999, Jeong et al
1998, 2001a, Pritchard et al 1994, Stam et al 1995), we hope that MSE could be used as a
tool to discover differences in the background EEG activity of patients of AD against control
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subjects. In order to obtain information from the deeper time scales not yet explored, we
represent the SampEn values versus the time scale (Costa et al 2005).

In this pilot study the calculations of MSE from the EEG signals were carried out with a
software developed with MATLAB®.

2.4. Statistical analysis

Student’s ¢-test was used to evaluate the statistical differences between the MSE of AD patients
and control subjects. If the p-value was lower than 0.01, the differences were considered
significant. In addition, correlations between AD patients’ MMSE scores and the parameters
that provided significant differences between both groups were computed with Pearson’s
correlation coefficient (p). We also calculated the corresponding p-values for testing the
hypothesis of no correlation against the alternative that there is a non-zero correlation. The
correlation was considered significant when the p-value was below 0.01.

Moreover, we used receiver operating characteristic (ROC) curves (Zweig and Campbell
1993) to evaluate the ability of the MSE in discriminating AD patients from control subjects
at the electrodes where p-value < 0.01. ROC curves are obtained by plotting the sensitivity
values (the proportion of patients with a diagnosis of AD who test positive, i.e. the true positive
rate) on the y-axis against their equivalent {1-specificity} values (specificity represents the
percentage of controls correctly recognized, i.e. the true negative rate) for all the possible sets
of cut-off points. We used a computer program developed with MATLAB® that automatically
selected different cut-off points and calculated the sensitivity/specificity pair for each one of
them. Accuracy is a related parameter that quantifies the total number of subjects (AD patients
and control subjects) precisely classified. The optimum threshold is the cut-off point at which
the highest accuracy (minimal false negative and false positive results) is obtained. It can be
determined from the ROC curve as the closest value to the left top corner (100% sensitivity,
100% specificity).

3. Results

The MSE algorithm was applied for channels F3, F4, F7, F8, Fpl, Fp2, T3, T4, T5, T6, C3,
C4, P3, P4, Ol and O2 with m = 1 and r = 0.25 times the standard deviation of the original
time series. These results were averaged based on all the artefact-free 5 s epochs within the
5 min period of EEG recordings.

We performed a visual inspection of the obtained MSE profiles representing the SampEn
values of each coarse-grained sequence versus the scale. We could see that these MSE profiles
were characterized by a steep slope on the smaller time scales. Next, the slope decreased and
the SampEn values were approximately constant on the larger time scales. Thus, it is possible
to divide the MSE profiles into two parts: the first one corresponds to the steep increasing
slope, whereas the second part contains the time scales where the slope of the SampEn values
is much smoother. In order to characterize every MSE profile and hence, every EEG recording:

(a) We estimated the slope of the MSE profile for 1 < 7 < 5 (r < 20 ms). It shows how the
EEG complexity evolves for small time scales.

(b) Similarly, the slope of the MSE profile for 6 < v < 12 (¢ > 23 ms) was calculated. It
provides information about the increase or decrease of the MSE profile for large time
scales.

Both slopes were estimated by means of the least-squares method.
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Table 1. Average slope values of the MSE profiles for small time scales (t < 5) of the EEGs for
both groups for all channels with m = 1 and r = 0.25 times the standard deviation of the original
data sequence.

