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Analysis of epigenetic changes in survivors of
preterm birth reveals the effect of gestational age
and evidence for a long term legacy
Mark N Cruickshank1,2,3, Alicia Oshlack2,4, Christiane Theda1,5,6, Peter G Davis2,5,6, David Martino7,

Penelope Sheehan6, Yun Dai1, Richard Saffery2,7, Lex W Doyle2,5,6 and Jeffrey M Craig1,2*

Abstract

Background: Preterm birth confers a high risk of adverse long term health outcomes for survivors, yet the underlying

molecular mechanisms are unclear. We hypothesized that effects of preterm birth can be mediated through measurable

epigenomic changes throughout development. We therefore used a longitudinal birth cohort to measure the epigenetic

mark of DNA methylation at birth and 18 years comparing survivors of extremely preterm birth with infants born at term.

Methods: Using 12 extreme preterm birth cases and 12 matched, term controls, we extracted DNA from archived

neonatal blood spots and blood collected in a similar way at 18 years of age. DNA methylation was measured at

347,789 autosomal locations throughout the genome using Infinium HM450 arrays. Representative methylation

differences were confirmed by Sequenom MassArray EpiTYPER.

Results: At birth we found 1,555 sites with significant differences in methylation between term and preterm

babies. At 18 years of age, these differences had largely resolved, suggesting that DNA methylation differences at

birth are mainly driven by factors relating to gestational age, such as cell composition and/or maturity. Using

matched longitudinal samples, we found evidence for an epigenetic legacy associated with preterm birth,

identifying persistent methylation differences at ten genomic loci. Longitudinal comparisons of DNA methylation

at birth and 18 years uncovered a significant overlap between sites that were differentially-methylated at birth and

those that changed with age. However, we note that overlapping sites may either differ in the same (300/1,555) or

opposite (431/1,555) direction during gestation and aging respectively.

Conclusions: We present evidence for widespread methylation differences between extreme preterm and term

infants at birth that are largely resolved by 18 years of age. These results are consistent with methylation changes

associated with blood cell development, cellular composition, immune induction and age at these time points.

Finally, we identified ten probes significantly associated with preterm individuals and with greater than 5%

methylation discordance at birth and 18 years that may reflect a long term epigenetic legacy of preterm birth.

Background
Preterm birth, defined as birth earlier than 37 weeks of

gestation, is a major cause of neonatal death. Moreover,

preterm birth imposes substantial health burdens on

survivors; for example, children born preterm are four to

five times more likely to develop brain and cardiovascular

disorders compared with infants born at term [1,2]. As a

group, preterm survivors are at increased risk for chronic

illnesses later in life relating to respiratory [3,4], visual

[5], cardiovascular [6], hearing [7,8] and intellectual/

behavioral [9,10] impairment. The molecular mechanisms

that might confer increased risk on these complex traits

are incompletely understood.

Preterm birth imposes stress on infants due to premature

removal from the intrauterine environment. Environmental

factors relevant to preterm birth, such as nutrition,

temperature change, toxins, and hypoxia/hyperoxia (that

is, stressors) can alter gene expression in the short and/or
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long term [11,12]. In mice, maternal nutritional status

in utero [13-15], or maternal care during post-natal

development [16-18] are associated with stable epigenetic

alterations in the offspring (such as DNA methylation and

histone post-translational modifications) accompanied by

metabolic or behavioral alterations. Other studies have

shown that long-term effects of gestational hypoxia in a

mouse model may be independent of lasting epigenetic

alterations, but dependent on gene-environment inter-

actions [19]. These persistent, environmentally induced

phenotypic alterations have been attributed to aberrant

organ development following transiently disrupted cell

signaling [19]. Thus, mechanisms mediating long-term

phenotypic variation in response to early environment

remain controversial.

Genomic regions subject to DNA methylation change

have been identified during gestation [20-22], neonatal

development [23] and the entire lifespan [24-28]. The aim

of this exploratory study was to assess genome-wide DNA

methylation profiles of extremely preterm survivors com-

pared with term controls at both birth and at 18 years of

age, using a longitudinal case-control study design.

Methods
Ethics approval

The study was approved by the Human Research Ethics

Committees of the Royal Women’s Hospital and the Royal

Children’s Hospital (Melbourne) and conformed to the

Helsinki Declaration.

Subjects

The subjects of this study were 12 preterm infants born at

less than 31 weeks of gestational age and 12 term controls.

All were born at the Royal Women’s Hospital, Melbourne

in 1991 or 1992, and enrolled in a longitudinal study from

birth. They were derived from a list of 18 pairs of subjects

who consented (parents and subjects) to participate in

the study and provide neonatal Guthrie cards (GCs) and

18-year dried blood spots. Subjects were matched for

sex, ethnicity (all Caucasian), and singleton birth status.

