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INTRODUCTION

The Monte Carlo method attempts to get the average behavior of
neutrons by simulating a large sample of neutron histories and using
the sample mean as an approximation+ to the average predicted by the
Neutron Transport Ecuation. The Monte Carloc method for neutron
transport calculations suffers, in part, becazuse of the inherent
statistical errors associated with the method. Without an estimate
of these errors in advance of the calculation, it is difficult to
decide what estimator and biasing scheme to use, or whether a proposed
Monte Carlo calculation will be competitive with a discrete ordinates
calculation (a question not treated here).

Perhaps the most compelling reason for predicting statistical
errors is cost. If one is contemplating writing a Monte Carlo code
(or making major modifications to an existing code) incorporating a
rew Monte Carlo technique, he would 1ike to know how well the new
technique will work - before investing a great deal of time and money
writing the code.

If one uses a standard Monte Cario code he would probably try sev-
eral techniques and uses the sample variance to select the best technique.
This trial and error method works well if one has encugh insight into
both the transport jroblem and the Monte Carlo techniques he applies to

solve it. However, if one's insight is poor, trial and error will result

T Using the law of large numbers
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in mostly error. Furthermore, the sample variance, by which one judges
the technigue, becomes more and more unreliable as the technique

departs from optimum. Appendix B has an example of an unreliable

sample variance.

Recent work2’3’4’7’8 on the prediction of statistical errors in
Monte Carlo caiculations stems from a paper Amster and Djomehri] pub-
lished in 1976, in which a set of integral equations were derived that,
when solved, predicted errors in Monte Carlo calculations in non-multi-

plying media. The present work allows error prediction in non-analog

Monte Carlo calculations of multiplying systems, even when supercritical.

Non-analog techniqgues such as biased kernels, particle splitting, and
Russian Roulette have been incorporated in this work. Coincidentally
(and independently of this work), Sarkar and Prasad3 have investigated

errors in non-analog Monte Carlo calculations of subcritical multiplying

systems.
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Chapter I. Illustration of Concepts by Example

The Monte Carlo method simulates neutron behavior on a computer.
Real neutron transport problems are quite complex and the mathematics
required to predict errors in their Monte Carlo simulations is corres-
pondingly complex. In fact, the mathematics often obscures some very
simple corncepts. This chapter illustrates, for a very simple trans-
port problem, concepts such as analog game, non-analog game, particle
weight, score, and importance sampling - using only high-school math-
ematics. The reader who is familiar with Monte Carlo may skip to
Chapter II which treats real transport problems.

An analog (Monte Carlo) game is a faithful simulation of the real
transport process; a non-analog game is a simulation in which the
simulated neutron does not behave exactly like a real neutron. As a
simple example, a two-state transport prcblem is simulated - first by
an anaiog game in I-A and then by a non-analcg game in I-B. Section
I-C links the analysis of this simple problem to the analysis of the
real transport problems considered in Chapters II and III.

A few definitions are required before addressing the two-state
transport problem. In subsequent discussions, particle refers to a
computer simulated neutron. A particle's history is a sequence of
events, chosen in a random fashion, ending with the loss of the particle.
Every event (e.g. scattering) has two numbers associated with 1t: the

probability the event occurs and the event score. A particle's history



score (total score) is the sum of all the event scores the particle

generates in its history. Although nature supplies event probabilities,

at least for analog games, the calculator must assign appropriate event R
scores. For example, if one is interested in the mean number of scatter-

ing events per particle he might assign each scattering event a "one" and

any other event & "zero"; a particle's history score would then be

equal to the number of times the particle was scattered.

A) Analog Game

Consider the simple transport problem below where a particle can be
in one of two states, labeled 1 and 2. The six possible events and their
probabilities and scores are depicted in figure 1 and described in table

1. These six events are independent and mutually exclusive.

| STATE
Su | Sy
Decision
] : fia
P
]
s, S,

Fig 1. The two-state transport problem.



Tabie 1

Definitions for the two-state transport problem

Event
Event Probability Event Score
€49 scattering from state 1 to state 2 P12 $i2
€ scattering from state 2 to state ) Py $51
e scattering from state 1 to state 1 P s]]
€ scattering from state 2 to state 2 Poy S22
€ absorption from state 1 Py 5

e2 absorption from ctate 2 Py 52



Decision 1 will be made by picking a random number, Zys betvieen 0 and

It | I | : {
{ L T 1
0 Py Pi*Py P1*P114P2%]
ChET>< P12 >

e] occurs if 0<ci§p],

e]] occurs if p]<;i§p]+p]]. and

e., occurs if p]+p11<;i5j.

12

Decision 2 will be made by picking a random number, ;i’ between 0 and

] : i i ] {
I 1 7 !
0 P2 Pa*P22 Pa*Pyp*Pyy =1
PPy <Py >

e, occurs if 0<ci§p2,

e22 occurs if p2<§i§p2+p22, and

e, occurs if p2+p22<§i§].

As an example, consider a particle starting in state 1. Suppose
that the ci are:
p]+p]1<g]5j impTies 27 occurs,
P,<To<Py*Pyy implies e,, occurs,
p2+p225g3<i implies e21 occurs, and

0<;45p] implies e, occurs.



In this case, referring to Tabie 1, the particle first scatters from
state 1 to state 2 (event e]z) and scores s,,, next scatters from
state 2 to state 2 (event e22) and scores 522. next scatters from
state 2 to state 1 (event eZ]) and scores Soy and lastly suffers
absorption from state 1 (event e]) and scores s]. The history score
for this series of events is then s = Sy2 + Soo + 5o + S

This simple system could represent a particle roaming about in

an infinite homogeneous two nuclide medium (with only scattering and

absorption)
State 1 = particie entering a collision with nuclide type 1
State 2 = particlz entering a collision with nuclide type 2

If the scores are taken to be

s]]=s]2=52]=522=52=0 and s]=1,
then a particle absorbed by nuclide 1 would have a history score of 1
and a particle absorbed by nuclide 2 would have a history score of 0.
If a large number of particles starting at nuclide j are followed, the
mean history score is an estimate of the wean number of particles ab-

sorbed by nuclide 1 per particle entering a collision with nuclide j.
(This :problem is easily solved without Monte Carlo.)

Now return to the general two state problem. It is important
to know how many particles must be followed to obtain an acceptable
error in the estimate of the mean history score. Let M.l be the mean
score and M2 be the mean-square score. According to the "central

Timit theorem,“] the means of samples, each of h histories, for h lai'ge,



are approximately normally distributed about M] with a variance

2 2 1 . ()

An estimate of this variance can be obtained by substituting the
sample means Fﬂ and ﬁé in place of the means M, and M,. There are two
problems with using the sample variance:

1) The error estimate is available only after the problem has been
programmed and run on a computer. Thus much investment in program-
ming time and computer time might be required simply to determine

that the variance is unacceptably high.

