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Purpose: To find a suitable method for analyzing electronic portal imaging device (EPID)

transmission fluence maps for the identification of position errors in the in vivo dose

monitoring of patients with Graves’ ophthalmopathy (GO).

Methods: Position errors combining 0-, 2-, and 4-mm errors in the left-right (LR), anterior-

posterior (AP), and superior-inferior (SI) directions in the delivery of 40 GO patient

radiotherapy plans to a human head phantom were simulated and EPID transmission

fluence maps were acquired. Dose difference (DD) and structural similarity (SSIM) maps

were calculated to quantify changes in the fluence maps. Three types of machine learning

(ML) models that utilize radiomics features of the DD maps (ML 1 models), features of the

SSIM maps (ML 2 models), and features of both DD and SSIM maps (ML 3 models) as

inputs were used to perform three types of position error classification, namely a binary

classification of the isocenter error (type 1), three binary classifications of LR, SI, and AP

direction errors (type 2), and an eight-element classification of the combined LR, SI, and

AP direction errors (type 3). Convolutional neural network (CNN) was also used to classify

position errors using the DD and SSIM maps as input.

Results: The best-performing ML 1 model was XGBoost, which achieved accuracies of

0.889, 0.755, 0.778, 0.833, and 0.532 in the type 1, type 2-LR, type 2-AP, type 2-SI, and

type 3 classification, respectively. The best ML 2 model was XGBoost, which achieved

accuracies of 0.856, 0.731, 0.736, 0.949, and 0.491, respectively. The best ML 3 model

was linear discriminant classifier (LDC), which achieved accuracies of 0.903, 0.792, 0.870,

0.931, and 0.671, respectively. The CNN achieved classification accuracies of 0.925,

0.833, 0.875, 0.949, and 0.689, respectively.
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Conclusion:MLmodels and CNN using combined DD and SSIMmaps can analyze EPID

transmission fluence maps to identify position errors in the treatment of GO patients.

Further studies with large sample sizes are needed to improve the accuracy of CNN.

Keywords: EPID transmission fluence, radiomics, SSIM, machine learning, CNN

INTRODUCTION

As a treatment method for Graves’ ophthalmopathy (GO), an eye

disease related to autoimmune thyroid disease (1), radiotherapy can

be applied with satisfactory control while producing relatively slight

post-radiotherapeutic complications (2). The organs-at-risk (OARs)

around the target volumes of GO include the lens, optic nerves, and

similar tissues. To enable the delivery of conformal and uniform
doses to these target volumes while reducing the dose received by

normal tissue, intensity-modulated radiotherapy (IMRT) and

volumetric modulated arc therapy (VMAT) are often used for

GO patients (1–3) because these approaches generate a steep dose

gradient between the target volume and OARs (4, 5). However, this

implies that errors during treatment, such as position errors, have a

significant impact on the treatment results (6). Cone beam
computed tomography (CBCT), which is often used for

correcting position errors before treatment, introduces additional

radiation doses to patients (7); furthermore, intra-fractional

movement is still present after pre-treatment CBCT scanning

(8–10). As a method for monitoring treatment, in vivo dosimetry

for obtaining information on the doses delivered to patients has
significant potential.

Currently, amorphous silicon electronic portal imaging devices

(a-Si EPIDs), which have high spatial resolutions, large two-

dimensional arrays, and approximately linear dose responses

(11–13), are commonly used in clinical in vivo dosimetry (14–

18). Although gamma pass rate threshold-based EPID in vivo

dosimetry can be used to monitor treatment through single pass
rate values (16–19), research on EPID dosimetry by Hsieh

Emmelyn S et al. (20) has revealed that, under 3%/3 mm and

95% pass rate threshold criteria, position errors greater than 2 cm

can be detected, which is unsatisfactory. Meanwhile, gamma pass

rate threshold-based dosimetry compresses 2D image information

and therefore causes information loss (21). In addition, using
gamma pass rate, errors can be detected; however, their direction

cannot be detected. Thus, a tool for more comprehensive detection

of errors and their direction is required.

