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Abstract— The paper examines the performance as well as energy con-
sumption issues of a wireless sensor network providing periodic data from a
sensing field to a remote receiver. The sensors are assumed to be randomly
deployed. We distinguish between two types of sensor organizations, one
with a single layer of identical sensors (homogeneous) and one with an ad-
ditional overlay of fewer but more powerful sensors (heterogeneous). We
formulate the energy consumption and study their estimated lifetime based
on a clustering mechanism with varying parameters related to the sensing
field, e.g., size, and distance. We quantify the optimal number of clusters
based on our model and show how to allocate energy between different lay-
ers.

|. INTRODUCTION

The rapid development in small, low-power, low-cost micro-
electronic and micro-electromechanical (MEMS) sensor technol-
ogy [1] along with the advances in wireless technology have en-
abled wireless sensors to be deployed in large quantities to form
wireless sensor networks for a wide variety of purposes, e.g., im-
age formation of a target field, intrusion detection, surveillance
and monitoring. Such deployment can be random (e.g., dropped
from an airplane) or planned and calculated (e.g., installing fire
alarm sensors in a building).

Communications in a wireless sensor network occur in dif-
ferent ways depending on the underlying application or mission
of the network. In general, there are three types of communi-
cations: clock-driven, event-driven and query-driven. Clock-
driven communication takes place where sensors gather and send
data at constant periodic intervals. Such periodic transmission
can be destined for a certain receiver or collector. Combining
data from all sensors generates “snapshots” of the field that is
being sensed. Over time these snapshots produce temporal and
spatial information about the field, e.g., acoustic, seismic, me-
teorological. Query-driven or event-driven communications are
triggered by certain events or queries. These different types of
communication can appear in combination in a sensor network.

In all these cases the lifetime of a sensor and the lifetime of the
network, which directly determines the duration of the sensing
task, is limited by the amount of energy each sensor has. There-
fore when we examine these networks, efficient use of energy
is a primary concern. While it is tempting to simply apply ex-
isting research in wireless networks to sensor networks, sensor
networks have enough particular characteristics and challenges
to justify their specific study [2]. Sensor networks have been
quite extensively studied in the past few years, see for example
[31, [4]. [1], [5], and [6].
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To the best of our knowledge, almost all of the existing work
focuses on sensor networks that consist of identical sensors with
equal capacity in terms of sensing, computation, communica-
tion, and power. Consequently we consider this type of sensor
networks homogeneous. The possibility of working with more
than one type of sensors within a same network is mentioned in
[7], but without an in depth study of this possibility. We observe
that the manufacturing and thus the functionality of a sensor is
generally very application-specific. We anticipate different spe-
cial purpose sensors can be used to form a single sensor network
to perform more comprehensive tasks, e.g., some sensors collect
image data, some sensors collect audio signal, some sensors have
more processing capability, some sensors have more power, and
so on. This results in a heterogeneous sensor network that can
have a variety of compositions of sensors. Many organizational
and communication issues arise with such a structure.

In this paper we examine one of the simplest such heteroge-
neous scenarios - in which sensors are equipped with different
battery power - in a clock-driven sensor network. In particular,
we consider a field randomly deployed with sensors that gather
data and transmit it back to a remote receiver, which is assumed
to be located away from the sensing field. Such a scenario is
motivated by applications in which data is desired from a hostile
environment,such as a volcano or a swamp, where sensors are
likely to be deployed in an unmanned manner.Under such situ-
ations sensing data will be collected, analyzed and interpreted
at a more accessible location. The main issue we are interested
in is how to maximize the lifetime of such a sensor network for
a given amount of energy, or equivalently, how to retrieve the
same data using the least amount of energy. In this paper we de-
fine the lifetime of a sensor network as the expected lifetime of
any given sensor in the network. In a densely deployed sensor
network this definition can be easily extended to be the time until
a certain percentage of the sensors died. Thus in prolonging the
lifetime of a sensor network, it is important to balance the power
depletion from one sensor to another.