Gestational age (GA), sex, and delivery modes of subjects

are shown in Table 1.

DNA extraction and bisulfite conversion from dried

blood spots

Six to ten 3 mm punches taken from dried blood spots

were placed in a 1.5 ml tube with 100 μl water with a

single tungsten carbide bead (3 mm; catalog number

69997; Qiagen, Victoria, Australia). Samples were macer-

ated with a TissueLyser II (Qiagen) (time: 5 × 30 seconds,

frequency: 30 Hz). Beads were removed, and samples were

further processed using the QIAamp DNA Mini Kit

(Qiagen), in accordance with the manufacturer’s instruc-

tions, but with the following modifications. The macerated

sample was incubated with 190 μl of extraction buffer

(ATL; SDS-containing proprietary formula extraction

buffer; Qiagen) for 10 minutes at 85°C for 10 minutes.

Supernatant was collected and the ATL extraction of the

homogenate was repeated twice. The resulting extract was

pooled and further processed by proteinase K digestion

(60 μl; 10 mg/ml at 56°C for 1 hour), then incubated with

600 μl buffer AL for 10 minutes at 70°C, followed by

addition of 600 μl 100% ethanol. After mixing by inver-

sion, samples were loaded onto a single QIAamp column

by repeat centrifugation. Following washing, DNA was

collected by incubating twice with 100 μl buffer AE

(10 mM Tris-HCl, 0.5 mM EDTA, pH 9.0) for 10 minutes,

and once with 50 μl buffer AE for 10 minutes. The com-

bined eluates were placed in a Speedvac at 45°C for

8 hours. The dry pellet was resuspended in 40 μl TE

(10 mM Tris-HCl, 1 mM EDTA, pH 8.0) and quantified

by spectrophotometry (Nanodrop, Wilmington, DE, USA)

yielding a median of 1.7 μg DNA. Residual homogenates

from a subset of samples were subjected to the same

extraction process twice, yielding an additional 1.6 μg

DNA. DNA samples (1 μg) were bisulfite-converted using

the MethylEasy Xceed bisulphite conversion kit (Human

Genetic Signatures, North Ryde, Australia), in accordance

with the manufacturer’s instructions. Conversion efficiency

was confirmed by bisulfite-specific PCR [29].

Infinium methylation analysis

We used the Illumina Infinium HumanMethylation 450

(HM450) BeadChip platform, which interrogates more

than 485,000 CpG dinucleotides, with probes targeted to

CpG islands (CGIs), and their adjacent shores (2 kb regions

flanking CGIs) and shelves (2 kb regions flanking shores);

non-coding RNA; gene promoters, enhancers, and inter-

genic regions; and regions associated with epigenetic repro-

gramming of fibroblasts to inducible pluripotent stem cells

(reprogramming-specific differentially methylated region;

rDMR) [30,31]. Bisulfite treated DNA was hybridized to

HM450 BeadArrays, with both birth and 18-year samples

from three preterm and three term probands (total of

twelve samples) selected per array in a scrambled order by

ServiceXS (Amsterdam, The Netherlands).

Table 1 Demographic, clinical and sample characteristics

of the study cohort

Preterm
probands

Term
probands

Gestational age, weeksa 26 (25 to 30) 39 (36 to 42)

Age at Guthrie card birth sample, daysa 6.5 (5 to 20) 4.0 (4 to 5)

Sex, maleb 8/12 (67%) 9/12 (75%)

Born by Cesarean sectionb 3/12 (25%) 8/12 (33%)

Mother experienced laborb 9/12 (75%) 10/12 (83%)

aMedian (range).
bNumber/total number (%).
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Raw intensity data (IDAT) files were imported into the R

environment (version 2.14.1) [32] using the minfi package

[33]. Data quality was assessed with plots derived from

various control probes on the array. Probes from the X and

Y chromosomes (n = 11,648) were removed. Probes were

excluded if they failed in one or more samples based on a

detection P-value of greater than 0.01 (n = 96,632). This

method will remove any probes that might correspond

to degraded regions of the genome from long-term stor-

age of the samples at room temperature. One term birth

sample with mean detection P > 0.05 was excluded from

analysis. The data were pre-processed using the Illumina

method (bg.correct = ‘FALSE’, normalize = ‘controls’) and

subset-quantile within-array normalization (SWAN) was

performed [34]. Probes targeting CpG dinucleotides con-

taining a known single nucleotide polymorphism (SNP)

and HM450 control probes were excluded from analyses

(n = 23,365). The resulting dataset comprised 347,789

autosomal probes from 11 term and 12 preterm birth

samples, and 12 term and preterm 18-year samples. The

log2 ratio of methylated probe intensity to unmethylated

probe intensity was calculated in minfi, denoted as M-

values used for statistical analyses, and converted to β

values ranging from 0 to 1 (0 to 100% methylation) [35,36].