Structural similarity (SSIM), which can measure the similarities

between pairs of images based on the image luminance, contrast,

and structural similarity, has been used for dose distribution error
detection (22). Meanwhile, research showed that linac mechanical

errors can be detected by combining dose difference (DD) maps

with SSIMmaps to analyze EPID fluence (23). However, DDmaps

and SSIM maps cannot be analyzed manually to detect errors.

The collection of methods for extracting information such as

shape, grayscale, and texture contained in digital medical images

into high-dimensional data is known as radiomics (24, 25).
Because radiomics information contains significant quantities

of data that are difficult to process manually, radiomics is often

combined with artificial intelligence for diagnosis, treatment
selection, and prediction (26–29). In several recent studies,

radiomics has been combined with machine learning (ML) for

conducting EPID fluence-based dose verification (21, 23, 30).

Convolutional neural networks (CNNs) can effectively

perform image-related tasks by analyzing images at different

scales using convolutional layers to extract useful information
and generate final outputs (31). Accordingly, a number of

researchers have proposed CNN-based patient-specific dose

verification using dose maps as the CNN input (32–35).

This study aims to find a suitable method for analyzing EPID

transmission fluence maps in the identification of position errors

during the in vivo dose monitoring of GO patients. To this end,
we measured EPID transmission fluence maps with and without

position errors obtained from the treatment of a head phantom

and used the maps without position errors as a baseline for

calculating dose difference and structural similarity maps

reflecting position errors. The radiomics features of these DD

and SSIM maps were then combined with ML models to classify

position errors. CNN was also established to classify position
errors using the DD and SSIM maps as inputs, and the ML and

CNN classification results were compared.

METHODS

Position Error Simulation and EPID
Transmission Fluence Map Measurement
Forty VMAT plans of patients with GO who received
radiotherapy in our department from November 2019 to

October 2020 were selected, with a prescription dose of 20 Gy

in 10 fractions. VMAT with two partial arcs rotating from 240 to

120° clockwise and from 120 to 240° counterclockwise was used

to design the radiotherapy plans. To simulate clinical treatment,

the plans were delivered to a head phantom (Chengdu

Dosimetric Phantoms, Chengdu, China) on an EDGE linac
(Varian Medical Systems, Palo Alto, CA) (Figure 1A). The

beam transmission fluence maps were measured by an as1200

EPID (Varian Medical Systems, Palo Alto, CA) with 1190 × 1190

pixels and pixel size of 0.336 mm × 0.336 mm in dosimetry

mode. For each patient, one measurement without position

errors was conducted first to obtain a baseline transmission
fluence map. Then, 27 fluence maps with position errors were

measured while 27 possibilities of position errors (Table 1)

combining 0-, 2-, and 4-mm left-right (LR), anterior-posterior

(AP), and superior-inferior (SI) position errors were simulated by

translating the head phantom along the LR, AP, and SI axis. The 0,

0, 0 error position was the same as the position where baseline

maps were measured. Prior to measurement, the background and
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FIGURE 1 | (A) Photograph of the measurement process, the coordinate system in the lower right corner indicates the direction of the position errors, (B) transverse

plane of one GO patient, the yellow region of interest (ROI) is PTV, the green and red ROI are lens, (C) VMAT plan with two partial arcs rotating from 240 to 120° clockwise

and from 120 to 240° counterclockwise, (D) the dose distribution of transverse plane, (E) the dose distribution of sagittal plane.

TABLE 1 | Position errors combining 0-, 2-, and 4-mm errors in LR, AP, and SI directions and classification labels of different types of position errors for three types of

classification tasks.

Direction Serial number Set-up errors Isocenter errors (mm) Classification Labels