AD patients Control subjects Statistical analysis
Electrode  (mean £ SD) (mean £ SD) p-value
F3 0.1971 £0.0361  0.1841 £0.0325  0.3843
F4 0.2017 £ 0.0268  0.1841 £ 0.0238  0.1197
F7 0.1789 £ 0.0407  0.1849 £ 0.0309  0.7049
F8 0.1821 £0.0379  0.1810 £0.0315  0.9410
Fpl 0.1684 £0.0437  0.1805 £ 0.0308  0.4613
Fp2 0.1812 £0.0281  0.1794 £0.0291  0.8867
T3 0.1623 £ 0.0479  0.1644 £ 0.0369  0.9062
T4 0.1499 £0.0617  0.1688 £0.0332  0.3822
TS 0.2062 £+ 0.0220  0.1950 £ 0.0379  0.4048
T6 0.2035 £0.0294  0.1945 £ 0.0353  0.5226
C3 0.1956 £0.0353  0.1911 £0.0304  0.7494
C4 0.1927 £0.0428  0.1936 +£0.0328  0.9542
P3 0.2181 £0.0193  0.2094 £ 0.0318  0.4458
P4 0.2236 £0.0179  0.2115+£0.0378  0.3508
01 0.2060 £ 0.0288  0.1907 £ 0.0435  0.3434
02 0.2083 £ 0.0278  0.1888 +£0.0422  0.2172

We computed the average slope values of the MSE profiles for small time scales and
calculated the p-values of the Student’s 7-test to determine whether there exist significant
differences between both groups. Table 1 summarizes the results (mean £+ SD) and the
p-values. No significant differences were found (p-value > 0.01).

There were important differences between the MSE profiles of control subjects and AD
patients. First, whereas the irregularity of the coarse-grained time series decreased on the
larger time scales in the control group, the coarse-grained sequences of the AD patients were
usually slightly more irregular as we analysed larger time scales. Therefore, the maximum
SampEn value was usually reached on smaller time scales in the control subjects than in
AD patients. Furthermore, the SampEn values were higher for control subjects than for AD
patients, apart from the largest time scales, suggesting that the control subjects have a more
complex EEG background activity than the AD patients (Costa ef al 2005). The averaged
MSE profiles for the control subjects and AD patients for all electrodes are shown in
figure 1.

Table 2 summarizes the average slopes (mean &+ SD) of the MSE profiles for AD patients
and control subjects for large time scales (r > 6), along with the p-values of the Student’s
t-test. Whereas this slope decreases at all electrodes for the control subjects, the AD patients
have an increasing slope at all electrodes except for T3, T4, C3 and C4. At ten electrodes
significant differences between both groups have been found: F3, F7, Fpl, Fp2, T5, T6, P3,
P4, O1 and O2 (p-values < 0.01).

Moreover, we assessed whether the severity of the dementia was correlated with the
changes in the average slope values of the MSE profiles for large time scales at the electrodes
which provided significant differences between both subject groups. Thus, we computed the
p values between the AD patients” MMSE scores and their average slope values for T > 6 at
electrodes F3, F7, Fpl, Fp2, TS, T6, P3, P4, O1 and O2. The results showed that none of the
correlations was significant (p-values > 0.01).
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Figure 1. MSE analysis of the 11 control subjects (full curve) and the 11 AD patients (dotted
curve) with m = 1 and r = 0.25 times the standard deviation of the original data sequence. Sixteen
electrodes of the international 10-20 system were analysed. (a) F3, (b) F4, (c) F7, (d) F8, (e) Fp1,
(f) Fp2, (g) T3, (h) T4, (i) TS, (j) T6, (k) C3, (1) C4, (m) P3, (n) P4, (0) O1, (p) O2.
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Table 2. Average slope values of the MSE profiles for large time scales (t 2> 6) of the EEGs for
both groups for all channels with m = 1 and r = 0.25 times the standard deviation of the original
data sequence. Significant group differences are marked with an asterisk.

