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Abstract—The aim of this work is to introduce the application of
wavelet in Electromagnetic Scattering and making improvement in the
moment method development. The conventional moment method basis
and testing functions are used to digitalize the integral equations of
the electric or magnetic field, resulting in dense matrix impedance. By
using the wavelet expansion, wavelets as basis and testing functions,
a sparse matrix is generated from the previous moment method dense
matrix, which may save computational cost. Here application has been
made upon two types of two dimensional antennas, which are circular
cylindrical antennas and parabolic reflector antennas. Results are
compared to the previous work done and published, excellent results
are obtained.

1. INTRODUCTION

The paper presents an analysis of two dimensional structures antennas
using Wavelet-Based Moment Method and special application here
is given to parabolic reflector antennas, and circular cylindrical
antennas. Classical methods such as the Geometrical Theory of
Diffraction (GTD), and Physical Optics (PO), cannot give accurate
result especially for more complicated Geometries. Moment method is
an accurate numerical method, the density of current upon the surface
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of the antennas is modelled as a set of functions, the Electric Field
Integral Equation (EFIE) is digitalized and the matrix system has to
be solved. Moment Method needs huge computational time and space
memory, for this raison it cannot be applied to antennas larger than
a few wavelengths. By using the wavelets expansions, the basis and
testing functions are chosen as orthogonal wavelets type, so that to
enable sparse the impedance matrix, which lead to reducing memory
space and computationally cost.

Although several fast algorithms have been used to reduce the
computational complexity and memory requirement, such as Finite
Element Method (FEM) [5], which formulate the electromagnetic
problem using differential equation, And more power method such
as the Fast Multi-pole Method or the Multilevel Fast Multi-pole
Algorithm (MLFMA) [9], which need more powerful machine to be
implemented. In contrast, Wavelet-Based Moment method which can
be implemented easily in personal computer.

At first the paper treats circular cylinder antennas with perfect
conducting type, the radar cross section (RCS) and the density of
current are presented and compared with available published work
[7, 10, 3]. Secondly dealing with the parabolic reflector, which is
considered also to be electrically perfect conductor (PEC) and feed by a
finite dipole. The radar cross section (RCS) and the radiation patterns
for the parabolic reflector are analyzed, illustrated and compared to
theoretical and published work [8].

2. FORMULATION

2.1. Integral Equation

On a two dimensional contour antennas, and for Perfect Electric
Conducting Surface, the boundary conditions on the surface are
expressed as:

n̂× �E = n̂×
(
�Ei + �Es

)
= 0 (1)

and

n̂× �H = n̂×
(
�Hi + �Hs

)
= Js (2)

where n̂, is the unit vector normal to the surface and Js the current
density, for the reflector antennas the incident field is from the
illumination feed considered as dipole which is:

Ei (θi, ri) = Gfeed (θi, ri)
e−j.k.ri

ri
(3)
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where Gfeed is the feed function, for 2D problem the field is on the Z
axis, equation (3) can be approximated for (kr � 1), to:

Gfeed (θi, ri) = sin (θi) θ̂

where:

ri = x. cos (θi) + y. sin (θi)

For the cylindrical antennas the incident field for TM polarization is
given by:

EiZ = ejk(x. cos(φi)+y. sin(φi)) (4)

Using the boundary condition (1), the scattered field may be
written as an integral of the induced current and the 2D Green’s
function, applying the Electric Field Integral Equation (EFIE) [6], this
leads to Equation (5).

kη

4

∫
C
JZ(r)H2

0

(
k|r − r′|

)
dc′ = EiZ(r) (5)

where C is the contour of the cylindrical or reflector antennas, and
H

(2)
0 (k|r − r′|) is Hankel function of the second kind zero order. (Jz

and Ez are in the z axis). Also using the boundary condition (2), and
applying the Magnetic Field Integral Equation (MFIE) [6], as:

−Hi(r) =
Jc(r)

2
+

+j
k

4

∫
C

Jc(r′).H
(2)
1

(
k|r − r′|

)
. cos(ψr,r′).dc′ (6)

where H(2)
1 (k |r − r′|) is the Hankel function of the second kind first

order, ψr,r′ is the angle between the normal vector (n̂), and (r − r′)
vector. The reflector antennas feed by the dipole antenna, studied here
is presented in Figure 1, and the circular cylinder antenna in Figure 2.