Type 1 Type 2-LR Type 2-SI Type 2-AP Type 3

None 1 Without errors (baseline) / / / / / /

2 Without errors 0.00 1 1 1 1 1

Single Direction 3 LR 2mm 2.00 1 1 1 1 1

4 LR 4mm 4.00 2 2 1 1 2

5 SI 2mm 2.00 1 1 1 1 1

6 SI 4mm 4.00 2 1 2 1 4

7 AP 2mm 2.00 1 1 1 1 1

8 AP 4mm 4.00 2 1 1 2 3

Double Directions 9 LR 2mm+AP 4mm 4.47 2 1 1 2 3

10 LR 4mm +AP 4mm 5.66 2 2 1 2 5

11 LR 4mm +AP 2mm 4.47 2 2 1 1 2

12 LR 2mm +AP 2mm 2.83 1 1 1 1 1

13 LR 2mm +SI 2mm 2.83 1 1 1 1 1

14 LR 2mm +SI 4mm 4.47 2 1 2 1 4

15 LR 4mm +SI 4mm 5.66 2 2 2 1 6

16 LR 4mm +SI 2mm 4.47 2 2 1 1 2

17 SI 2mm +AP 2mm 2.83 1 1 1 1 1

18 SI 2mm +AP 4mm 4.47 2 1 1 2 3

19 SI 4mm +AP 4mm 5.66 2 1 2 2 7

20 SI 4mm +AP 2mm 4.47 2 1 2 1 4

Triple Directions 21 LR 2mm +SI 2mm+AP 2mm 3.46 2 1 1 1 1

22 LR 2mm+SI 2mm+AP 4mm 4.90 2 1 1 2 3

23 LR 2mm+SI 4mm+AP 4mm 6.00 2 1 2 2 7

24 LR 2mm+SI 4mm+AP 2mm 4.90 2 1 2 1 4

25 LR 4mm+SI 4mm+AP 2mm 6.00 2 2 2 1 6

26 LR 4mm+SI 2mm+AP 2mm 4.90 2 2 1 1 2

27 LR 4mm+SI 2mm+AP 4mm 6.00 2 2 1 2 5

28 LR 4mm+SI 4mm+AP 4mm 6.93 2 2 2 2 8

LR, left-right; AP, anterior-posterior; SI, superior-inferior Isocenter error =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LR errors2 + SI errors2 + AP errors2
p

.
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pixel response of the EPID were calibrated through a dark field

and a flood field and the EPID dose was calibrated.

Calculation of DD and SSIM Maps
The DD map DD(x,y) used in this study is defined as

DD(x, y) = Vx − Vy

�

�

�

�, (1)

where Vx and Vy are the pixel values at a given spatial location on

the baseline fluence map and fluence map with position

errors, respectively.

SSIM is an indicator used to measure the similarity of two

images, with SSIM = 1 indicating that the two images are the

same (36). We define SSIM as

SSIM(x, y) = ½l(x, y)�a · ½c(x, y)�b · ½s(x, y)�g , (2)

where a, b, and g are constants to control the relative weight of the
three components, and l(x,y), c(x,y), and s(x,y) are the luminance,

contrast, and structure maps, respectively, which are given by

l(x, y) −
2mxmy + c1

m2
x + m2

y + c1
, (3)

c(x, y) =
2dxdy + c1

d 2
x + d 2

y + c2
, (4)

s(x, y) =
dxy + c3

dxdy + c3
, (5)

where mx and where my are the local mean values of the pixels of

images x and y, respectively, dx and dy are the local standard

deviations of the pixel values of images x and y, respectively, and

dxy is the covariance of images x and y. In this study, a square

window with a side length of 11 pixels was used as the local

window to calculate mx, my , dx, dy, and dxy, the constants C1 =

(K1L)
2, C2 = (K2L)

2, and C3 = C2/2 were used to avoid zero
denominators, the default values K1 = 0.01 and K2 = 0.03 were

obtained from Wang (36), and L = 200 was selected to represent

the fraction dose 200 cGy.

As shown in the lower left corner of Figure 5, to quantify

EPID transmission fluence changes caused by the position error,

DD maps and SSIM maps, including luminance, contrast, and
structure maps, were calculated. The baseline fluence maps were

compared to fluence maps with 27 possibilities of position errors;

thus, for each patient, 27 sets of DD, luminance, contrast, and

structure maps were calculated. Some of the measured fluence

maps and calculated maps are shown in Figure 2.

Position Error Classification
Three types of position error classifications were performed

(Figure 3): type 1 classified errors into two classes based on

whether the isocenter error was over 3 mm, and the isocenter is

defined as

Isocenter error =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

LR errors2 + SI errors2 + AP errors2
p

, (6)

where LR errors, SI errors, and AP errors are the position errors in

LR, SI and AP directions, respectively.

Type 2, which contained three classification tasks, classified

errors into two classes depending on whether the error in the AP,

SI, or LR direction was over 3 mm; type 3 combined the three

types of classification methods of type 2 and classified errors into
eight classes with the goal of predicting the direction from which

any error larger than 3 mm originated.