There are different ways of collecting the sensing data. The
simplest is direct transmission, where each sensor directly sends
gathered information to the remote receiver independent of each
other. This approach is mentioned and used for comparison in
[3]. It does not require any communication between sensors.
This approach has an inherent scalability problem considering
the fact that this is a many-to-one communication where the
number of sensors can be potentially huge. In addition, this also
puts a limit on how far away from the sensing field the remote



collector can be since each sensor will need to be able to reach
the collector. A second approach is via multi-hop routing, which
has been extensively studied for both generic ad hoc routing net-
works as well as wireless sensor networks, e.g., [8], [9] and [4].
Such routing protocols can be designed to realize different goals,
e.g., minimize energy consumption. However, these protocols
are typically evaluated assuming a random traffic pattern, and it
is not clear how they would perform under the scenario where
communications are mostly all-to-one or all-to-few (i.e., there
can be a small number of collectors). Further investigation on
using multi-hop routing within this context is part of our on-
going research.

A third approach is clustering, where sensors form clusters
dynamically with neighboring sensors. One of the sensor in
the cluster will be elected cluster head and be responsible for
relaying data from each sensor in the cluster to the remote re-
ceiver/collector. This approach localizes traffic and can poten-
tially be more scalable. In addition, the cluster heads naturally
become points where data fusion and data compression can oc-
cur considering the potential correlation among data from neigh-
boring sensors. Since the cluster heads will inevitably consume
more energy and thus die sooner than other sensors, methods of
dynamically changing cluster heads are preferred so that the use
of energy can be spread as evenly as possible among all sensors,
see for example [3].

In this paper we will focus on the clustering approach and ex-
amine the use of a heterogeneous structure where some sensors
carry more power than others, and thus naturally become clus-
ter heads. In this case the field is first deployed with a number
of type-I sensors, and then deployed with an overlay of type-II
sensors, presumably more powerful but fewer in number. We
will call these overlay sensors and the first layer sensors nor-
mal sensors in subsequent discussion. The overlay sensors can
potentially have more processing capability and communication
capability in addition to having more energy. We formulate the
energy consumption for the heterogeneous case and estimate its
lifetime with varying parameters related to the sensing field, e.g.,
size, distance, and so on. We quantify the optimal number of
clusters based on our model and show how to allocate the en-
ergy between the overlay sensors and normal sensors. We will
also relate these results to the homogeneous case.

The remainder of the paper is organized as follows. First we
present the network model under consideration and related as-
sumptions in Section I1. Section 111 provides a mathematical for-
mulation that attempts to estimate the average lifetime of a sen-
sor network. We also discuss related energy allocation issues and
the optimal number of clusters in this section. We conclude the
paper with a summary and discussion of future work in Section
V.

Il. NETWORK MODEL AND ASSUMPTIONS

Consider a square sensing field with each side measuring L
meters. The coordinates of the field are as shown in Figure 1,
where crosses represent overlay sensors, and circles represent
normal sensors. All data collected by the sensors is to be sent
to a receiver/collector located outside the sensing field. We will

use the terms receiver and collector interchangeably in subse-
quent discussions. The collector is located at (0, —D), and is
thus D meters away from the sensing field. This location is as-
sumed to be fixed. We assume all sensors are aware of the lo-
cation of the receiver via some type of pre-configuration or self-
configuration. There is a total of n normal sensors in the field.
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Fig. 1. Heterogeneous Network

They are assumed to be uniformly distributed within the field.
In addition to that, there are R - g, (where R,q > 1) overlay
sensors in the field, also randomly deployed. On average only
q overlay sensors are active at any given time, i.e., on average
there are g clusters. These overlay sensors will take turns (in a
way described below) being cluster heads. The reason for such
redundancy is that a very uneven topology due to randomness in
deploying these overlay sensors could lead to rapid energy de-
pletion of a particular overlay sensor and in turn, this can have
an adverse effect on the lifetime of the network. If we deploy
more overlay sensors than needed and then randomly choosing a
subset to be active periodically, we may “even out” the random
effect of deployment.