AD patients Control subjects  Statistical analysis
Electrode  (mean £ SD) (mean £ SD) p-value
F3* 0.0056 £ 0.0141 —0.0159 £ 0.0159  0.0032
F4 0.0021 £ 0.0144 —0.0152 £0.0162  0.0156
F7* 0.0067 £ 0.0116 —0.0135 +0.0184  0.0061
F8 0.0004 £ 0.0199 —0.0152 +£0.0117  0.0359
Fpl* 0.0065 £+ 0.0097 —0.0158 £ 0.0135  0.0002
Fp2* 0.0098 £ 0.0101 —0.0135 £0.0174  0.0010
T3 —0.0089 4+ 0.0251 —0.0273 £0.0254  0.1018
T4 —0.0139 +0.0342 —0.0297 £0.0175  0.1888
T5* 0.0092 £ 0.0202 —0.0260 £+ 0.0186  0.0004
T6* 0.0061 £ 0.0208 —0.0234 +0.0166  0.0015
C3 —0.0067 £ 0.0173 —0.0237 £0.0213  0.0532
C4 —0.0092 4+ 0.0218 —0.0275 £0.0221  0.0652
p3* 0.0089 £ 0.0206 —0.0259 +0.0185  0.0005
P4* 0.0043 £ 0.0245 —0.0299 £+ 0.0194  0.0017
or* 0.0061 £+ 0.0206 —0.0309 &+ 0.0157  0.0001
02* 0.0055 £ 0.0230 —0.0289 £+ 0.0189  0.0010

Finally, we evaluated the ability of the slope for large time scales to discriminate AD
patients from control subjects at the electrodes in which significant differences were found
using ROC plots. Figure 2 depicts the corresponding ROC curves. These curves allowed
us to determine the optimum threshold (value of the slope for the largest time scales) to
classify subjects from both groups. According to these optimum thresholds, the minimum
accuracy of the diagnostic test was obtained at electrode F7 (77.27%), while the maximum
value was reached at Fpl (90.91%). The highest sensitivity was reached at Fp2 (100%), i.e.
all AD patients were correctly classified), although with a small specificity (72.73%). On the
other hand, the highest specificity was reached at electrodes Fp1, P3, P4 and O1 (90.91%).
Another interesting parameter that can be obtained from ROC plots is the area under the
curve. The value for the area under the ROC curve can be interpreted as follows: an area
of 0.9174 (electrode O1, for example) means that a randomly selected individual from the
control subjects’ group has a slope value smaller than that of a randomly chosen individual
from the AD patients’ group in 91.74% of the time (Zweig and Campbell 1993). In general,
the larger the area under the curve, the better the diagnostic test. The largest area under the
curve was obtained at Fpl (0.9339), which is the electrode where the highest accuracy was
obtained. Table 3 summarizes these results.

4. Discussion and conclusions

In this pilot study, we have studied the EEG background activity of 11 AD patients and 11 age-
matched, elderly control subjects by means of the MSE, which assesses the signal complexity
estimating the regularity of coarse-grained sequences on different time scales. The MSE is
a suitable method to analyse physiological signals, since it can be applied to relatively short,
noisy time series, irrespective of whether their origin is stochastic or deterministic (Costa
et al 2005). The MSE curves can be used to compare qualitatively the signal complexity of
different time series (Costa et al 2005). Particularly, a monotonic decrease of the SampEn
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Figure 2. ROC curves for the average slope values of the MSE profiles for large time scales
(r > 6) with m = 1 and r = 0.25 times the standard deviation of the original data sequence at the
electrodes in which p-value < 0.01. (a) F3, (b) F7, (c) Fpl, (d) Fp2, (e) TS, (f) T6, (g) P3, (h) P4,
(1) O1, (j) O2.

values with 7 indicates that the analysed signal is a completely independent random sequence,
since it contains information only on the smallest time scale (Costa et al 2005). In contrast
to this relatively simple MSE profile that characterizes randomness, the EEG MSE curves can
be divided into two different parts. The first one corresponds to the small time scales, and it
is characterized by a steep increasing slope. On the other hand, in the second part of the MSE
profiles the slope is much smoother, and it can be either increasing or decreasing. Thus, the
EEG MSE profiles suggest that the EEG does not have a completely stochastic origin (Costa
et al 2005). Moreover, the MSE analysis revealed the EEG complex structure and showed
the presence of long-range correlations (Costa et al 2005), which have been associated with
complex physiological systems (Goldberger et al 2002).
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Table 3. Test results for the slope of the MSE profiles (r > 6) on the channels in which the
differences between both groups were significant. The optimum threshold to discriminate AD
patients and control subjects is included.