Machine Learning Method
The ML method used in the study is shown in Figure 4. The

Python opensource library Pyradiomics (37) was used to extract
radiomics features from the DD, luminance, contrast, and

structure maps. Ninety-four types of features derived from six

classes were extracted from the 512 × 512 center pixel matrix of

each map, including first-order (19 features), gray level co-

occurrence matrix (GLCM, 24 features), gray level dependence

matrix (GLDM, 14 features), gray level run length matrix

(GLRLM, 16 features), gray level size zone matrix (GLSZM, 16
features), and neighboring gray tone difference matrix (NGTDM,

5 features) features. Because of the constant shape of the fluence

maps, the shape 2D (10 features) and shape 3D (17 features)

features remained the same and were excluded. The classification

models in the Python scikit-learn (38) and XGBoost (39) libraries,

which included linear discriminant classifier (LDC), linear
function kernel-supporting vector machine (linear-SVM), radial

basis function kernel-supporting vector machine (RBF-SVM), K-

nearest neighbor (KNN), and extreme gradient boosting

(XGBoost) models, were used to classify the position errors.

Three types of ML models—ML 1 models, which used the

radiomics features of DD maps as inputs, ML 2 models, which

used the features of SSIM maps as inputs, and ML 3 models,
which used the features of DD and SSIM maps as inputs— were

used to classify the position errors. Before using the radiomics

features for ML, Pearson correlation analysis was performed

between the radiomics features and classification labels to

exclude features with low correlation and prevent the model

from overfitting. To evaluate the performance of each classifier,
the data for 32 out of the 40 patients were randomly selected as

the training set and the data for the remaining eight patients were

used as the testing set. In the training set, leave-one-out cross-

validation was combined with a grid search to tune the

hyperparameters of the classifiers. The classification labels are

listed in Table 1.
For the KNN classification, GridSearchCV was used to find a

suitable number of neighbors from 1 to 10 with a step of 1. For

SVM, GridSearchCV was used to find suitable kernels (kernel =

linear, rbf), suitable C (C = 0.01, 0.1, 1, 10), and gamma (gamma =

0.001, 0.01, 0.1, 1) values, with the gamma being used only to find

the rbf kernel. For LDC, GridSearchCVwas used to find a suitable

solver (solver = svd, lsqr, eigen). For XGBoost, 10–100 boosting
rounds with a step of 10 and a maximum tree depth of 3–10 were

searched for the type 1 and type 2 classification; for the type 3

classification, 100–250 boosting rounds with a step of 10 and a

maximum tree depth of 3–10 were searched. The final

hyperparameters are shown in Supplementary Material A.
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FIGURE 2 | Overview of the fluence maps, calculated DD, contrast, luminance, and structure maps with six possibilities of error position for one patient. Error

position 1 represents position with 2 mm SI errors; error position 2 represents position with 2 mm AP errors and 2 mm SI errors; error position 3 represents position

with 2 mm LR errors, 2 mm AP errors, and 2 mm SI errors; error position 4 represents position with 4 mm SI errors; error position 5 represents position with 4 mm

AP errors and 4 mm SI errors; error position 6 represents position with 4 mm LR errors, 4 mm AP errors, and 4 mm SI errors.
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CNN Method
The process flow of the CNN method is illustrated in Figure 4.

The input data of the CNN method comprised a 512 × 512 center

pixel matrix of DD, luminance, contrast, and structure maps. As

shown in Figure 5, the overall network included a feature

extraction module and a feature integration module. In the

feature extraction module, four types of maps were input into
four independent feature extractors to extract features from

different angles. Each extractor comprised 13 convolutional

layers, four max pooling layers, and one average pooling layer.

The convolutional layers, which did not change the dimension of

the data, could extract features of a given dimension deeply, and

the rectified linear unit (ReLu) function was used to improve the
nonlinear ability of the network. The max pooling layer was used

to extract the largest features within a 2 × 2 area and to double the

number of channels. The average pooling layer calculated all the

eigenvalues of each channel on average. The feature integration

module contained two fully connected layers. After the extracted

features were integrated, they were each connected to the same

latitude within the integration module. The two fully connected

layers extracted the relationships between features and output the

probabilities of the respective predictions of n classes, with the
class with the largest predicted value used as the final predicted

class. To enable comparison of the ML model and CNN results,

the ML training and testing sets were used for the CNN.