2) The sample means ﬁ} and ﬁé tend to be unreliable estimates of M]
and M2 when the variance is high. Suppose ﬁé < M2 and M]Z > ﬁiz;
this results in a sample variance,

= =2 2
M. -M M, -M
—2
3 = 2h ] < 2h 1. 02 , (2)

which could be much less than the true variance.

As an example of the second problem, consider the two nuclide prob-
Tem with the absorption cross section for nucliide 1 many orders of mag-
nitude smaller than any other cross sections. This corresponds to P
being orders of magnitude smaller than any of the other probabilities.
Thus 100,000 particles might be followed and all result in absorption by

nuclide 2, i.e. history score zero. In this case,

ﬁi 0, sample mean history score,

= (0, sample mean-square history score, and

Nl
\



= 0, sample variance, (3)

€, where € is some number greater than zero.

whereas, in fact, M'l
Thus, ﬁi is infinitely smaller than the true mean M] at the same
time that the sample variance of zero indicates a very good sample
mean,

To avoid problems one and two it is useful to obtain an estimate

of the variance before attempting a Monte Carlo solution of the problem.

" To obtain this estimate three terms must be defined:

v(j,s) = probability that a particle in state j will contribute

a cumulative score s in its subsequent history; (4)

M%(j) = :E: s" w(j.s) = rth moment of history score

3
(where the sum is over all possible
s values); and (s)
0ifsi#s’,
§ , = where s and s' are not limited to intcgers. (6)
$s . o
]'IfS"S,

From these definitions egqn. (7) may be derived.
v(i,s) = piﬁssi + );_: Pij W(J-S-Sij) (7)

Let Sh (snee{s], S11° S12% Spv Soos 52]}) be the score contributed by

e
the next event. The probability that a particle in state i subsequently

contributes a cumulative score s is equal to the sum, over all possible



next events, of the probability that the given event occurs multiplied
by the probability that all subsequent events contribute the remaining
score s-sne, so that the total score is Sne + (s-sne) = s. If the next
event is an absorption then the protability that the cumulative score
is s is 8sg 3 that is, if the absorption contributes a score s the
cumulative score will be s and if the absorption does not contribute a
score s the cumulative score will not be s. If the next event is a
scattering to state j then there is a score sij contributed by the
scattering, which leaves a score s-sij to be coniributed in subsequent
events. The probability that a particle in state j contributes a
cumulative score S'Sij in subsequent events is w(j,s-sij) by definition
(4).
Multiplying eq. (7) by s" and summing over all possible scores,
2; v(i,s)s = zs: 655ipisr+ ; E i ; w{3as-s, ) r. (8)

Using eq. (5) and recalling that S is a possible value for s,

oy L r }E: :E: _— r
Mr(.') - pis'l + < j p'iJ W(Jns S'ij)s . (9)
3 L = ¢!
Letting s' = s sij ors=s5"+ Sij'
Z Z P.. w(j.s-si-)sr= 2: Z P4 . Y(3,s' ) (s’ *s; ) ;
3 3 1 J ! j

then using the binomial expansion,

Z 2 Py w(:xs)z (1) s "r"

n=0



r —
e 2 () Sty & Vs
J

n=0 s

and by using eq. (5)

r
r, r-n . (10)
; () 555 M, (d)
n—
Substituting eq. (10) into eq. (9) yields the results,
M) = by ZP,J g (1) spsn M(5). (i)

Pulling out the Mr term from the sum,

M_(1) = ]E: pii M (3) +p, 5] + :E: Py
J

=1
(7 si3t M@ q2)
0

1

=
fl

and noting that
M () = g v(d.s) =1 (13)

since y(j,s) is a probability function, eq. (12) for r=1 and r=2 may

be written:
My (1) = Py MQ1) 4 pyp My (2) + pysy + Pyysyy + Pyosy, (14)
Mi(2) = oy My(T) + Py M (2) + py5, + Pyosyy + PyySy (15)
and

i 2 2
My(1) = oy My(1) + pMy(2) + pysy + pgy(syy + 250%,(1) )

* °1z‘sfz +25),M,(2) ) (16)




_ 2 2
Mp(2) = pyp Myl2) + Py My(1) + pysy + By, (5, + 25,5, My(2) )

2 -
+ P (sz.l + 252] M1(]) ) (17)

IB Won-Analog Games

The equations derived above are for an analog simulation of the
real transport process; the probability that event i cccurs in the
simulation is the same as the probability that event i occurs in the
real transport process. In practice, the transport problem can some-
times be solved more accurately, for a given number of particle his-
tories, if fictitious probabilities are used instead of the real trans-
port probabilities. Any Monte Carlo soiution which is not an analog
simulation of the_rea] transport process is termed a non-analog Monte
Carlo solution.

To understand non-analog Monte Carlo it is necessary to introduce
the concept of statistical weight for a particle. Statistical weight,
or simply weight, is a score multiplier. Thus, for a given event a
particle of weight w scores w times as much as a particle of weight
one.

Consider the general two state problem with the particle in state
j. There are three chains of events which may occur in the analog

game considered previously:

1) the particle is absorbed in state j contributing a cumulative his-

=5,
tory score sa j

10



2) the particle scatters to state 1 and contributes a score sj].
Subsequently, from state 1 the particle contributes a score

sb - Sj] resulting in a cumulative history score from state j of

Syp+ (s, - s53) = sy

[}

3) the particle scatters to state 2 and contributes a score 532'
Subsequently, from state 2 the particle contributes a score S¢ - sJ.2

resulting in a2 cumulative history score from state j of

sz + (sc - sjz) = s,

The m2an score for a particle in state j is then

3

M](j) = 3, (prob chain i occurs)*(score due to chain i) (18)
i=1

M (3) = Pys, + P8y *+ PypSee (19)

Suppose that the probabilities are altered in the following manner,

~ 1 ~ 1 ~ 1

. = = P.s .. = — P.,, and cn 5= P, 20
P; =P Pi1 “ 8 Pje 4 P2 Ty Py (20)
subject to the constraint that the probability that one of the three

events occurs is still one:

-~ -~ -~

Pt P, =1, 1
Py * P51 * Psp (21)

Then substituting eq. (20) into eq. (19),

M, (3) = ap S, *+ BPS Sy + YPjoS5 - (22)

Recall that for the same chain of events a particle of weight w contrib-

utes w times the score that a particle of weight one contributes.

1



Identifying a = Wys B = Wy, and y = W, as particle weights eq. (18)
can be generalized to:
3 .
M](j) = ég% (prob chain i occurs in calc)*(score due to chain i
from a particle of weight w,). (23)

While the mean score, M], remains the same with the fictitious
probabilities the mean square score in general does not. To put these
ideas on a more rigorous footing eqs. (14)-(17) will be rederived for
arbitrary branch probabilities and branch weight multipliers. When
the branch probabilities are not the same as the real transport prob-

abilities this is called biasing or importance sampling.