Sensitivity ~ Specificity =~ Accuracy  Area under the

Electrode  Threshold (%) (%) (%) ROC curve
F3 —0.0037 81.82 81.82 81.82 0.8430
F7 —0.0020 81.82 72.73 77.27 0.8347
Fpl —0.0026 90.91 90.91 90.91 0.9339
Fp2 —0.0113 100 72.73 86.36 0.8512
T5 —0.0167 90.91 81.82 86.36 09174
T6 —0.0155 81.82 81.82 81.82 0.9008
P3 —-0.0119 81.82 90.91 86.36 0.9174
P4 —0.0097 72.73 90.91 81.82 0.8512
0Ol —0.0116 81.82 90.91 86.36 0.9174
02 —0.0079 81.82 81.82 81.82 0.8760

The MSE analysis reveals that the AD patients usually have lower SampEn values on the
small and medium time scales at most electrodes of the 10-20 system. If most scales present
higher SampEn values for one signal than for another, the former is considered more complex
than the latter (Costa et al 2005). Therefore, we can infer that brain activity is less complex
in AD patients than in control subjects. This result agrees with other studies that revealed
less complexity (Besthorn et al 1995, Jelles et al 1999, Jeong et al 1998, 2001a, Pritchard
et al 1994, Stam et al 1995) or less irregularity (Abasolo et al 2005, 2006a, 2006b) in the EEG
recordings of AD patients than in control subjects. For instance, Besthorn et al (1995) found
significant lower D, values in AD patients than control subjects. Besides, those values were
correlated with the severity of AD, and an accuracy of 70% in the classification of subjects was
reached. In Pritchard et al (1994) it was proven that the addition of D, and a neural network
classification algorithm to the traditional linear methods could improve the classification
accuracy of AD patients against control subjects up to 92%. Similarly to D,, L, could be also
considered as a kind of complexity measure, since it estimates the flexibility of a system to
reach different states from almost identical initial states (Wolf et al 1985). In this sense, L, is
interpreted as a measure of the brain flexibility to process information. Several studies have
verified that the difficulties to process information of AD patients produce lower L; values
than control subjects (Jeong et al 1998, 2001a, Stam et al 1995). These kinds of complexity
reduction have been related to a drop of the subject adaptive capabilities (Goldberger et al
2002).

The aforementioned increased regularity on nearly all scales may have their origin
in a widespread complexity loss in the brain of AD patients (Jeong 2004). Although
such complexity reduction seems to be associated with the AD deficiencies in information
processing, its physiological origin is not clear. The main reasons for the lower complexity
might be an extensive neuronal death, a general effect of neurotransmitter deficiency or a
decrease in the connectivity of local neural networks due to nerve cell death (Jelles et al
1999, Jeong 2004, Tononi et al 1998). Whatever the physiological cause is, the impairments
in information processing of AD patients could be produced by either an inactivation of
previously active neural networks or a decline in the dynamical responsivity to outer stimuli
(Jeong 2004).

The slope of the MSE profiles on the small time scales (7 < 5) revealed no significant
group differences. We can infer that the EEG background activity of control subjects and



1102 J Escudero et al

AD patients evolves in a very similar way on these time scales. However, we have found
important differences in the MSE profiles on the larger time scales. In fact, the slopes of
the MSE profiles of both groups for T > 6 are significantly different (p-value < 0.01) at ten
electrodes located in the left frontal (F3 and F7), frontopolar (Fp1 and Fp2) and posterior brain
regions (T5, T6, P3, P4, O1 and O2). The main discrepancy between both groups was that the
irregularity of the coarse-grained sequences tended to decrease for the control group whereas
it remained almost constant or slightly increased for AD patients. It shows that the correlation
in the EEG background activity of the control subjects weakens on the largest time scales
(Costa et al 2005). This finding suggests that it might be more difficult to predict the EEG
background activity in control subjects than in AD patients, something which agrees with the
steeper slopes of the auto-mutual information found by Jeong et al (2001b) in control subjects
than in AD patients.