Comparison of ML Models and CNN
The classification accuracies of the ML models and CNN on the
test sets were calculated. To evaluate the type 1 and type 2 error

classification, the receiver operating characteristic (ROC) curves

and the areas under the ROC curve (AUCs) were calculated; to

evaluate the type 3 classification, precision, recall, f1-score, and

confusion matrices were calculated for the CNN and the best ML

1, 2, and 3 models, respectively. The accuracy, precision, recall,

and f1-score are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)

FIGURE 3 | Overview of position error classification types and classes per type. LR, left-right; AP, anterior-posterior; SI, superior-inferior.
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Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

F1 − score =
2� Precision � Recall

Precision + Recall
, (10)

where TP, TN, FP, and FN denote true positive, true negative,

false positive, and false negative, respectively.

RESULTS

Classification Results of Machine
Learning Method
As shown in Table 2, the best ML 1 model was XGBoost, which

had classification accuracies of 0.889, 0.755, 0.778, 0.833, and

0.532 on the type 1, 2-LR, 2-AP, 2-SI, and 3 test sets, respectively.
The AUCs for type 1, 2-LR, 2-AP, and 2-SI were 0.945, 0.787,

0.834, and 0.903, respectively (Figure 6). As shown in Table 3

and Figure 7, for type 3 errors, the recall value of XGBoost

ranged from 0.062 to 0.859, and only the recall values of the first,

fourth, and seventh classes were equal to or greater than 0.5.

FIGURE 4 | Overview of workflow of ML models and CNN for position error classification. The inputs of the ML 1 model are features of DD maps; those of the ML 2

model are features of SSIM maps; those of the ML 3 model are features of DD and SSIM maps; and those of the CNN are DD and SSIM maps.
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The best ML 2 model was XGBoost, and it obtained accuracies
of 0.856, 0.731, 0.736, 0.949, and 0.491 on type 1, 2-LR, 2-AP, 2-SI,

and 3 test sets, respectively. The AUCs of type 1, 2-LR, 2-AP, and

2-SI were 0.836, 0.739, 0.771, and 0.989, respectively (Figure 6). As

shown inTable 3 and Figure 7, for type 3 errors, the recall value of

XGBoost ranged from 0.000 to 0.812, and only the recall values of

the first and fourth classes exceeded 0.5.

The best ML 3 model was LDC, which obtained accuracies of
0.903, 0.792, 0.870, 0.931, and 0.671 on the type 1, 2-LR, 2-AP, 2-SI,

and 3 test sets, respectively. The AUCs of type 1, 2-LR, 2-AP, and

2-SI were 0.953, 0.830, 0.943, and 0.976, respectively (Figure 6). As
shown inTable 3 and Figure 7, for type 3 errors, the recall value of

XGBoost ranged from0.438 to 0.875,whereas the recall values of all

classeswere equal toor greater than0.5, except the sixth class,which

had a recall value of 0.438. However, confusions can arise between

the third and fifth, fourth and sixth, and seventh and eighth classes.

Classification Results of CNN Method
As shown in Table 2, the CNN achieved classification accuracies
of 0.925, 0.833, 0.875, 0.949, and 0.689 on the type 1, 2-LR, 2-AP,

FIGURE 5 | Overview of the process of quantifying the changes in EPID fluence maps and the structure of CNN. The maps with errors are compared with baseline

maps to calculate DD maps and SSIM maps. The overall network comprises feature extraction and feature integration modules. Each feature extractor module

comprises 13 convolutional layers, four max pooling layers, and one average pooling layer; the feature integration modules comprise two fully connected layers.

TABLE 2 | Classification accuracy and AUC values of ML 1, 2, and 3 models and CNN.