IB-1 Biased Kernels

Consider a completely fictitious game in which the probabilities,
weights, and scores are completely arbitrary; later it will be shown
that with suitable choices for probabilities, weights, and scores, this
non-analog game can be made to yield the same mean score, M], as the

analog game. The following definitions are needed:

@(j,w.s) = probability that a particle of weight w in state j

contributes a score s, (24)
w, = weight multiplier for absorption from state i, (25)
Wiy = weight multiplier for scattering from state i to state j, (26)
12



51 = prob of absorption from state i, (27)

Eij = prob of scattering from state i to state j, (28)

4

S

ﬁr(j,W) < 3 " PGws) = P moment of history score for a

particle of weight w in state j, (29)

Si(w) = score for absorption from state i of a particle of

weight w, (30)

gij(w) = score for scattering from state i to state j for a
particle of weight w, and (31)
Qifs’'#s

s’ ° : where s and s' are not necessarily integers. (32)
1ifs=s'

Next, consider eqn. (33) which is displayed and explained below.
-, RS -~ o~ =
R JZ Pyg YTy vy g0 55550y 5) ) (33)

Let Sne be the score contributed by the next event. The probabil-
ity that a particle of weight w in state i subsequently contributes a
cumulative score s is equal to the sum, over all possible next events,
of the probability that the given event occurs multiplied by the prob-
ability that all subsequent events contribute the remaining score
S-S o SO that the total score is s + (S'sne) = s,

If the next event is absorption then the particle's weight

becomes wwi and the probability that the cumulative score is s is

13



) That is, the cumulative score will be s if and only if

sgi(wwi)
the absorption contributes a score s.

If the next event is a scattering to state j then the particle's
weight bacomes wwij and there is a score gij(wwij) contributed by the
scattering. This leaves a score s»gij(wwij) to be contributed in
subsequent events. The probability that a particle of weight wwij in
state j contributes a cumulative score s-§ij(wwij) in subsequent events
is by definition w(j,wwi.,s-g.j(wwij) ).

J j
Multiplying eqn. (33) by sr and summing over all possible values

for s yields:
ZE(LW.S)S'” >
3 J

x (G oww, . s5=5. . (ww..) )s'. (34)

heXi

iJ

L}
i\
2
-
(o]
[T
wmw
-t
A
;—‘
w
-~
+

1 5

Using the definition of ﬁr and recalling that gi(wwi) is a possible

value for s,

~ oo T z r

M (W) = p slw,) + ‘Vg: ? Pij W(Iowwysasms, (i 0) )s'. (35)
. ' = - e = ¢! < :

Letting s s Sij(wwij) ors= s+ Sij(wwij) yields (36)

E, Z:ﬁij E»(j,wwij.S-Eij(wwij) )s"
3 J
-~ -~ -~ r‘
= E: Z P.. p(J,ww,.,8')(s' +s, . (wn..) ),
! j 1) 1] 1J L]

and using the binomial expansion,

14




Z 3w 505*) Z;( I 56w )]’ -

s'

. ~ LN r-n -~ n
= ?.pij Z(,ﬂ Is; (wwij)] Zs;_w(j.wij.s‘)sﬂ .

n=0

From the definition of ﬁr’

}j:_a,.J ﬁ\:o( ) L5, 50m 017 (G ) (37)

hence,

M (i) = b, 1(w,) + )_'j "uf-},‘n’ [ 50my D177 o ), (38)

and pulling out the Mr term from the sum,
M(1.w) Ep M,(J,w )+p S(w)

Z;: 2 855 0me 177 M (5w, ). (39)

Since for a given event a particle of weight w scores w times as much

as a particle of weight 1,
si(wwi) = W, si(l) (40)
Writing egn. (39) for r = 1 (Noting as in eqn. (13)

iy (3.w) = ;au.w.s) = 1), (42)

(i) = 3 by My (Gomy ) + By ey 5,01) + );, PygigSig (1) (43)

15



A particle's history score is proportional to its weight because:

1)} the event probabilities are assumed independent of weight;

thus

2) a particle's history (sequence of events) is independent of

weight, and
3) each event score is proportional to the particle's weight.

Thus the probability that a particle of weight w contributes a history
score s is equal to the probability that a particle of weight one con-

tributes a history score s/w, that is

T(i,w,s) = P(i,1,s/w) (43A)
Hence using eqs. (29) and (43A)
ﬁr(i,W) =:§:w(i.w,5)sr = wr:;lb(i,l,S/W)(S/W)r = wrﬁr(i,1) (44)

Thus eq. (43) becomes
M](1,1) = :%: Pij Yij M](J,]) + Dy W si(]) + :§: Pij i sij(])' (45)
Suppose the probabilities, weights, and scores are chosen such that

(remember they were arbitrary):

-~

(1) =5 (46)

5;(1) =5 s, i

then,

16



This is the same eqn. that M1(i) satisfies [cf. eq. (12)], hence
ﬁ](i,l) = M, (i). (48)

The significance of this result is that a non-analog transport game
(with relations (46) holding) can be played with any probabilities

Eij >0 (Sij must be greater than zero so that "ij is finite) and the
mean score for the non-analog game will be equal to the mean score for

the analog game. The second moments for the two games are in general
not equal, as will be shown below.

Writing eq. (39) for r=2,
AT 2 e x 11q2
My (i w) }: BysMp(domw ) + B w3, (1)]
' o
:E: piJ(thIJSIJ(I)] 2ww1J 13(])""13 ](J 1)) (49)
From eq. (44) with r=2,

(i) = wzﬁz(i,l) (50)

17



tetting w=1 and using eq. (50)

Z By w5 Pyl3,1) + B, Iws, (M1P

MZ(i']) ij i

+ Zp §(u 5 1P+ 2d 5 6. (51)

1j 1J 1

Using the relations (46) which resulted in M (i,1) = M (i),

_o . 2
M,(i.1) Z P 3% Mo (da1) + powgs,

IE: p]J(w1JSIJ 1J 1J 1(3) ). (52)

This is not the same as eqns. (16) and (17), hence

Tt has been shown that there is a class of non-analog transport
games which have the same mean score but different mean square scores
and hence different variances. The object of importance sampling
(using non-analog probabilities) is to decrease the variance. The cen-

" tral 1imit theorem (see egn.(1) ) says that if Mz can be reduced, while

M. remains the sar=, the variance will be reduced.

1

18



IB-2 Spi“tting, Russian Roulette, and Weight Cutoff

In general, the more often a state is sampled the better the
statistics associated with that state. In a given time only a certain
number of particles can be followed; usually some states are under-
sampled while other states are oversampled. Splitting refers to
replacing a particle of weight w in state j by k particles of weight
w/k, thus increasing the number of times state j is sampled while
keeping the total weight in state j constant. On the other hand, if
a state is being sampled more frequently than necessary, Russian
Roulette is played in which a fraction, say 1-a, of the particles
are killed off and the remaining o particles are followed with their
weight increased by a factor 1/a. A Russian Roulette game cuts the
number of times a state is sampled while keeping the mean weight
followed in that state a constant.