We used ROC curves in order to assess the ability of the slope on the large time scales to
assist in clinical classification of AD patients against control subjects. Whereas the minimum
accuracy of the ROC curves was obtained at electrode F7 (77.27%), the highest accuracy and
larger area under the ROC curves were found at electrode Fpl, in which the accuracy was
higher than 90% (90.91%). Accuracy values close to 90% were also obtained at electrodes
Fp2, TS, P3 and O1 (86.36%). Nevertheless, these accuracy results should be taken with
caution because of the small sample size.

Previous studies had observed that the severity of the AD was correlated with the D,
values (Besthorn et al 1995) and with the decrease of the auto-mutual information function
(Jeong et al 2001b) in AD patients. However, we found no correlation between the AD
patients” MMSE scores and the average slope values of the MSE profiles for large time scales.
A possible explanation for this fact may be the small sample size of our study (11 AD patients)
in comparison with the database analysed by Besthorn et al (1995) (50 AD patients). In
addition, the AD group studied by Jeong et al (2001b) (15 AD patients) was more severely
demented (MMSE = 9.4 £ 3.43 points, mean £ SD) than the AD patients analysed in our
study.

Our study has some limitations which need to be paid attention to. First of all, the sample
size was small. In this study, we set a strict significance level (¢« = 0.01) to minimize the
type I error (the error of statistically rejecting a true null hypothesis). As a result, this may
have increased the probability of a type II error (the error of statistically accepting a false null
hypothesis). Moreover, the probability of a type II error may be taken into consideration due
to the wider confidence interval associated with the small sample size. Therefore, although the
results seem to indicate that the MSE could help in the diagnosis of AD, the study should be
extended on a much larger patient population before it could be accepted as a diagnostic tool
with clinical value. Besides, other physiological and pathological states of the brain should
be analysed with MSE in order to know whether our findings are specific to AD or not, since
other researches have found an increase of regularity in other diseases and states of the brain,
including sleep (Burioka er al 2003), anaesthesia (Zhang and Roy 2001, Ferenets et al 2006),
Parkinson’s disease (Stam et al 1995) and epilepsy (Hornero et al 1999). The ageing process
can also produce a wide-ranging loss of physiological complexity (Kyriazis 2003). Thus, it
is possible that some of these diseases or states may produce MSE profiles similar to those
from AD.

Despite these drawbacks, the MSE analysis has important advantages over other
traditionally used nonlinear analysis methods, such as D, and L;: the MSE can be applied
to relatively noisy, short physiological time series, and it is model-independent (Costa et al
2005). Other nonlinear analysis methods that have recently been applied to EEG signals have
also these desirable properties (e.g. ApEn, SampEn or LZ complexity). Nevertheless, the
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Table 4. Summary of the accuracy and area under the ROC curve values obtained applying ApEn,
SampEn and LZ complexity to the same data set used in this study. Only the electrodes where
significant differences between control subjects and AD patients were found (p-value < 0.01) are

shown.
Sensitivity Specificity Accuracy Area under the

Nonlinear analysis method Electrode (%) (%) (%) ROC curve
ApEn with m = 1 and r = 0.25 SD P3 72.73 81.82 77.27 0.8595
(Abasolo 2006) P4 63.64 81.82 72.73 0.8264

01 81.82 72.73 77.27 0.8595

02 90.91 63.64 71.27 0.7769
SampEn with m = 1 and r = 0.25 SD P3 72.73 81.82 77.27 0.8512
(Abésolo et al 2006a) P4 63.64 90.91 71.27 0.8347

01 81.82 72.73 71.27 0.8595

02 90.91 63.64 77.27 0.7769
LZ complexity with a three-symbol TS 72.73 72.73 72.73 0.8017
conversion (Abésolo et al 2006b) P3 81.82 81.82 81.82 0.8926