Input Models Type 1 Type 2-LR Type 2-AP Type 2-SI Type 3

Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

ML 1 Models Features of DD maps LDC 0.852 0.925 0.736 0.817 0.745 0.826 0.782 0.889 0.500 /

SVM 0.866 0.912 0.755 0.841 0.759 0.778 0.833 0.890 0.519 /

KNN 0.870 0.914 0.764 0.805 0.736 0.801 0.796 0.889 0.458 /

XGBoost 0.889 0.945 0.755 0.787 0.778 0.834 0.833 0.903 0.532 /

ML 2 Models Features of SSIM maps LDC 0.861 0.892 0.685 0.721 0.750 0.747 0.889 0.975 0.468 /

SVM 0.787 0.859 0.671 0.722 0.713 0.745 0.884 0.976 0.477 /

KNN 0.787 0.757 0.657 0.712 0.718 0.682 0.884 0.962 0.324 /

XGBoost 0.856 0.836 0.731 0.739 0.736 0.771 0.949 0.989 0.491 /

ML 3 Models Features of DD maps and SSIM maps LDC 0.903 0.953 0.792 0.830 0.870 0.943 0.931 0.976 0.671 /

SVM 0.889 0.901 0.778 0.826 0.861 0.928 0.921 0.977 0.662 /

KNN 0.843 0.906 0.722 0.779 0.722 0.788 0.944 0.990 0.477 /

XGBoost 0.894 0.934 0.759 0.857 0.759 0.846 0.940 0.986 0.556 /

CNNs DD maps and SSIM maps / 0.925 0.943 0.833 0.832 0.875 0.926 0.949 0.992 0.689 /

Because the type 3 classification comprises eight-element classification tasks, the AUC values of this classification type have not been calculated.
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2-SI, and 3 test sets, respectively. The AUCs of the type 1, 2-LR,

2-AP, and 2-SI errors were 0.943, 0.832, 0.926, and 0.992,

respectively (Figure 6). As shown in Table 3 and Figure 7, for

type 3 errors, the recall value ranged from 0.375 to 0.906, with the
recall value of all the classes equal to or greater than 0.5, with the

exception of the eighth class, for which the recall value is 0.375.

The second and fifth, fourth and seventh, and seventh and eighth

classes are easy to confuse.

DISCUSSION

In this study, methods for analyzing EPID transmission fluence

maps for the identification of position errors in the treatment of
GO patients were developed. Although CBCT is generally used

clinically to correct position errors prior to treatment, the dose

delivered to a patient cannot be verified using CBCT alone

because position or other errors can potentially occur during

treatment. To overcome this problem, EPID-based in vivo

dosimetry has been developed as a monitoring method to help
therapists detect problems in a timely manner and enable the

accurate treatment of patients. For patients with GO, the rigid

anatomical structure around the target volumes ensures that

anatomical change has a negligible impact (Figure 1B), and the

effect of random mechanical error on fluence maps is negligible

relative to the effect of position errors. Therefore, this study

focused on detecting positional errors in patients with GO.

Most previous studies analyzed EPID fluence maps to detect
MLC or MU errors (21, 23, 30). Cecile (32) used CNNs to

analyze EPID fluence maps in classifying anatomical changes,

position errors, and linac mechanical errors in the treatment of

lung cancer patients; however, they used software to simulate

fluence maps and applied a 1-cm position error classification

boundary. In this study, we measured transmission fluence maps

using a linac and classified position errors using a more precise
standard; to the best of our knowledge, ours was the first study to

classify patient positioning errors using measured EPID

transmission fluence maps.

The method of calculating DD is often used clinically to

compare dose maps; in this study, the radiomics features of DD

maps were used as inputs for the ML 1 models. For type 1 and
type 2 classification, the accuracy of XGBoost exceeded 0.75 and

the AUCs all exceeded 0.78; however, for type 3 classification, the

accuracy was only 0.532 which was unsatisfactory. Meanwhile,

for XGBoost in ML 2 models, which used the features of SSIM

maps as input, the accuracy and AUCs exceeded 0.73 in type 1

and 2 classification, whereas in type 3 classification, the accuracy

was 0.491, which also needed improvement. Combining the DD
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FIGURE 6 | ROC curves of ML 1 model (XGBoost), ML 2 model (XGBoost), ML 3 model (LDC), and CNN. The scores represent the AUC values corresponding to

the ROC curves: (A) Type 1, (B) Type 2-LR, (C) Type 2-AP, (D) Type 2-SI.
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map features with those of luminance, contrast, and structure