The HM450 data are available from Gene Expression

Omnibus (GEO) with an accession number of GSE51180.

Statistical analysis

The data underwent unsupervised hierarchical clustering

analysis and multi-dimensional scaling (MDS) using lumi

[35]. Heatmaps and dendrograms were drawn with gplots

[37]. Differential methylation analysis was performed on

M-values using the limma package [38] setting the false

discovery rate (FDR) cut-off point at less than 0.05 using

the Benjamini-Hochberg procedure [39]. Correlation of

methylation values at birth and 18 years across individuals

was assessed using the duplicateCorrelation function [40].

For differential analysis, a linear model was fitted with age,

case-control status (preterm or term), and predictive

factors correcting for sex and array effects. Differentially

methylated genes were determined if any probe associated

with the gene was called ‘differentially methylated’. Gene

ontology enrichment was performed using the DAVID

bioinformatics tool under the default settings [41,42] and

pathway analysis using Ingenuity Pathways Analysis (IPA)

software (Ingenuity Systems, Redwood City, CA, USA).

Differentially methylated probes (DMPs) were classified as

gene-related, CGI-related [43], DMRs [44], or regulatory

regions (promoters, enhancers, and DNAse hypersensitivity

sites). Enrichment and gene set tests were populated with

probe IDs using annotations provided in the Illumina

HM450 manifest (version 1.2). Gene lists were consolidated

by replacing multiple isoforms (for example, Protocadherin

genes) with a single RefSeq entry, or including multiple

RefSeq entries associated with a single probe where bidir-

ectional gene loci (for example, ABI3 and GNGT2) or host

gene/non-coding RNA genes (for example, ITPR1 and

EGOT) were identified. The limma function decideTests

was used to identify directional correlations (method = ‘sep-

arate’; adjustment method = ‘BH’; and P = 0.05) and visual-

ized with heatDiagram. Genomic location enrichment was

determined by calculating the ratios of observed/expected

(O/E) probes in each category, and classified as over-

represented (O/E ratio >1) or under-represented (O/E

ratio <1), with significance assigned using hypergeometric

means tests (statistics package: phyper function, one-sided

lower tail for under-representation or one-sided upper tail

for over-representation). Significance of birth/DMP and

age/DMP overlap was assessed using Fisher’s exact test for

count data (statistics package: fisher.test).

Sequenom MassArray target validation

Target validation was performed using the Sequenom

MassArray EpiTYPER (Sequenom, San Diego, USA),

performed as previously described [21,29]. Amplicons were

designed using the Sequenom EpiDesigner [45] and

MassArray [46], and tested in silico using methBlast [47]

software. Oligonucleotide sequences were prepared

(see Additional file 1: Table S1) such that forward primer

sequences contain a 10 bp tag (AGGAAGAGAG) at their

5′ ends, and reverse primer sequences contain a 31 bp

tag (CAGTAATACGACTCACTATAGGGAGAAGGCT)

at their 5′ ends. Amplification was performed using 1 μl

bisulfite-converted DNA with the FastStart kit (Roche,

Mannheim, Germany) in 15 μl reactions with thermocy-

cling conditions as follows: 94°C for 2 minutes; 5 cycles of

94°C for 30 seconds, 60°C for 30 seconds, and 72°C for

30 seconds; 35 cycles of 94°C for 30 seconds, 62°C for

30 seconds, and 72°C for 30 seconds; and final elongation

at 72°C for 6 minutes. Data processing was carried out in

triplicate using the median methylation level at specific

CpG sites. Raw data obtained from MassArray EpiTYP-

ING were cleaned systematically using an R-script to re-

move samples that failed to generate data for more than

70% of the CpG sites tested. In addition, technical repli-

cates showing 10% or greater absolute difference from the

median value were removed, and only samples with at

least two successful technical replicates were analyzed.

Results
An improved method of DNA extraction from

Guthrie cards

We used a bead-facilitated maceration method involving

repeat extractions, tested for applicability for Infinium

HM450 arrays [48]. DNA from archived GCs sampled at

birth and at 18 years of age yielded a median of 1.6 μg

DNA after the first extraction, increasing to 3.3 μg DNA

after two additional rounds of extraction using six to ten
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3 mm blood spots. Greater amounts of DNA were recov-

ered than previously reported [49-52], and were similar

using blood spots stored desiccated at room temperature

for 1 or 18 years (data not shown).

Exploratory analysis of components of

epigenetic variation

The characteristics of our study cohort and sample collec-

tion are summarized in Table 1. MDS identified age (birth

versus 18 years) as the predominant source of variation

within the dataset (see Additional file 2: Figure S1). We

noted increased inter-individual variability between birth

samples held in long-term storage (see Additional file 2:

Figure S1; also data not shown). However, the similarity

of β-value distributions of birth and 18-year samples

(see Additional file 2: Figure S2) and the probe intensity

of control probes (data not shown) indicated similar

performance of these samples on the HM450 platform.