We assume that sensed data is collected in a periodic man-
ner, and each such period is defined as a round. This period that
we have named round consists of the sensing of the data and
the transmission of one packet containing the data sensed to the
cluster head. The round also includes the relay of that packet and
the packet of each sensor in the cluster to the collector. Further-
more, we assume that each sensor has a constant amount of raw
data to send, including the overlay sensors if active. Thus every
sensor, in every round, has b, bits to send. A round starts with
each overlay sensor dynamically deciding whether it will be a
cluster head in the current round. If so it broadcasts its presence
to the normal sensors and starts receiving data from the sensors
that have decided to become part of its cluster. Normal sensors
decide to which cluster they wish to belong based on the strength
of the signal from the broadcast. It is assumed that the stronger
the signal, the closer the head is and therefore the head with the
strongest signal is chosen. If an overlay sensor decides not to
be a cluster head for the current round, it goes to sleep for the
duration of the round. Once the data from all the sensors within
the cluster is gathered, it is relayed to the collector. This marks
the end of a round the beginning of the next round. By speci-



fying that an overlay sensor is active once and only once every
R rounds, we ensure that on average there are ¢ clusters in the
network. This method is borrowed from [3], with the only differ-
ence being that in [3] such a decision is made by homogeneous
sensors, and here it is made only by overlay sensors.

We assume some form of MAC is used within each cluster,
see for example [10]. Some form of MAC is also used between
multiple cluster heads and the remote collector, but the commu-
nication between cluster heads and the remote collector takes
place in a different channel than that between normal sensors.

We adopt the following energy model [3]:

Energy spent in transmission= ezbd* + e;b;

Energy spent in reception= e;b; and

Energy spent sensing= esb, where e4 is the energy dissipated
per bit per m? and is chosen to be 100 x 1012, ¢, is the energy
spent by transmission circuitry per bit and is chosen to be 50 x
1079, ¢; is the energy spent by reception circuitry per bit and is
chosen to be 50 x 109, e, is the energy spent sensing per bit
and is chosen to be 50 x 109, b is number of bits to transmit
or receive, d is the distance from transmitter to receiver and « is
a constant > 2 which depends on the attenuation the signal will
suffer in that environment

In our analysis we will use the common values of o = 2 and
a = 4. In this paper we limit ourselves to only consider the
energy consumed in communication, as illustrated above. Fur-
ther study is needed to also take into account energy consumed
in data processing, etc. Throughout this paper we do not take
into account the energy consumed at the remote receiver, which
is assumed to have less stringent energy constraint. The focus
is therefore on the limited energy available to the sensors which
rely on batteries.

I1l. ANALYSIS AND NUMERICAL RESULTS

In this section we analyze the cluster formation approach in a
heterogeneous network. This analysis seeks to estimate the point
in time when a given sensor in the network is expected to run
out of energy. Setting our objective to maximizing this value,
we also illustrate how energy should be allocated between the
overlay sensors and the normal sensors, and the optimal number
of clusters.

A. Estimation of network lifetime

Following the procedure described in the previous section we
can guarantee that every overlay sensor will be cluster head once
and only once every R rounds, and that the average number of
clusters in the network is ¢. Below we will focus on the expected
energy consumed every R rounds.

Let W, and W, denote the energy consumed by an overlay
sensor/cluster head, and a normal sensor (first layer), respec-
tively. Let S be the random variable denoting the distance from
the sensor to the cluster head and Z = d? be the random variable
denoting the squared distance from the sensor to the receiver.
The expected energy spent every R rounds by a cluster head is

W, = K1 + (K2 + A1 E[d*])Co(q) @

where K1, K> and A; are constants which depend in the number
of bits in the packets, the energy used by the circuitry for every
bit, the number of sensors, the number of heads and the size of
the field. Their calculations are given in Appendix. C,(q) is the
expected number of transmissions needed to achieve a success-
ful transmission from the cluster head to the remote collector
as a function of active cluster heads. The exact expression of
this function will depend on the MAC scheme used between the
cluster heads and the collector. Appropriate MAC schemes are
beyond the scope of this paper. For an evaluation of different
MAC schemes see for example [10].