maps to classify position errors improved both the accuracies

and AUC values; for the type 1 and 2 classification, the accuracy

of LDC exceeded 0.79 and the AUCs all exceeded 0.83. A

considerable improvement in accuracy was also achieved for

the type 3 classification, with the recall value of all but one class

equal to or greater than 0.5. These results suggest the usefulness

of combining SSIM maps with DD maps in the analysis and

detection of errors in EPID transmission fluence maps. SSIM,

which can measure the similarities between pairs of images, has

TABLE 3 | Precision, recall, and f1-score of ML 1 model-XGBoost, ML 2 model-XGBoost, ML 3 model-LDC, and CNN in type 3 classification.

ML 1 Model - XGBoost ML 2 Model - XGBoost ML 3 Model - LDC CNN

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Class 1 0.655 0.859 0.743 0.536 0.812 0.646 0.923 0.750 0.828 0.753 0.906 0.823

Class 2 0.542 0.406 0.464 0.545 0.375 0.444 0.595 0.781 0.676 0.842 0.500 0.627

Class 3 0.500 0.438 0.467 0.500 0.219 0.304 0.593 0.500 0.542 0.786 0.688 0.733

Class 4 0.474 0.562 0.514 0.429 0.750 0.545 0.667 0.625 0.645 0.727 0.500 0.593

Class 5 0.267 0.250 0.258 0.444 0.250 0.320 0.407 0.688 0.512 0.525 0.656 0.583

Class 6 0.333 0.062 0.105 0.400 0.250 0.308 0.583 0.438 0.500 0.733 0.688 0.710

Class 7 0.444 0.500 0.471 0.000 0.000 0.000 0.700 0.875 0.778 0.476 0.625 0.541

Class 8 0.333 0.250 0.286 0.600 0.375 0.462 0.667 0.500 0.571 0.600 0.375 0.462

Precision=TP/(TP+FP) Recall=TP/(TP+FN), and F1-score=(2×Precision×Recall)/(Precision+Recall).
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FIGURE 7 | Confusion matrix of type 3 classification. Predicted and true labels 1 to 8 correspond to classes one to eight, respectively: (A) ML 1 model-XGBoost,

(B) ML 2 model- XGBoost, (C) ML 3 model-LDC, (D) CNN.
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been previously investigated as a tool for analyzing EPID fluence

maps. Peng Jiayuan et al. demonstrated that the three

components of an SSIM map—the luminance, contrast, and

structure maps—are capable of detecting the absolute dose

error, gradient discrepancy, and dose structure error on two

dose planes (22). The use of DD maps can quantify the pixelwise
relative differences between baseline maps and maps with errors

to compensate for the insensitivity of luminance maps to small

luminance differences between images (23).

The type 1 classification, which initially detects the presence of

significant position errors and prompts the therapist and physicist

to determine the error in time, was the simplest approach used in
this study; the type 2 and type 3 classifications, in contrast, were

designed to detect the direction of position errors. The type 3

classification is essentially a combination of the three classification

types of the type 2 classification. For the ML 1 and ML 3 models

XGBoost and LDC, respectively, simply combining the type 2

classification approaches to conduct type 3 classification produced
accuracies of only 0.489 and 0.641, which were both lower than the

accuracies of 0.532 and 0.671 achieved by the corresponding type 3

approaches. Therefore, it was necessary to train models specifically

for the type 3 classification. All the radiotherapy plans in this study

used coplanar VMAT with partial arcs rotating from 240 to 120°

clockwise and from 120 to 240° counterclockwise (Figures 1C–E),

and position errors in the SI direction were perpendicular to the
gantry rotation plane. Therefore, the final EPID transmission

fluence map integrated the fluence maps from each angle, which

contained information on SI direction errors; by contrast, the LR

and AP errors all lay on the linac rotational plane and, as a result,

the final fluence maps contained less information on LR and AP

direction position errors. In addition, the final fluence maps did not
contain information covering the gantry angle ranges from 181 to