To explore other components of variation, we tested asso-

ciations of sex, delivery mode (spontaneous or iatrogenic;

vaginal or lower uterine cesarean section; and labor or

induced) and array. Sex and array were identified as

significant factors, and were used as explanatory variables

in linear models for subsequent analyses. Probes associ-

ated with sex included several autosomal loci homologous

to X or Y chromosomes (data not shown), probably

reflecting cross-hybridization, as previously reported [53].

Identification of gestational age-associated differential

methylation at birth

We tested for differential methylation between preterm

and term birth samples and identified 1,555 DMPs (birth

DMPs; FDR < 0.05) (Figure 1A,B; see Additional file 3:

Table S2). Cross-platform validation was performed using

Sequenom EipiTYPER assays targeting CpG sites near

DMPs, because the methylation profiles of CpG sites in

close proximity are highly correlated [54]. Specifically,

we tested DNA methylation within the first intron of the

VWF gene as a representative enhancer site birth DMP,

which is known to regulate gene expression [55] (two

probes, Pearson r2 = 1.000, P < 0.012; r2 = 0.954, P = 0.023

across all samples) (see Additional file 2: Figure S3). In

agreement with two previous studies of DNA methylation

associated with GA, we observed birth DMPs at gene loci

encoding the transcription factor nuclear factor I/X

(NFIX, [20]), oxytocin (OXT), and arginine vasopressin

(AVP) [22].

Gene ontology classes associated with birth DMPs

showed a bias towards biological processes involved in

GTPase signaling (for example, PLEKHG5, RASA3, and

AGAP1), transcription (for example, LEF1, DNMT3A, and

NCOR2), embryonic morphogenesis for example, WNT3A,

NODAL, and SHANK3), cell growth and proliferation

(for example, RUNX1, BMP1, and DOT1L), and nervous

system (for example, FGF1, GABBR1, and GDNF) and

hematological (for example, AIRE, IL12A, and PBX1)

development (see Additional file 4: Table S3; DAVID

ontology). Pathway analysis showed over-representation

of antigen presentation pathway genes (see Additional

file 4: Table S3; IPA ‘Pathway’). Analysis of upstream

regulators of genes associated with birth DMPs found a

significant overlap with genes regulated by the transcrip-

tion factor CREB1 and the Ca2+/calmodulin-dependent

protein kinase complex, CaMKII (P < 10-4) (see Additional

file 4: Table S3; IPA ‘Upstream’).

Age-related changes in DNA methylation overlap

with birth DMPs

We next sought to identify probes that differ between

whole blood from infants and 18-year-olds. We compared

all birth samples with all 18-year samples, independent

of preterm status (birth, n = 23; 18 years, n = 24). Inter-

estingly, we found no overall evidence for a correlation

within individuals between the two time points (consensus

correlation; r = −0.0343). We identified 116,603 age-associ-

ated DMPs (‘age DMPs’, adjusted P < 0.05) including 3,244

probes with mean DNA methylation (β) change greater

than 0.2 (Figure 1C,D; see Additional file 5: Table S4).

Because age DMPs clustered the birth samples according

to preterm/term status (Figure 1C), we tested the hy-

pothesis that epigenetic change is continuous from mid-

gestation to 18 years of age; that is, that birth DMPs and

age DMPs would share common probes. To account

for methylation changes occurring during gestation, we

performed analyses using birth and 18-year samples

from the term group (birth, n = 11; 18 years, n = 12) and

preterm group (birth, n = 12; 18 years, n = 12) separately.

Comparing birth DMPs with age DMPs as defined from

preterm subjects (n = 56,515 probes), we found a continuum

of change comprising 934 of 1,555 (60%; P < 2.2 × 10-16,

odds ratio (OR) = 7.76) sites of methylation difference that

were also differentially methylated in the same direction

by 18 years of age, and 34 of 1,555 (2%; P < 2.2 × 10-16,

OR = 0.11) sites that had changed in the opposite direction

by 18 years age (Figure 1E). By contrast, comparing

birth DMPs with age DMPs defined from term subjects

(n = 63,127), we identified 300 of 1,555 (19%; P < 2.2 ×

10-16, OR = 1.08) probes that were directionally corre-

lated, and 431 of 1,555 (28%; P < 2.2 × 10-16, OR = 1.73)

probes that were differentially methylated in the opposite

direction at 18 years (Figure 1F).