Equation (5) can be expressed for two dimensional antennas, and
for the (PEC) circular cylinder type as:

kη

4

∫ θ=2π

θ=0
Jz(r).H

(2)
0 (kR).

∣∣r′(θ)∣∣ .dθ = Eiz(r) (7)

where: R = |r − r′| =
√

(x− x′)2 + (y − y′)2.
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Figure 1. Reflector antennas feed by dipole antennas.
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Figure 2. PEC cylindrical antennas polarized by incident wave.

In the same manner Equation (6) can be expressed for two
dimensional antennas as:

−H inc
z (θ) = J(θ)

δr,r′

2

+j
k

4

∫ θ=2π

θ=0
J(θ′)H(2)

1 (k
∣∣r−r′∣∣). cos(ψr,r′)

∣∣r′(θ′)∣∣ .dθ′ (8)

where δr,r′ is the Kronecker delta function defined by

δr,r′ =
{

1 r = r′

0 r �= r′
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2.2. Moment Method Formulation

The induced current can be found when using the Moment Method [2],
and expand this current in a series of N basis functions, given by:

Jz=
∑
n

In.Fn (9)

where the Fn are the basis functions and the In are the unknown
constants, and using M similar testing functions (gm), the inner
product for the TM mode can be written as

N∑
n=1

〈
gm,

ωµ0

4

θ=2π∫
θ=0

Fn.H
(2)
0 (R).

∣∣r′(θ)∣∣ .dθ
〉
In =

〈
gm, E

inc
z (r)

〉
,

for m = 1 . . .M. (10)

Finally Equation (10) can be written as a matrix form:

[Zmn].[In] = [Um] (11)

where [Zm,n] is the impedance matrix, and [In] are the unknown
constants and [Um] is the voltage matrix .

[In] = [Zmn]−1.[Un] (12)

2.3. Wavelet Expansions

The basis and testing functions are presented as a superposition of
wavelets at several scales including the scaling function. A Galerkin
method is then applied, where the set of basis functions used to
present the current function, are used as weighting functions. The
wavelets used here are Daubechies basis an orthogonal type, its study
is useful from theoretical point of view, because it offers an intuitive
understanding of many multi-resolution properties. Furthermore, due
to its simplicity Daubechies wavelets are widely employed. The scaling
function is φ(x), and the mother wavelet function is ψ(x) [6], the scaling
and the mother wavelets functions are defined by:

φjn(x) = 2j/2φ
(
2jx− n

)
(13)

ψmn(x) = 2m/2ψ (2mx− n) (14)

where (m or j) are the resolution level and (n) is the translation factor.
The wavelets are applied directly upon the integral equation. The
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density of current will be represented as a linear combination of the
set wavelets functions and scaling functions as fellow:

Jz(x) =
∑
n

an.φj.n(x) +
2j−1∑
m=j

∑
n

cm.nψm.n(x) (15)

The fact that the wavelets are orthogonal and the presence of
vanishing moment, this is enabling sparse matrix production. When
applying Equation (10) into (15) and for the TM case, we obtain the
set of matrix equation as follow:[

[Zφ,φ] [Zφ,ψ]
[Zψ,φ] [Zψ,ψ]

] [
an
cm,n

]
=

[ 〈
Eincz , φj,n

〉〈
EincZ , ψm,n

〉] (16)

where:

[Zφ,φ] =

〈
φj,n,

ωµ0

4

θ=2π∫
θ=0

φj,n.H
(2)
0 (R).

∣∣r′(θ′)∣∣ .dθ
〉

(17)

[Zφ,ψ] =

〈
φj,n,

ωµ0

4

θ=2π∫
θ=0

ψm,n.H
(2)
0 (R).

∣∣r′(θ′)∣∣ .dθ
〉

(18)

[Zψ,φ] =

〈
ψ,m,n

ωµ0

4

θ=2π∫
θ=0

φj,n.H
(2)
0 (R).

∣∣r′(θ′)∣∣ .dθ
〉

(19)

[Zψ,ψ] =

〈
ψ,m,n

ωµ0

4

θ=2π∫
θ=0

ψm,n.H
(2)
0 (R).