P4 72.73 90.91 81.82 0.8430

01 90.91 72.73 81.82 0.8512

MSE analysis may be a more suitable method to analyse the EEG recordings due to some
of its specific characteristics. On the one hand, ApEn and SampEn are regularity estimators
derived from the entropy analysis of the signals (Costa et al 2005). They are based on
evaluating the appearance of repetitive patterns in the time series (Pincus 1991, Richman and
Moorman 2000). Particularly, ApEn is derived from the Kolmogorov—Sinai entropy in the
sense that the limits » — 0, N — 0o and m — oo can be relaxed (Ferenets er al 2006). On
the other hand, LZ complexity is a complexity measure in the Kolmogorov’s sense. It is a
non-parametric method which measures the number of different substrings and the rate of
their recurrence along the original signals (Lempel and Ziv 1976). However, LZ complexity
characterizes the randomness of a system, and not its complexity in a strict sense (Tononi
et al 1998), as noted by Lempel and Ziv (1976) in their original study. Contrary to ApEn,
SampEn or LZ complexity, the MSE fulfils the criterion that has been adopted in this study for
a real complexity measure. The MSE distinguishes both completely random and completely
ordered signals from real complex ones (Costa et al 2005). Moreover, the MSE is based on
the idea that physiologic systems are governed by mechanisms that operate across multiple
time scales. Therefore, the MSE analysis shows features of the signal that simultaneously
depend on several time scales. Thus, the real underlying dynamics of the generating system
can be revealed (Costa et al 2005), providing a useful insight into the signal structure. In
addition, the importance of the external measure white noise is reduced as deeper time scales
are inspected, due to the averaging process employed in the calculation of the coarse-grained
sequences. Furthermore, our results suggest that the MSE analysis of EEG is coherent with
the theory of complexity loss in disease (Goldberger et al 2002), which relates disease to less
complex biomedical signals. Due to these specific characteristics of the MSE, it may be more
helpful in the diagnosis of AD than other nonlinear analysis techniques. In the following
lines, we compare the results of the current study with several studies which used the ApEn
(Abasolo 2006), SampEn (Abasolo et al 2006a) and LZ complexity (Abasolo et al 2006b) to
distinguish AD patients from control subjects. The comparison is straightforward since the
same data set was used in all the analyses. A summary of the accuracies and area under the
ROC curve values obtained with ApEn, SampEn and LZ complexity in those studies is shown
in table 4.
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The comparison of these results should be taken with caution due to the small database
size. However, comparing tables 3 and 4, we can realize that the MSE analysis provided
statistically significant differences in more electrodes (ten electrodes of the 10-20 system)
than LZ complexity, ApEn or SampEn did (four electrodes in all cases). Moreover, the
accuracy and area under the ROC curve values found using the MSE analysis were usually
higher than the corresponding values of the other methods. For example, the MSE was able
to differentiate control subjects from AD patients with accuracies higher than 85% at five
electrodes (Fpl, Fp2, T5, P3 and O1). In contrast, none of the other methods provided
accuracy values over 85%. In addition, the areas under the ROC curves were larger than
0.900 for the MSE analysis at electrodes Fpl, TS, T6, P3 and O1, whereas values this high
were not reached with ApEn, SampEn and LZ complexity. Furthermore, the improvement
in the accuracy values of the MSE analysis is due to an improvement in both sensitivity and
specificity parameters. Table 3 shows that in seven of the ten electrodes both sensitivity and
specificity values were higher than 80%. This improvement in the classification rate could be
due to the simultaneous inspection of several time scales that the MSE analysis performs.

To sum up, we found significant differences between AD patients and control subjects
on the large time scales at ten electrodes (F3, F7, Fpl, Fp2, T5, T6, P3, P4, Ol and O2).
Although this pilot study is only a first step in the inspection of the EEG with MSE, and it
has the reported limitations, our results suggest that AD is characterized not only by changes
in the brain activity on the shortest time scale, but also by an abnormal behaviour on deeper
time scales. However, the MSE analysis of the EEG cannot yet be applied in the diagnosis
of AD and further studies with a larger sample size must be carried out to confirm our
results.
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