We further investigated the overlap of birth DMPs and

age DMPs by cluster analysis, and found that preterm birth

samples appeared as a sub-group distinct from the term

birth and 18-year samples (Figure 2A,B) using directionally

correlated probes. By contrast, using the directionally op-

posed probes, we found that term birth samples appeared
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as a separate group in cluster analysis (Figure 2E,F) and in

plots of the distribution of mean β-values (Figure 2G,H).

We found that birth DMPs and age DMPs showed simi-

lar ontology and pathway enrichments (see Additional

file 6: Table S5). These included GTPase signaling, tran-

scription and embryonic morphogenesis, nervous system

and hematological system development, and the antigen

presentation pathway. Transcription factors were identified

Figure 1 Preterm-associated differentially methylated probes (DMPs) at birth overlap with age-associated DMPs. (A) Multi-dimensional

scaling (MDS) and (B) heatmap plots of 1,555 significant preterm birth DMPs (comparing preterm birth samples with term birth samples). (C)

MDS and (D) heatmap plots of 3,244 combined age DMPs with β > 0.2 (comparing all birth samples with all samples obtained at 18 years). (E,F)

Heat diagrams displaying all birth DMPs (upper rows) with probes colored by the direction of methylation change from preterm to term, either

increasing (yellow shading) or decreasing (blue shading). Comparison of overlap of birth DMPs and age DMPs determined using either (E)

preterm or (F) term subjects showed a high proportion of sites that differed in a similar direction when assessing methylation changes with age

in preterm subjects (934 probes changed in the same direction; 34 probes changed in the opposite direction). By contrast, methylation changes

with age in term subjects showed more sites that differed in the opposite direction with age (300 probes changed in the same direction; 431

probes changed in the opposite direction). The sample groups are color coded as follows: term birth, blue; preterm birth, black; term birth at

18 years, green; preterm at 18 years, red.
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as predominant upstream regulators of genes associated

with age DMPs, with a significant overlap of genes reg-

ulated by NLRC5, NKX2-3, and FOXC1 (P < 10-4) (see

Additional file 6: Table S5). Upstream pathway analysis

of genes that showed a continuum of methylation change

from preterm birth to 18 years (directionally correlated

probes) showed enrichment for genes regulated by the

transcription factors NLRC5, CIITA, and PML (P < 10-4)

(see Additional file 7: Table S6), whereas genes that

showed methylation change in the opposing direction were

over-represented by genes regulated by the transcription

factors MTA1, JUN, and TP53 (P < 10-4) (see Additional

file 8: Table S7).

To determine whether age DMPs and birth DMPs were

enriched at similar genomic regions (for example, gene-

associated regions, regions with proximity to CGI) or

regulatory functions (for example, promoters, enhancers),

we performed an enrichment analysis of birth DMPs with

contextual data supplied with the HM450 arrays. Birth

DMPs and age DMPs also showed similar genomic context

biases (Figure 3A). We found that promoters (birth DMPs:

0.4-fold, P = 5.8 × 1041; age DMPs: 0.4-fold, P = 1.7 × 10-75)

and CGIs (birth DMPs: 0.5-fold, P = 5.0 × 10-55; age DMPs:

0.5-fold, P = 1.2 × 10-97) were both under-represented.

By contrast, enhancers were over-represented (birth DMPs:

1.7-fold, P= 5.6 × 10-37; age DMPs: 1.9-fold, P = 2.6 × 10-111),

as to a lesser extent were gene bodies (birth DMPs: 1.2-

fold, P = 1.2 × 10-6; age DMPs: 1.2-fold, P = 3.2 × 10-13).

We also tested enrichment at rDMRs, and observed sig-

nificant enrichment (birth DMPs: 2.3-fold, P = 4.0 × 10-12;

age DMPs: 3.4-fold, P = 7.0 × 10-66).

To test if such concordance was related to probe vari-

ability or potential statistical/array artifacts, we compared

genomic context enrichment with two probe sets identi-

fied using 18-year DNA methylation profiles. We used

the top 1,500 most variable methylated probes (VMPs)

across all 18-year samples and the top 1,500 probes

ranked by odds of differential methylation, comparing

18-year DMPs for both preterm and term groups. We

found that these sets of probes showed unique genomic

context distributions compared with age DMPs and

birth DMPs, suggesting a biological rather than tech-

nical basis for genomic context profiles (Figure 3A,B).

Notably, top-ranked 18-year DMPs showed the opposite

genomic context profiles compared with birth DMPs

and age DMPs.