A particle of very low weight is uninteresting since it cannot
make much contribution to the score; yet following the particle takes

time. To solve this problem a weight cutoff game is played in which a

particle whose weight w is less than the weight cutoff Yoo is either
killed, or followed with a new weight W The particle is killed with
probability l-w/wn and followaed (with weight wn) with probability w/wn

(this is a type of Russian Roulette).




IC Remarks on the Relationship of Chapter 1 to Chapter III

In the transport problems of Chapter III there is a continuum of
states a particle can occupy. The transition from Chapter I to
Chapter III is largely a transition from discrete states, probabilities,
and scores to continuous states, probabilities, and scores. Thus, in
eqn. (33) the discrete probabilities 5i and Eij will be replaced by
continuous probabilities and the sum over the discrete states will be
repiaced by an integral over the continuum of states. The Kronecker
delta function (eqn. (6) ) for discrete scores will be replaced by the
Dirac delta function (eqn. (90) ) for continuous scores. These delta
Tunctions serve similar purposes. Whereas the Kronecker delta function
has the property (when f is a function of a discrete variable)

b fs;)8g 5 = ls;),

. i
S5 J

the Dirac delta function has the property (when f is a function of &

continuous variable)

_ﬁf(s)é(s-s')ds = f(s').
There are five other differences between Chapter I and Chapter III.

In Chapter III,

1) Particles are followed only for a finite time

2) Russian Roulette and splitting are included as events

3) A weight cutoff game is played as a particle departs an event

4) A particle may multiply (produce secondary particles as in fission)

5) The score for an event is sampled from a probability function.

20



Chapter II. Definitions

This chapter contains the definitions of terms used to derive
the equations of Chapter III for the expected ervors in non-analog
Monte Carlo calculations of time dependent particle transport prob-
lems. It should be emphasized that these terms are for a non-analog
game with particle weights, biased kernels, Russian Roulette, and

splitting. It is shown later, in Chapter III, that particular choices
of weights and kernels exist that make the mean score the same as in

an analog game.

Definitions
R = (?,V)=(particle's position, particle's velocity) (54)
P = (F,v.w)=(particle's position, particle's velocity,

particle's weight) (55)
P = (R,w) (56)

P completely describes the state of a particle in this treatment.
* js the multiplication symbol A*B = AB

The probability that a particle contributes a score s in ds in
the next event is taken to be:
pd(P.P‘,s)ds for a departure from P followed by a collisionless

free flight to P' (57)
po(P,P'.s)ds for a departure from P followed directly by an

absorption at P' (58)
p](P,P',s)ds for a departure from P Yollowed directly by a

scattering at P’ (59)
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pk(P,P'.s)ds for a departure from P followed directly by a
collision at P' in which k particles emerge from the
collision (60)
psk(P,P‘,s)ds for a departure from P followed directly by a k for
one splitting event at P’ (61)
pp(P,P'.s)ds for a departure from P followed directly by a game of
Russian Roulette at P' (62)
The following weight multipliers for use in non-analng games are
defined:
wt(R,R+) is the factor by which the particle's weight is multiplied

if the particle makes an eventless transit from R to R+. (63)

wo(R“) is the factor by which the particle's weight is multiplied

if the particle has a collision at R'. (64)

W (R*',R") is the factor by which the particie's weight is multiplied
1

if the particle enters a scattering event at R’ and exits

at R". (65)

W, (R",R],---,Rk) is the factor by which the k secondary particles

‘ which exit a multiplying event have their weights multiplied.
(66)

Yoo is the weight cutoff. No particle may exit a collision with
weight less than w (67)

co
Wo is the new weight assigned to a particle if the particle survives

the weight cutoff game. (68)

The following transport kernels are defined:
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Transmission Probability

T(P,PH)dv dw' = T(R,R*)é(w*»wtw)dV*dw+

= T, V)8V V)8(W -ww)dv dw" is the probability that a
particle departing P will arrive at P+, with velocity in dv'

and weight in dw+. without undergoing any events. Note that

the velocity remains constant and the weight is multiplied by

W, when the particle arrives at p*. (69)

t
Collision Prohability

o(P,P*)d7 dP* = o(R*)S(R'-R")6(w'~w w')dF dR'dw' is the probability
that a particle entering d?+ about ?+ will collide in d;+ and
change state to P' in dP'., Note that the only coordinate which
changes in this process is the particle’s weight, which is
multiplied by Wy c(R+) is the macroscopic total cross
section at R, {70)

Splitting Probability

Sk(P+)d.r:+ is the probability that a particie (at v and w+) entering
dr' about r' will undergo a k for 1 split. (71)

Russian Roulette Probability

RO(P+)d}:+ is the probability that a particle (at v and w+) entering
dv' about * will play Russian Roulette. (72)

Collisionless Free Flight (Drift) Probability

p(P,P*,t)aP*=T(P,PT)8(|F -F|-vt)ap"
= TS V8w w)8( 77| -ve)aF dt dw’
is the probability that a particle departing P will have a
collisionless free flight (or “drift") for time t and end this
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. . + +
free flight in dP about P . Note that the velocity remains
constant in free flight while the position changes by vt

and the particle's weight is multiplied by w,. (73)

Absorption Probability

A(P') is the probability that a collision at P' results in

absorption. (74)

Scattering Probability

E(P' .P")dP"se1 (P',P")dP"=E(R',R" }cS(w"-we w' JdR"dw"

=E(V*,V")8(F"-F")5(w"-w_ W' )dr dv"dw" is the probability
that a particle collidin; at P' will scatter into dP" about
P". Note that the velocity, but not the position, changes
in a scattering event. The particle's weight is multiplied

by W, in this process. (75)
1

Multiplication Probability

ek(P',P],---,Pk)dP1---de=sk(R',R],---,Rk)d(w]-we w')---d(wk-we w')

24
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X dedw]--'dedwk

+'+ o0 + + -+' *ee - --" - ¢ [ N ] - '
ek(v,v1, ,vk)é(rl r') 6(rk r )6(w.| wekw ) 6(wk wekw )

x dr.dv.d dr. dv, d
X r] V.| W-l ?‘k Vk Wk

is the probability that a particle colliding at P' results

in k particles, the jth

of which (j=1,2,°°°,k) exits in de
about Pj‘ These are multiplying events such as (n,2n) and
fission. As with the scattering kernel immediately preceding,
an exiting particle's weight is multiplied (here by wek)
while the position is unchanged. (76)
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Weight Change Probability for Splitting

By (PTsP")dP=8(F"=F )6(V'-V" )6 (w"-w" /K )dF"dV"dw"
is the probability that a particle undergoing 2 k for 1
split at pt results in k particles exiting at P" in dP".
Note that only the particle's weight, which is multiplied
by 1/k, changes in a splitting event.

Weight Change Probability for Russian Roulette

Byl P )dPda=s (P )6(V" -V Has(w'-w' /a)+(1-0)8(w"))
X dr*dv"dw"do
is the probability that a particle undergoing Russian
Roulette at P+ (with probability o in da of survival)
exits in dP" about P". Note that only the particle's
weight changes; the particle is either killed (i.e. w"=0)
or the particle's weight is multiplied by 1/a.