∣∣r′(θ′)∣∣ .dθ
〉

(20)

Since Galerkin Method employs the same testing functions and
basis function, in the same manner is the equation for incident field is
expressed. After then the unknown constants are determined, and the
current density can be found using Equation (12), also the RCS which
is directly related this latter, for TM case has been calculated.

3. NUMERICAL RESULTS

A computer program has been coded in Mat-lab language for the
technique described above, the wavelet employed is constructed from
Daubechies orthogonal wavelet with vanishing moment N = 7, the
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lowest resolution level is chosen 2j = 27 = 128, since 128 wavelets are
involved, a system of matrix (of 128 × 128 elements) is generated.

The density of current for TM case has been given for circular
cylinder of (1.5λ Diameter), and an incident Angle φinc = 180◦, in

Moment Method 
Wavelets 

.

Figure 3. TM mode, density of current Jz for circular cylindrical
antenna of diameter (a = 1.5λ), ϕinc = 180◦.

Moment Method 
velets 

.
Wa

Figure 4. TM mode, bistatic RCS (dB) for circular cylindrical
antenna of diameter (a = 1.5λ), ϕinc = 180◦.



364 Lashab, Benabdelaziz, and Zebiri

Figure 3, and for TE case circular cylinder has been studied, for (2λ
Diameter) and incident Angle φinc = 0◦ in Figure 5. The Radar
Cross Section (Bistatic RCS) for the two cases stated are presented
in Figure 4 and Figure 6. Results are presented with comparison
of traditional Moment Method and Wavelet-Based MoM. Results are
Compared with previous work published [13] and [11].

The radiation pattern for H-plane and E-plane for the reflector

 Moment Method 
Wavelets 

.

Figure 5. TE-mode, density of current Jθ for (PEC) circular cylinder
antennas of diameter (a = 2λ), ϕinc = 0◦.

  Moment Method 
velets 

.
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Figure 6. TE-mode, bistatic RCS (dB) for (PEC) circular cylindrical
antenna of diameter (a = 2λ), ϕinc = 0◦.
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antenna feed by dipole has been presented for two cases first for
F/D = 0.375, and D = 5λ in Figure 7 and Figure 8, and second with
F/D = 0.96, and D = 10λ in Figure 9 and Figure 10. The two the
cases presented with the two different methods the results show good
agreement, for the classical moment method and for the wavelet-based

 Moment Method 
 Wavelets 
.

Figure 7. E-plane radiation pattern for parabolic reflector feed by
dipole with F/D = 0.375, diameter of the reflector D = 5λ.

Figure 8. H-plane radiation pattern for parabolic reflector feed by
dipole, with F/D = 0.96, diameter of the reflector D = 10λ.
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moment method.
In this paper the use of Daubechies wavelet leads to a matrix

sparsity of 78%, for a threshold of 3%, which means the moment
matrices were rendered sparse by thresholding to zero all matrix

Figure 9. E-plane radiation pattern for parabolic reflector feed by
dipole with F/D = 0.375, diameter of the reflector D = 5λ.

Figure 10. H-plane radiation pattern for parabolic reflector feed by
dipole, with F/D = 0.96, diameter of the reflector D = 10λ.
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elements whose magnitude was less then 3% of all the maximum
magnitude of all matrix entries. However [12] has reached 85.5% with
threshold of 2%, and using Haar wavelets.

It has been noticed that the time processing is inversely
proportional to the threshold chosen for the sparsity of the matrix,
which means that for low threshold the time processing is much longer.

4. CONCLUSION

The analysis of electromagnetic scattering problem for two dimensional
antennas using wavelets of Daubechies type has been presented for two
types of antennas which are circular cylinder and reflector antennas
feed by an infinitesimal dipole. The unknown current over the
conducting surface has been expanded in terms of wavelets and scaling
functions. After then a sparse matrix is generated, the resolution of the
wavelet is set to 27 for threshold of 3% a sparsity of 78% is obtained,
going for upper resolution enable accurate results but the impedance
matrix became very heavy, so a compromise have to be made. The
results obtained and compared to [1, 3, 8], they were successful.
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