A B C D

E F G H

Figure 2 Comparison of correlated and directionally opposed birth and age differentially methylated probes (DMPs). (A) Multi-dimensional

scaling (MDS) and (B) heatmap plots of 300 directionally correlated birth DMPs. Mean group β-values of correlated DMPs that (C) increased

(159 probes) or (D) decreased (141 probes) with age. (E) MDS and (F) heatmap plots of 431 directionally opposed age and birth DMPs. Mean

group β-values of directionally opposed DMPs that were (G) higher (314 probes) or (H) lower (117 probes) in term birth samples. The sample

groups are color coded as follows: term birth, blue; preterm birth, black; term birth at 18 years, green; preterm at 18 years, red. Birth DMPs and

age DMPs (defined using term group only) were analyzed by sub-setting probes that had changed in the same (correlated) or differing

directions (opposing).
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Evidence for a long-term legacy of prematurity

Testing for differential methylation between term and

preterm individuals in 18 year samples failed to detect any

significant probes after correction for multiple testing.

To further examine the possibility of a persistent effect

of preterm birth at both time points, we compared all

preterm and term samples in the two groups (birth and

18-year samples combined for each group) and found

109 combined preterm DMPs at a genome-wide level of

significance (adjusted P < 0.05) (see Additional file 9:

Table S8). Using MDS and hierarchical clustering, we

found that this probe set separated sample groups almost

perfectly by age and preterm/term status (Figure 4A,B).

Interestingly, eight of these probes were not called as

significant using only the birth samples. Six of these

eight probes showed a mean β difference of greater than

0.1 between the preterm and term groups at both time

points, and are located at the PCSK9, TRIM71, SLC44A4,

GPC6, and NFYA gene bodies and one intergenic site.

Of the 109 combined preterm DMPs, 11 showed a mean

difference of β > 0.05 at both time points (Figure 4C,D),

including two intergenic probes targeting CpG sites

270 bp apart within a CGI shore and a site within the

TINAGL1 3′ UTR. Intriguingly, the two intergenic persist-

ent sites of methylation difference flank a binding site for

the early growth response 1 (EGR1) transcription factor

identified previously in erythroid cells (see Additional

file 2: Figure S3) [56].

Sequenom EpiTYPER confirmed differential methylation

of regions flanking the EGR1-binding site (P < 0.05)

(see Additional file 2: Figure S4) and the TINAGL DMP

(P < 0.05) (see Additional file 2: Figure S5). However,

Sequenom did not detect significant differential methyla-

tion at a putative persistent DMP located at the MAP3K8

gene (see Additional file 4: Table S3). We speculate

that this may be due to the probe region containing

two annotated deletion/insertion genetic variants of un-

known allele frequency (rs67613960 and rs71525594)

that may have confounded methylation measures [53,57].

Thus, among the 109 significant combined preterm

DMPs, we found a total of 10 putative persistent preterm

DMPs, defined as sites showing mean methylation dif-

ference of β > 0.05 at both time points. Taken together,

these results raise the possibility that a minority of

A

B

Figure 3 Genomic and sequence context of differentially methylated probes (DMPs). Enrichment or depletion of DMPs displayed as the

log10 of the observed/expected frequencies for each category with significance from hypergeometric test results displayed as *P < 10-5, **P < 10-10,

and ***P < 10-20. (A) Genomic enrichment distribution of 1,555 birth DMPs (black) and 3,244 age DMPs (white) showed similar profiles.

(B) Top 1,500 probes ranked by odds of differential methylation at 18 years (18-year DMPs; dark grey) and the top 1,500 most variable

methylated probes (18-year VMPs; light grey) showed distinct enrichment profiles, with the 18-year DMPs showing the opposite

enrichment to the birth DMPs and age DMPs.
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genomic regions carry a long-term epigenetic legacy of

preterm birth.

Discussion
In this exploratory study, we examined DNA methylation

profiles associated with very preterm birth (<31 weeks of

gestation) using longitudinally collected blood sampled

from newborns and 18-year-olds, both stored as dried

blood spots. We identified methylation differences in birth

samples at several gene loci previously reported to co-vary

with gestational age. These results demonstrate the utility

of archived birth blood spot DNA for methylation profiling,

in accordance with other recent studies [48,49,52].

We found widespread differences in DNA methylation at

birth in preterm infants compared to with term controls.

In agreement with previous studies [23,28,58], our data

revealed methylation changes in blood associated with

age. Some of these methylation differences are likely to

reflect cell composition or functional differences in blood

between preterm and term neonates, and between birth

and at 18 years of age. For example, preterm-associated

methylation differences at birth coincide with hematological

changes that are correlated with gestational age, such as

leukocyte [59,60] and nucleated reticulocyte [61] content.

Further, gestational and age-related methylation changes

may also reflect maturation of blood cells, including innate

cytokine and adaptive immune induction [62-64]. Methyla-

tion change driven by these effects is evidenced by

over-representation of birth DMPs and age DMPs in gene

networks involved in hematological system development

(see Additional file 4: Table S3; see Additional file 6: Table

S5; see Additional file 7: Table S6).