Similarly, the expected energy spent by a normal sensor in the
heterogeneous case every R rounds is

W, = K3 + (K + AzE[Sa])Cs(g) 2)

where K3, K4 and A, are again constants given in the Appendix.
Again C,(n/q) is the expected number of transmissions needed
to achieve a successful transmission within a cluster as a function
of the average size of cluster. This function depends on the MAC
used within each cluster.

The sensors are assumed to be uniformly distributed both in z
and y. With a few calculations we can show that

E[Z] = E[d@ =E][s*+ (y+ D)?]
= % <§>2+%2+DL+D2
and
E[7%] = Eld']=E|[(2*+(y+D)*’]
= 13?;54 + 7D6Ls + 2511);L2 +2D*L + D*
Similarly we can show that the pdf of S is
fs(3)=4<£i) (1ﬂ+i)q_l. ©)
L L? L ' 2L?
This is used to calculate the expected value of S, which is:
B[s*] = /OZL2 [qsa(— - pa- T‘/E + )q—l] ds

@

Note that the above results ((1)-(4)) can easily be extrapolated
to model direct transmission approach, since it depends only on
a few constants and the random variable Z. They can also be
extended to model the homogeneous case. In fact since the en-
ergy used by the sensors when they act as cluster head in a ho-
mogeneous network is the same used by overlay sensors in a
heterogeneous network in a given round, the overall expected
lifetime of the network is the same, given same amount of total
energy. Note that in the homogeneous case every sensor has to
be equipped with enough power to reach the collector, while in
the heterogenous case this is not needed.



The above equations can also help us determine a reasonable
energy allocation for the heterogeneous case, as we show below.
The key question is that since we have different types of sen-
sors, given a fixed budget and a fixed task, how much energy
with which the normal sensors and the overlay sensors should
be equipped, respectively. One possible criteria is to let the two
types of sensors have the same targeted life time. This criteria
would apply to scenarios where sensors are not considered re-
trievable or reusable. Thus by balancing energy allocation, by
using (1) and (2), we can maximize the network life time for a
given fixed amount of energy. Let ¢ be the energy allocated to
the overlay sensors and 3 be the energy allocated to the normal
Sensors.

B ¢

Ko+ (Ka & AB0)C,(5) ~ Ko 1 (s T AB@NCol@

From there we get the relation:

B _ Ki+ (K> + A1E[d*])Co(q)

¢~ Ks+ (Ka+ AB[S))Cy(2) )

Following this, both the overlay and the normal sensors in the
network should last

8
Kz + (Ks + A B[S))Cy ()

R, = R( ) (7

number of rounds.

It is not easy to draw conclusions directly from these equa-
tions for the lack of a closed form solution in some cases. How-
ever by using a few numerical methods to solve the equations
under given circumstances, we can gain some insight. All our
calculations are done in Matlab. For simplicity reasons, we will
assume that perfect scheduling is achieved at the MAC layer and
therefore C,(q) = Cs(n/q) = 1. However, the framework of
the analysis does not change as the MAC scheme changes with
a different function.

B. Optimal number of clusters

Note that E[S*] depends on g, the number of clusters. This
suggests that we could use (7) to determine how many cluster
heads are needed.

The plots of Figures 2, 3 and 4 are obtained assuming the per-
fect scheduling mentioned before, data packets of 1024 bits and
control packets of 128 bits. We also assume that the total en-
ergy of the network is bounded by 50 joules in each case. This
number is fairly arbitrary, but does not affect the behavior of the
network. For a different value the plots in the Figures 2, 3 and
4 will simply be scaled. Without such a fixed bound, the extra
overlay sensors would result in added energy to the network and
thus increased lifetime. In each of these cases, i.e., with a differ-
ent number of clusters, the amount of energy carried by a normal
sensor and an overlay sensor is determined by (6).