Weight Change Probability for Weight Cutoff

B(P",PC)dPC=6(F -7 ) 6(V " )IH(w"-w_ ) slw -w") +
(l-H(w"-wco)){gi G(WC'"e)+(]’"”/we)6("c)}]ngdv;d"c
is the probability that a particle exiting a collision
at P" will have its coordinates changed to P¢ in dP°
before the particle's next flight begins. This is the
weight cutoff kernel - note that only the particle's
weight changes. 1T the exit weight, w", is greater than

or equal to the cutoff weight, Woo the particle continues

with weight wc=w“. If w"<wco then a game of Russian

(77)

(78)
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Roulette is played in which the particle is either killea,
w =0, or the particle is followed with weight W (79)
Next define the history score probability function and the rth

moment of the history score:
¢(P,s,t)ds is the prcbability that a particle at P will contribute

a cumulative score in ds about s in the remaining time t. (80)
Mr(P,t)=J{b(P,s.t)srds is the rth moment of the history score. (81)
Now define
AO(R')=A(P') is the probability zero particles exit a c¢ollision,
A](R')=‘/;R"E(R',R") is the probability one particle exits a

collision, and
Ak(R')=J/hR]-~-J{aRkek(R',R],---,Rk) is the probability k

particles exit a collision. (82)

An obvious requirement is:

f A (R")=1 (83)
k=0

The score assigned to an event should be proportional to the particle's
weight; the probability that a particle of weight w' contributes a
score in ds about s is equal to the probability that a particle of
unit weight contributes a score s/w' in ds/w'. Thus
p(P,R',w',s)ds=p(P,R*,7,s/w')ds/w’ and

fp(P.R' ,w',s)srds=w‘rfp(P.R' ,1,s)s"ds, or
fp(P,R',wow,s)srds=w;fp(P,R‘,w,s)srds. (84)
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This thesis also uses the notations

0 if x<0
H(x) =% Heaviside function
1if x>0
L, (0if d#0
6(q) ’{ Dirac delta “function”
© if q =0

Jo@at

. f(a') if E' is in the region Q
f f(q)s(q-q')dq = {
Q

9 if E' is not in the region Q

* i5 the multiplication operator, A*B=AB.

(85)

(86)

(87)

(88)
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Chapter III. Derivation of Moment Equations and Choice of Weights

In this chapter equations for the rth moment, Mr(P.t). of the
history score are derived. The "central linit theorem"] states that
the means of samples, each of h histories, are, for large h, approxi-

mately normally distributed about M] with a variance
_ 2
VAR = (MZ—M])/h (89)

and M, determine the expected error in a Monte Carlo transport

Thus M o

1

calculation.

A) Derivation

The equation for Mr is obtained by deriving a probability conser-
vation law (eq. (91)) and multiplying this law by the rth power of the
history score, sr, and integrating over all possible scores. Let
t' = t' be the time required for a free flight from P to P'. (Since
a collision process requires no time, t' may be interpreted as the time
between departing P and a collision at P'.) Note that y(P,s,t)ds is
the probability of obtaining a score in ds about s in the time t
remaining; a particle departing P is limited in its possible next
event points to those states P+ that can be reached from P in time
t+<t. This is the reason for the t+<t limitation on the integrations
ever P’ in eq. (91). The first term in eq. (91) (see page 36) has a
t*=t restriction on the integral over P* since this term is due to a

free flight for the entire time t; thus the states P* are limited to
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those states that can be reached in exactly time t.
In order to obtain a history score s in ds a particle that
obtains score s' in the next event must obtain a cumulative score

in ds about s-s' in ail subsequent events. If there are no sub-

sequent events, as in TERM] and TERM2 of eq. (91), then the

entire history score must be contributed at the next event, i.e. s'=s

in ds.

There are six possible ways a particle departing P can end its

free flight:

1) run the clock out (free flight for the entire time t)
2) absorption at P' +

3) play Russian Roulette at P

4) split at Pt

5) scatter at P’

6) multiply at P’

Each of the six terms in eq. (91) is a product of probabilities of

the form
e probability that all
probability event
probability contributes zg::i?gﬁzz :;:n::maining
* ! L
event occurs score s score in ds about S-s'
in the remaining time t-t'
(90)

Each of these three factors will be listed for each of the six terms
of eq. (91). After these factors have been listed a detailed explana-

tion of eq. (91) will be given,
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1)

2)

3)

4)

5)

6)

Free Flight for remaining time t
(0(P,P",t)dP")x(p,(P,P",5" )ds" Ix(6(s~5" }is)

Absorption (free flight to P+. collision in dP+. absorption at P')
(T(P.P")a(P",P* )aP dP A(P*))x(py (P,P" s Jds* Jx(6(s-s5" )ds)

Russian Rouiette (free flight to P+. Russian Roulette game at P+,
exit Russian Roulette game at P")
(T(P,P+)R0(P+)dP+BO(a.P+,P")dadP")x(pp(P,P+,s')ds')
x{y(P",s-s',t-t"')ds) |

Splitting (free flight to P', split k for 1 at P', exit splitting
at P")

(T(P,P")s, (PT)eP"B_, (PT,P")dP")x(p_, (P.P,5")ds")
x(w(P",s],t-t+)ds]---w(P”,sk_],t-t+)dsk_]
xw(P",s-(s'+s]+-°'+sk_]),t-t+)ds)

Scattering (free flight to P+, collision in dP+, exit colilision in
dP", Russian Roulette game at P", exit Russian Roulette game in
dP®) |
(T(P,P+)0(P+,P')dP+dP'E(P'.P“)dP"B(P“.PC)x(p1(P,P',s')ds')
x(v(P®,s-s',t-t')ds)

Muitiplying (free flight to P+, collision in dP+, k particles exit
collision in dP].--o,de, Russian Roulette games at P1.---,Pk.
exit Russian Roulette games in dP?,---,dPﬁ)

(T(P,PF)o(P*,P7 AP AP e, (PLP,, oo P, JdP, «« o, B(P, ,PT)dP] ¢
xB(P, ,P})dPL)x(p, (PLP',5" )ds Ix(¥(P] s, st-t" s, ==

Cc ' c ' ese -t
xW(Pk_] ’sk'].t-t )dsk-]U)(Pk’s-(s +S.'+ +sk_‘|)’t t )dS)




The score accumulation probability y(P,s,t)ds is separated into
the six terms given on the right hand side of eq. (91). These six
terms are score accumulation probabilities for particles that end
their first flights from P by:

1) a collisionless free flight for the remaining time t (TERM1)

2) being absorbed at P' + (TERM2)
3) playing Russian Roulette at P (TERM3)
4) splitting at P* (TERM4)
5) scattering at P’ (TERMS)
6) multiplying at P’ (TERM6)

In TERM1 D(P,P*,t)dP’ of the particles departing P arrive in
dP+ about P+ in exactly time t without undergoing any events and
pd(P,P+,s‘)ds' of the D(P,P+,t)dP+ particles contribute a score s' in
ds'; and 8(s'-s)ds of the D(P,P+,t)dP+pd(P,P',s')ds' particles con-
tribute a score in ds about s. The history score, s, for a particle
departing P which undergoes no events in the entire time t consists
only of the single score s' due to the free flight of the particle;
thus the history score will be in ds about s if and only if s' is in
ds about s, hence the delta function.