Blood cell composition is well established as a predictive

factor for inter-individual methylation variation in whole

blood [65,66]. However, this variable does not readily ex-

plain the significant overlap in differentially methylated

A B

C D E

Figure 4 Differentially methylated probes (DMPs) associated with preterm birth identified using birth and 18-year blood spots. (A)

Multi-dimensional scaling (MDS) and (B) heatmap plots show 109 combined preterm DMPs (comparing preterm with term, combining birth and

18-year samples for both groups). (C) Scatterplot displaying mean methylation differences (δβ) of birth (x-axis) and 18-year (y-axis) samples.

Volcano plots showing δβ (x-axis) versus nominal P-values (−log10 scale) of combined preterm DMPs, with red points denoting probes with

absolute methylation difference of greater than 0.05 and nominal P < 0.01 at (D)18 years and (E) birth. The sample groups are color coded as

follows: term birth, blue; preterm birth, black; term birth at 18 years, green; preterm at 18 years, red.

Cruickshank et al. Genome Medicine 2013, 5:96 Page 8 of 12

http://genomemedicine.com/content/5/10/96



CpGs between preterm and term subjects at birth and also

between birth and 18 years of age. We found 159 sites

that showed increased methylation and 141 that showed

decreased methylation from preterm to term birth and

subsequently up to adulthood, suggesting a continuum

of methylation change from mid-gestation to young

adulthood for some regions of the genome (Figure 2).

Genes associated with these sites were over-represented by

direct targets of the upstream transcription factors NLRC5

and CIITA, master regulators of the MHC I-dependent

[67-69] and MHC II-dependent [70,71] immune responses,

respectively. These observations are consistent with

gestational and post-natal changes to the immune system,

during which time MHC responses are initiated [72]. We

also found that genes associated with a continuum of

methylation change were over-represented in embry-

onic development/morphogenesis and nervous system

development, consistent with previous reports [73,74].

Teschendorff and co-workers have previously reported a

correlation between age-associated loss of methylation

and blood composition, but not with age-associated

increases in methylation [58]. However, our data cannot

disentangle cell-type effects. Other contributing factors

may include developmental processes such as age-related

changes to the progenitor cell pool [75-77], as suggested

previously [28], or age-related shifts in blood cell signaling

and metabolism [78].

We identified 431 CpG sites that changed in the opposite

direction from preterm to term birth compared with birth

to 18 years of age (Figure 2). Previous studies in human

prefrontal cortex illustrate non-linear and directional

changes in DNA methylation [27] and gene expression

[79] during aging, suggesting that such changes are

part of normal development. Our data defining CpG

methylation sites that change direction during gestation

and subsequently during post-natal life may reflect a

distinctive methylation signature in the blood of term

neonates. We speculate that these observations may

reflect cell composition or functional differences in blood

cells that are evidently unique to neonates born at full

term [62,80,81].

We found very similar genomic contexts enriched in

birth DMPs and age DMPs. Both showed over-represen-

tation of rDMRs and under-representation of CGIs and

promoter regions. These results are consistent with findings

from cross-sectional studies in adult mice [82] and humans

[25,74], and with longitudinal studies of early post-natal

life [23,83,84]. Taken together, these data indicate that

similar regions of the genome are preferentially subject to

epigenetic change during the second half of gestation, and

during post-natal life in blood, and that these sites overlap

rDMRs associated with in vitro pluripotency reprogram-

ming. Although our genomic context enrichment data

on differential methylation at 18 years used nominally

significant methylation differences, our results suggest

that inter-individual differences in methylation are more

likely to occur in regions of the genome not associated

with aging. These findings also suggest that gestation-

related and age-related changes are unlikely to relate to

‘epigenetic noise’ [85]. However, we cannot determine if

these observations reflect inter-individual blood com-

position differences, inter-individual DNA methylation

variation, or associations with preterm birth.

At 18 years of age, most methylation differences identi-

fied in preterm babies are resolved, as evidenced by the lack

of genome-wide significance in differential methylation at

this time point. This is consistent with our conclusion that

developmental changes and cell composition are the main

components of methylation variation associated with birth

DMPs and age DMPs. However, comparing preterm and

term group analysis of birth and 18-year samples identified

109 statistically significant DMPs. Interestingly, eight of

these CpG sites were not significantly differentially

methylated at birth, suggesting that a larger sample size

may indeed detect a long-term epigenetic legacy of pre-

term birth at a single time point. We observed persistently

altered CpG methylation at PCSK9, TRIM71, SLC44A4,

GPC6, and NFYA gene loci and at two intergenic CpG

sites flanking a binding site for the EGR1 transcription

factor. Taken together, these observations raise the possi-

bility that persistent DNA methylation differences reflect

a long-term legacy of preterm birth.