In these experiments we set the total number of sensors (both
types) to be fixed at 100. The expected number of active overlay
sensors will be g, and 100 — ¢ is the number of normal sensors.
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We let ¢ vary from 1 to 100. In other words, the average num-
ber of active sensors (normal plus overlay) remains fixed, while
the average number of clusters increases. Since an overlay sen-
sor also has normal sensing capability, by doing so we fix the
amount of sensing data from one scenario to another. In addi-
tion, under such a setup, ¢ = 100 would correspond to direct
transmission. Figures 2 through 4 show the expected number of
rounds the network can last as a function of number of clusters.
In Figure 2 there is a clear knee corresponding to g between 4
and 10, while the maximum is reached when ¢ = 100, which
represents direct transmission. This is because we have assumed
perfect MAC scheduling, and that direct transmission does not
involve cluster formation overhead that is incurred periodically
otherwise. Intuitively we would like to maximize the life time
of the network while minimizing the number of clusters in order
to be scalable. Therefore the optimal average number of clusters
is determined as the knee in the curve. The exact number for ¢
however varies slightly depending on other parameters such as
L, D and a.

The change of «, or a scale-down in L and D (ratio remains
the same) does not change the overall shape of the curves (see
Figure 2). Anincrease in the dimension of the network also does
not change the overall shape, see Figure 3. Setting L=500 and
D=1000 reduces the number of rounds the network can last, but
not the location of the knee. Note that in this last case having a
large number of clusters no longer means a longer lifetime. The
explanation is as follows. In a network of this size (L = 500),
the distance from sensors to a cluster head increases, i.e., the
network becomes more sparse. However, the transmission range
needed for broadcast during cluster formation by a cluster head
increases even more. Therefore beyond a certain range the in-
creased number of clusters result in higher energy consumption.

Reversing the ratio between L and D results in a very different
shape of this curve, see Figure 4. In this case it is not so obvious
what the best choice for ¢ would be.

Our explanation is the following. In the cases shown in Fig-
ures 2 and 3 the energy spent in propagation is the dominant fac-
tor in the total amount of energy consumed, and the amount of
energy spent in transmission and reception circuitry is relatively
minimal. However, in Figure 4 the distance between the receiver
and the field is small enough to allow the energy spent in the
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circuitry to become significant. In this case direct transmission
becomes a valid choice, assuming that (near) perfect scheduling
is possible. Therefore for ¢ to be between 4 and 10 is only rec-
ommended for scenarios where the sensing field and the receiver
are far away comparing to the size of the sensing field. When
the field is large comparing to the distance between the field and
the receiver, direct transmission seems to be a good idea and we
should choose ¢ as high as the receiver can handle.

C. Summary and discussions

In figures presented above, we showed how our analysis can
be used to determine the appropriate number of heads in the net-
work. In summary, regardless of whether the network is homo-
geneous or heterogenous, under the considered parameters, the
optimal number of clusters is between 4 and 10. The exact num-
ber varies slightly depending on the size of the field, the location
of the receiver, etc. (due to space limit we are not able to show
more results). However, when the distance to the receiver is very
small comparing to the size of the field, it seems the best choice
is to use as many clusters as the receiver can handle.

IV. CONCLUSION AND FUTURE WORK

In this paper a constant update or clock-driven sensor network
was analyzed with a heterogenous organization. We described
how dynamic clusters are formed, presented a way of determin-
ing the optimal number of clusters for a given set of parameters,

and showed numerically results.

Only a limited number of aspects of a sensor network have
been considered here. Future work would explore similar issues
in a query-driven and event-driven type of sensor networks. The
possibility of several collectors located in different places should
also be considered.

Another important issue to be explored is a heterogenous net-
work model where the difference between the sensors is not only
the difference in available energy, but also in their processing ca-
pabilities, and thus the consideration of energy consumption in
data processing (compression, fusion, etc.). Throughout the pa-
per efficient use of the energy was given top priority. In cases
where delay and the resolution of the data are just as important,
these performance measures should be considered jointly with
energy efficiency.
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APPENDIX
Variable Name Description

by Bits sent in broadcast

bs Bits sent per sensor

n Number of sensors

q Number of cluster heads
R as defined in section III.A
M % eN
Br (bor)(eq)2L* + (bpy)(et)
Ay M(bs)(ea)
K Br + (M —1)(er)(bs) + (es)(bs)
K> M{(et)(bs)
K3 R(bor)(er) + R(bs)(es)
Az R(bs)(eq)
Ky R(bs)(et)