In TERM2 T(P,P+) of the particles departing P make a free flight
to P*. o(P*,P*)dP dP' of the T(P.PY) particles collide in dP* and
have their state changed (only the weight coordinate changes) to P'
in dP'. A(P') of the T(P,P+90(P+,P')dP+dP' particles are absorbed at
P'. p(P.P'ss')ds' of the T(P,P )o(P*,P* )P dP'A(P") particles con-
tribute a score s' in ds'. The history score, s, for a particle that

is absorbed in its first event consists only of the single score s'
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due to the absorption; thus the history score will be in ds about s

if and only if s' is in ds about s. Hence T(P,P")a(P*,P*)dP dP'A(P")

X 8(s-s')ds of the particles departing P contribute a score in ds about
s by being absorbed in the next event.

In TERM3 T(P,P+) of the particles departing P free flight to p*.
RO(P+)dP+ of the T(P,P+) particles play Russian Roulette in dr*.
BO(Q,P+,P")dadP" of the T(P,P*)RO(P+)dP+ particles exit the Russian
Roulette game in dP". pp(P.P+,s‘)ds' of the T(P,P+)R0(P+)dP+Bo(a.P+.P“)
x dadP" particles contribute a score s' in ds' at this event.

W(P",s-s" ,t-t")ds of the T(P,P"IR (P")dP"By(a,P",P")dudP"p (P,P",s" )ds'
particles subsequently contribute cumulative scores in ds about s-s' to
make the history score in ds about s'+(s-s'}~s. Thus T(P,P+)R0(P+)

x dP+Bo(u,P+,P")dudP“pp(P,P+,s')ds“w(P",s-s',t-t+)ds of the particies
departing P contribute a score in ds about s by having the next event
be a Russian Roulette game.

" TERM T(P,P*) of the particles departing P free flight to P'.
5,(P1)dP” of the T(P.P") particles undergo a k for 1 split in dp”.

B, (P*.P")dP" collections of k particles exit the T(P,P")s, (P*)dP”
splitting events (into dP"). psk(P,P+,s')ds‘ of the T(P.P+)Sk(P+)dP+

stk(P+,P")dP“ splitting events contribute a score s' in ds’.

L] + ceoe 3 " - +
Suprs et ras e feors, e-thhes,
XP(P",5-(s 45 4o mets, ).t )ds

of the collections of k particles subsequently contribute the remaining

32



score, s]+sz+°-~+sk_i+[s-(s'+s]+---+sk_i)] = s-5', to make the history
score in ds about s°+s]+---+sk_]+[s=(s“+si+°°-+sk_1)]=s. Restating

this Tast idea, each of the T(P,P")s, (P*)ap’8_ (P*,P")ap"p_ (P.P",s")ds’
collections of k particles exiting P" has already contributed a score s’
of the desired his*ory score s; thus the k particles exiting P" must
collectively contribute a cumulative score in ds about s-s' in the
remaining time t-t+. The probability that k particles departing P
collectively contribute a cumulative score in ds about s-s' in time t=t+

is

L} + LN ] o = *
fds]"'fdsk-'lw(P ,S.I » =t ) q"(P ssk_] st-t )

+
+---+sk_]),t—t )ds

xu;(P",s=»(s'+s.n

That is, if particles 1 through k-1 contribute scores s] through Sk-]’

th

then the k= particle must contribute a score in ds about

s=(s“+s]+°°°+skﬂ]) so that the score s', due to splitting, plus the
scores due to the k particles departing dP" results in a total score
in ds about s. The integrations over 5 to sk_1 give all possible
ways that 5 through S can sum to s-s'.

In TERMS T(P,P+) of the particles departing P free flight to p*.
o(P*,p')dP"dP’ of the T(P,P') particles collide in dP* and change
state (only the weight coordinate changes) to P' in dP',

E(P',P")dP" of the T(P.P*)o(P’,P')dP*dP' particles exit the collision
Cin ap". B(P",P%)dPC of the T(P,P¥)o(PT,P')dP AP E(P! P )P

particles playing the weight cutoff game at P" exit the game in dPC.
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p,(P.P',s')ds’ of the T(P,P )a(P*,P')aP*aP E(P" P )dP"B(P" P )dP°
particles contribute a score s’ (in ds') in the scattering event.
w(P®,s-s',t-t')ds of the T(P,P")o(?,P')dP dP'E(P',P")dP B(P",PC)dPC
X P](P,P'.s')ds' particles departing pe subsequently contribute the
remaining score in ds about s-s' in the remaining time t-t' s¢ that
the total history score is s'+(s~s')=s in ds.

In TERM6 T(P,P+) of the particles departing P free flight to P,
o(P*,P')dP dP' of the T(P,P’) particles collide in dP’ and change
state (only the weight coordinate changes) to P’ in dP’.
ek(P“.P],---,Pk)dP]---de collections of k particles exit
(the T(P,P")o(P*,P)aP aP" collisions in dP") in dP,e--,dP,.

B(P, ,P§)dP}B(P, ,PC)aPC of the T(P,P")o(P",P')dP dP'e, (P*,P o+ ,P,)
X dPn~--de co11éctions of k particles playing the weight cutoff

game at P1’°°°”Pk exit the game in dP?,---,dPE. pk(P,P',s')ds' of
the T(P.P")o(P",P*)dP dP e, (P',P,,+ox,P )P +++dP,

x B(P,,PT)dP}++-B(P,,P7)dP, collections of k particles departing

P§9°'°,P§ contribute a score s' (in ds') in the multiplying event.

¢ ! s ¢ -t!
ﬂ(P],sn,bt Jds, ftp(Pk_],sk_],t t')ds,
X w(P§.5=(S'+sn+-==+sk_]),t-t')ds

of the collections of k particles contribute the remaining score

X - LES XX =cac! § ind 5 ot !
Sytsptocets, s (s'#s,+eeets, .)]=c-s’ in the remaining time t-t',
to make the history score in ds about s'+s]+---+sk_]+[(s-(s“+sn+~--+sk_])]=s°

Restating this last idea, each of the T(P,P+)0(P+,P')dp+dpﬂpk(P9pn’su)dsa
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' XX [ WY c co-. c c 5
X ek(P ,P], .Pk)dP] quB(P],P])dP] B(Pk.Pk)de collections of k
particles exiting P?,"°,PE has already contributed a score s' of the
desired history score s; thus the k particles exiting P?,---,PE must
collectively contribute a cumulative score in ds about s-s' in the

remaining time t-t’. The probability that k particles departing

P$,"'.PE collectively contribute & cumulative score in ds about s-s'

in time t-t' is

¢ ' ace ¢ - '
j\b(P],s],t-t )ds] w(Pk_],sk_],t t )dsk_.‘
c [} ese «t?
X w(Pk,s-(s +s]+ sk_‘),t t')ds

That is, if particles 1 through k-1 contribute scores S through Sk-1’
then the kth particle must contribute a score in ds about
s-(s'+s]+--°+sk_]) so that the score s', due to muitiplication, plus
the scores due to the k particles exiting PC,'--,PE results in a total
score in ds about s. The integrations over 5 to Sk-1 give ail possible
ways that s] through S can sum to s-s'.