240° and from 120 to 180°, which could have been used to help

classify errors in the LR direction; as a result, in the type 2

classification, the accuracy along the SI direction was the highest

whereas that along the LR direction was the lowest. The results of

the EPID-based 3D in vivo dosimetry study of Li Yinghui also

revealed that the SI position error had the most significant impact
on the g pass rate (40). For the type 3 classification, several classes—

including the third and fifth classes for the ML 3 models and the

seventh and eighth classes for the CNN—were easy to confuse. This

confusion arose from the fact that both the fifth and eighth classes

introduced LR errors, which had a considerably lesser influence on

the fluencemaps than that of the AP and SI errors introduced by the
third and seventh classes. Linear discriminant analysis was used to

project the ML 3 model input data onto a two-dimensional scatter

plot for visualization (Figure 8), fromwhich it was observed that the

data for classes that were easily confused (such as the third and fifth

classes) overlapped (Figure 8A) and were more difficult to classify

relative to the data for easier-to-distinguish classes (Figure 8B), such

as the second and seventh classes.
The EPID dosimetry study conducted by Ma Chaoqiong (23)

used LDC, SVM, and random forest (RF) methods to train

models, whereas Nyflot Matthew J (30) used SVM, KNN, and

decision tree (DT) approaches. In this study, LDC, SVM, and

KNN were used and XGBoost was used instead of RF or DT in

training the ML models, and the four approaches were found to

have equivalent classification power. Although the performance of

KNN in the type 1 and type 2 classifications was found to be

acceptable, the accuracies of KNN in the ML 1, 2, and 3 models for

the type 3 classification were sub-optimal at 0.458, 0.324, and

0.477, respectively. These low accuracies may be attributed to the
unbalanced distribution of sample sizes among the eight

categories, as KNN is prone to classification errors in situations

involving imbalances in sample size (41). The ML 1 and 2 model

achieved relatively good results using XGBoost; for the ML 3

model, by contrast, XGBoost was not as effective as LDC because

the dimensionality of the ML 3 model input data was higher than
that of the ML 1 and 2 model data and XGBoost is prone to

overfitting when processing high-dimensional feature data (42).

The CNN achieved a slight improvement in classification accuracy

relative to that of the ML 3 model. The two models also produced

similar AUC values. In this study, for each patient, 28 fluence

maps were measured, and there were 1120 fluence maps in total.
After classification, there were less maps corresponding to each

label, the size of the data set (40 patients) used as CNN input may

have been insufficient for the network, as CNNs generally require

large-scale datasets for training (43, 44); as a result, the advantage

of using the CNNs was not obvious.

A
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FIGURE 8 | Two-dimensional scatter plots of input data of ML 3 models

following linear discriminant analysis dimensionality reduction: (A) scatter plot

of third and fifth classes, (B) scatter plot of second and seventh classes.
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In this study, a method to identify position errors was

developed by analyzing the EPID fluence maps, which can be

combined with CBCT in clinical treatment. At the first few

fractions, fluence maps should be acquired after using CBCT to

correct the position errors. The maps of the first fraction should

be used as baseline, and a comparison should be conducted
between the baseline maps and other fluence maps. If the results

show no obvious errors, the frequency of using CBCT should be

reduced, and the method of using fluence maps to identify

position errors should be used to monitor the next fractions.

However, small position errors such as 1 mm errors can be more

common in clinical, therefore the feasibility of this monitoring
process needs to be further studied. All the EPID transmission

fluence maps in this study were measured on the same day for

each patient plan and were based on the Chengdu dosimetric

phantoms using as1200 EPID; however, deviation of absolute

dose, flatness, and symmetry should be considered when

monitoring the patients clinically. Meanwhile, the impact
brought by different resolution of different EPID detectors and

different anatomical structures of different patients on the

method we proposed in this study requires further exploration.

In addition, the fluence map analysis was limited to the

identification of translational position errors in the treatment

of GO patients. Study of Cecile (32) has shown different types of

errors such as rotational position errors, anatomical changes, and
linac mechanical errors that can be detected by EPID dosimetry

for lung cancer patients. Further research involving the use of

EPID transmission fluence maps to monitor more types of errors

and diseases should be conducted.

CONCLUSION

DD and SSIM maps can be combined to analyze EPID

transmission fluence maps. ML models as well as CNN trained

on small-sized samples can be used to identify position errors in

the treatment of GO patients. Further studies with large sample

sizes are required to improve the accuracy of CNN. The

feasibility of using this method in clinical treatment should be
further investigated.
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