Limitations of the study include confounding factors

related to inter-individual variation in blood composition,

which may restrict power to detect birth DMPs and age

DMPs. Our exploratory study requires replication in a

larger cohort. This is particularly important to confirm the

persistent epigenetic legacy of preterm birth identified in

this report. Use of term-equivalent samples from preterm

subjects would be useful in this context. Furthermore,

statistical methods for deconvoluting mixed cell types [66]

or adjustment for age [86] have not been described in

context of gestation or neonatal development. Therefore,

further studies addressing methylation differences in sorted

cells during gestation, at full-term birth, and later in life

may provide empirical data necessary to account for these

confounders, as suggested previously by Houseman and

colleagues [87].

Conclusions
We report the first analysis of genome-scale methylation

profiling using longitudinally collected archived blood spot

DNA comparing very preterm and term subjects. We

identified preterm birth-associated methylation differences

at birth and demonstrated that these are mostly resolved

by 18 years of age. We also described methylation changes

that show a continual change from mid-gestation to young

adulthood, and those that possibly reverse their direction
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of change. Finally, we found a minority of genomic sites

that show persistent methylation differences between terms

and preterms at both time points. These results suggest

that a significant, long-term legacy of preterm birth might

be observed using a larger sample size. Further work is re-

quired to examine if preterm birth-associated methylation

differences co-vary with long-term health outcomes, early

medical interventions, and/or genetic polymorphisms.

Additional files

Additional file 1: Table S1. Oligonucleotide sequences of bisulfite-specific

PCR and Sequenom MassArray primers.

Additional file 2: Figure S1. Multi-dimensional scaling plot of sample

relations based on all 347,789 probes. The relationship between DNA

methylation of samples is shown with the four groups of samples color

coded as follows: term birth, blue; preterm birth, black; term birth at 18 years,

green; preterm at 18 years, red. Figure S2. DNA methylation β density plot

of birth and 18-year longitudinal samples. Bimodal distribution of DNA

methylation β-values in birth and 18-year samples. Figure S3. Sequenom

and Infinium HM450 comparison of birth differentially methylated probes

(DMPs) targeting the VWF gene body enhancer. (A) Methylation data from

HM450 probe targets (red) and nearest analysable Sequenom EpiTYPER

CpG unit (blue) from a single amplicon encompassing both HM450

probe targets. (B) Partial Sequenom amplicon sequence annotation

displayed with CpGs/CpG units highlighted in the same colors. Figure S4.

Genomic landmark and Sequenom analysis of long-term DMPs flanking

tandem EGR1 consensus sites. (A) Methylation data from HM450 probe

targets (red) and nearest analysable Sequenom EpiTYPER CpG unit (blue)

from two separate amplicons each encompassing one HM450 probe target.

(B) Partial Sequenom amplicon sequence annotation displayed with CpGs/

CpG units from each amplicon highlighted in the same colors except

for amplicon 7b CpG14 which is coincident with HM450 cg18598117. (C)

Location of Infinium HM450 probes in relation to genomic landmarks

including EGR1 chromatin immunoprecipitation sequencing (ChIP-seq) data,

RNA sequencing (RNA-seq) reads and DNA methylation from human

frontal cortex specimens derived from the UCSC browser. Figure S5.

Sequenom analysis of long-term DMP at TINAGL1 3′UTR. (A) Methylation

data from HM450 probe targets (red) and nearest analysable Sequenom

EpiTYPER CpG unit (blue) from a Sequenom amplicon encompassing

the target of probe cg06730678 (red). (B) Partial Sequenom amplicon

sequence annotation displayed with CpGs/CpG units highlighted in

the same colors.

Additional file 3: Table S2. Birth differentially methylated probes.

Additional file 4: Table S3. Gene ontologies from DAVID and

Ingenuity Pathways Analysis (IPA) analysis using gene lists associated with

birth differentially methylated probes (DMPs).

Additional file 5: Table S4. Birth to 18 years (age) differentially

methylated probes with β > 0.2.

Additional file 6: Table S5. Gene ontologies from DAVID and

Ingenuity Pathways Analysis (IPA) analysis using gene lists associated with

age differentially methylated probes (DMPs).

Additional file 7: Table S6. Gene ontologies from DAVID and

Ingenuity Pathways Analysis (IPA) analysis using gene lists associated

with directionally correlated birth and age differentially methylated

probes (DMPs).

Additional file 8: Table S7. Gene ontologies from DAVID and

Ingenuity Pathways Analysis (IPA) analysis using gene lists associated

with directionally opposed birth and age differentially methylated

probes (DMPs).

Additional file 9: Table S8. Combined preterm birth differentially

methylated probes (DMPs): 109 significant combined preterm birth DMPs

with adjusted P < 0.05 using birth and 18 year samples. False discovery

rate (FDR)-adjusted and nominal birth and 18-year P-values are shown.
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