Adding TERM1 through TERM6 results in the final equation for the

probability of obtaining score s in the time t remaining

w(P,s,t)ds =t+5/t- dP+D(P,P+,t)jds'pd(P,P+,s')6(5-5')ds
+ +f dP+T(P.P+)fdP‘o(P+,P')fds'po(P,P‘.s')A(P‘)G(s-s')ds
t't

1
+ +f dP+T(P,P+)R0(P+)[ds'p (P.P+,s‘)fdP" daBO(a,P+,P")
t*<t P 0

xursesetas [ @R, (7 fasto, (p.0%,s0)
k2t k sk

" * o " + "
Xﬂp BSk(P ,P )’/'ds.lit'j-dsk_.llp(P ,S.I ,t-t )--qp(P ,Sk_.l,t't+)
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X Y(P*,s-(s'4s +oeets, ) t-t )ds + fdP+T([P.P+)fdP'0(P+,P‘)
(NS A

x fds'p](P,P‘ .s')fdP“E(P‘ ,P")fchB(P",Pc)w(l}’c.s-s',t-t‘)ds

+ g; +fdP+T(P.P+)fdP‘O(P+,P')de'Pk(P’P'95')

£t
LN N ] ' o0 e c c [ X N} c c ...f
X fdP] fdeek(P B eeop) f apeB(P, ,P) fdeB(Pk.Pk) fds] ds,
c ! o0 e c - ! C - t [N N ] - L]
x $(Pr,s,5t-t') WP 1sSkop bt JW(P us=(s'+s,+ s, _q)st-t')ds (91)

This equation is of the form

TERMO = TERMI
I=1

Multiplying eq. (91) by sr and integrating over s results in the

desired equation for Mr' The integrations are done term by term below.

- r -
TERMO = fdsi(P,s,t)s" = M (,t) (92)
TeRm = [ dP'n(p,p".t) fasp (P,P*,s)s" (93)
o 00 foo
TERM2 = +fdP+T(P,P+)_/:iP'c(P+,P')fdspo(P.P'.s)A(P')sr (94)
t'5t
1
TERM3 = +fdP+T(P,P+)R (P+)fds'p (P,P+,s')fdP“[ daB(a,P,P")
<t 0 P 0
xfdsw(P“.s-s' t-t')s (95)

Using eq. {(AS5)

1 +
TERM3 = +fdP+T(P,P+)R0(P+)ﬁs’p (P,P+.s')fdP"f daBy (a,P" ,P")
t <t e 0

L r r=n " +
X #i:b (Js' M (P",t-t") (96)
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TERMn:Z f-l- + +f +‘f" +
< dP T(P.P')S (P) Jds'p., (PP ,s") JdP™B (P ,P")

11} + n + r
xfdsln-fdsk_]q;(P ,s],t-t Jeoop(P ,sk_].t-t )fds 3

X Y(PU 5= (s 45 bemets, ) tet)) (97)
Using eq. (A5) on fds

TERMS = 9 fdP+T(P.P+)Sk(P+)fds'p k(&l’,P"‘.s')_]‘dP"B k(P'*.P")
k=2 t <t S S

fds]---fdsk lw(P“.s].t -t )---w(P".sk ],t-t )

) ( ] M (P ot- t ) (98)
‘hg beent "
X nz 0( ) s'+s, Sk- ])

Using eq. (A5) on fdsk_]

TERME = ; fdP T(P, P )S (P )fds psk(P P »S )fdP"Bsk(P P")
=2 t <t

r
des.l LA dsk_zlp(P“,S.l ’t-t+)...w(P"'sk-Z't-t+) Z ( )M (P”.t t )

r-n r=-n r=n

1 ( 1) b e ey gen 172

X z_' n ] M (PUtti)(s'4s benets, ) (99)
n2-0 4 2

Using eq. (A5) repeatedly °"fd5k-2"'fd51

TERM4 = Zm: +fdP T(p,p* )S, (P )fds Pek(Ps P s )fdP"B (% ,p)

k=2 t <t
=N, = o-n
r 1 k-1 /r-p =vec=pn
x (: ) Mo Pty eee 3 ] “Tu (p,t-t")
n] =0\ ] 1 mk-o "k k
r-n -see=n
xs' k (100)
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TERMS = dP*1(p,p") far a(p*,p') fds'p, (P.P',s') [P E(P',P")
+f / fos'p (st f

xfchB(P",Pc)fdsw(Pc,s-s'.t-—t')sr (101)
Using eq. (A5)

TERMS = P T(P,P") faP'a(P.P') fds'p, (P,P',s*) fdP E(P*,P")
o farastafun oo f

r
xfdPCB(P“,PC) Z (:) Mn(Pc.t-t')s'”'“ (102)

TERM6 = fdP+T(P,P+)ﬁlP'c(P+.P')fds'pk(P,P',s')
t <t

' a0 c c L X N ) c c
xfdp] aP e, (PP, ,Pk)ﬁP]B(P].P]) fdeB(Pk.Pk)
c ! YW I1N c [ < '
’de: ../dsk_]w(P.’,s],t-t Yoo rg(PE 145, patet )fds

c L] LR ] - ' r
x w(Pk,s-(s st +sk_]Lt t')s (103)

Using eq. (A5) repeatedly as in TERM4
TERMG = fdP+T(P.P+)fdP'c(P+,P')fds'p (P,P'.s')fdp eos fdP
k=2 t'% k L k

' oo c c LK ] C c
K e (P aPyoeee Py ) fGP1BOPPT)- - irCB(P, P
r

X }:(r)m (p® t-t')%l ( I)M (PE _,t-t')eee
i o\"1/ "k 70 \ " k=17

Ll TR [ A n r-n n
r\- -l P 0 - -0 0 P
x R GRS (104)
" =0 k 3

Changing the dummy variable s' to the dummy variable s and adding

TERMO = i TERMI
=

gives the equation for the rth moment
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M (P.t) = +!dP+D(P,P+,t)fdspd(P.P+,s)sr

+ dp T(P p ) dap’ o(P oP') Jdsp.(P.P',s)A(P" )s
o I Jeseg

+ + + + +
dP T(P,P )R (P) Jdsp (P,P ,s) féP" [ daB (a,P ,P")
- o) flsn 05" fo et

t <t

x :;(:)anp",t-t*)s + E fdP+T(?.P+)Sk(P+)fdspsk(P.P+,S)

2t <t
r'n] - "nk_" r’n.' —ee ""k_]

xﬁP"Bsk(P+.P" Z ( )n (P",t-t )---)_"J=0 o

Ny

XM (P.. t-t)sTM TN dP*1(P,P") faP'o(p”,P") fdsp. (P,P",5)
e T e fo

ﬁp"E(P'.t ‘)fdP 8(P",P°) t (T (P, t-t')s"" + fdp

t <t

+ s + o ! ' ces
K T0.2") fr alr00) fasp, (PP 5) fepy v [y, (PP, eeey)

r
C c c c r ¢ "Yeuou
x f4pSB(p. . PY) - faPB (P, .PE) 3 (n])Mn](Pk’t't )
1

r=p,=*e+-n
] k-] r=-n -...-n r-n [ XX -n

x R DR CR=0 P (105)
"k=0 k k

Recall p(P,P',s) and y(P,s,t) are probability functions so that
JI.p(P,P',s)sGds = (106)
Mo(Pst) = fu(P,s,t)s s = 1 (107)
Note in TERM4 and TERMg that any one of the n (§=1see+,k) could be
equal to r and hence there are k ways to get Mr from these terms.

Collecting the Mr terms
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1
nety = L f aP*T(P.PTIR(P") fapm [ daBo(a,p” P oM, (P, t-t")
<t 0
= + + + + +
+ p . u ,P" " t-
kgz o, dP*T(P,P")s, (P )faP B, (PP kM (P, t-t")

+ dP+T(P,P+)fdP‘o(P+,P‘ )fdP"E(P' ,P")fchB(P",Pc)Mr(Pc,t-t')

t <t
- + + +
+ fdp T(P,P )fdP'o(P ,P-)fdp eeefdP e (P',P ,o=,P,)
c c c c c ,
xfdP]B(P'I’Pl) fdeB(Pk.Pk) g Mr(Pj,t-t ) + Qr(P,t) (108)
where

+ + + + + +
= P, P'T(P, P'o(P P!
Q.(P,t) t+!t' dp D(P,P ,t)fdspd(P P ,s)s + 1:+‘</t-d T(P,P )fd o( )

Jaspopoprsia@)s” + [ PR (") fosp (p.s)
o™ £t 0 P

] r-1 =
xfdP" daB (a,P"\P") Y (;)Mn(_P",t-t')s‘””" £ +fdP+T(P,P+)Sk(P+)
0 n=0 k=2 t <t

r
+ t + " r Hn - + PP
x[[asp , (P.P"5) fapua (ph,p0) n§=0: (nl)Mn](P jt-th)
1

r-n,=***-n
k=1 fr-n =see=n r-ny-*++-n, _k
1 k-1 " + ] k _
( )Mnk(P Jtet)s -ﬂ;(l anir)

X
n

"«

+ + + c c

+ dP T(P,p") fdP'g (P ,P") [ dsp,(P,P*,s) fdP"E(P',P") fdP"B(P",P")
t+<'{ f ° j ‘ f f

r-] ™
x 3, (OM (P, tet)s" " 4 (2: fdp*T(P,P*) aP'o(P*,P)
n'n —t .+
n=0 =2 t<t

' . c c

]
=0
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r
x 3 )Mn (Pyot-t'] Z ( )M (PF_,ot-t)eee

n,= =0 71
rony=seeon
k-1 fr-n ,=cec=n r-n,=c**-n
xz ' "")M (P, t-t')s | "'ﬁ'(l-s ) (109)
n n 1 AL n.r
nk k k i=1 i

The first two moments are usually the only ones desired. The
source term Q] for the M1 equation and the source term 02 for the M2

equation are given below. From eq. (109)

Q.I(P t) = fdP b(P,P ,t)fdspd(P P ,s)s + t 2{-dP T(P,P 2/:!? O(P ,P')

xfdspo(P,P',s)A(P )s + Z . é{dP T(P.P)s, (P") dsp, (P, P.s)s

++fdPT(PP)R(P)dsp(PP,S)s+ fdPT(PP)/c-iPo(P P')

t <t t <t
xﬁsp](P,P',s)ﬁP"E(P*,p")s + fdP T(P,P )fdP o(P*.p)
t <t
xfdspk(P,P' ,s)fdP]--:/;iPksk(P' Pyseeub,)s (110)

For r=2 the splitting and multiplication terms in eq. (109) have a
number of sums which must be evaluated. First consider the sum in

the multiplication term in eq. (109) for r=2

2 2 c & 12 c
o " EO (n] )Mn](Pk’t-t J '%;o( n, )Mn (Pk-l’t-t oo

n]= 2

Z-n]-----nk_]

¢

n.= nk k

2=N.=200=n r=f.=*eoc k
1 k-1 c ' 1 k
)Mn (P.I,t-t )s iU](l-Gn 2) (1)
K =

I3
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Note by the summation limits that

0<n

< 1+n2+q..+nk < 2 (111A)

and also that the (I-Gn 2) factor requires nifz so that
i

0<n, 21 (1118)

for 1 < i < k. The terms in the sum (111) are separated below into
k+1 mutually exclusive groups of terms which are evaluated and then

summed to produce a simpler expression for X The jth group

(j =1,2,+++,k) of terms consists of all terms for which n]=nz='-°=nj_]=0

and nj=1. The k+1 §£-group of terms consists of the single term for

which n =n2=---=nk=0. These groups are evaluated in the following

1
paragraph.

If n1=1 then by eq. (111A) either one or zero other

"i=1 (i=2,3,+¢+,k), yielding

k-1
2 C ) C [}
(1)M1(Pk,t—t ) 521 Ml(Pj,t-t )+s (111c)
If n1=0 and n2=1 then either one or zero other ni=1 (i=3,4,5«4,k)
2 c pgfg c -
(])M](Pk_1,t-t ) f=1 M1(Pj,t-t Y+s (112)

1 0
—

If n]=n2=0 and n3

=~
w

o (Ftot) | 3 (S, et )es

Cat

then either one

! |

or zero other ni=1 (i=4,5,¢44,k)

(113)



If ny=n,=e+==n,_,=0 and n,_,=1 then either one or zero other

n.=1 (i=k)

2 c ] (o

(M, (PG t-t*) J};n](l’j,t-t )+ (114)
If n]=---=nk_]=0 and nk=1

(G, (PS,t-t")s (115)
1%y

If n_lz...=nk.-:0

2 (116)

Hence adding eqs. (111C)-(116)

k
Xp © 52 + 2s ; M] (P:,t—t') +2 g M](P:.t-t')

L~
X i My (PS,t-t') (17)
3

Note that the term in ea. (109) involving the k particles emerging from a

splitting event has the same form as the term involving k particles emerging

from a collision except that in a splitting event all particles exit

at P". Thus using eq. (117) with P§=P"

k2]
X © % 42 skM, (P",t-t") + znf(P".t-t*) ; Z:I 1 (118)
=2 J=

!g ;g] = g(l-lk 142+« o obk-1= .'.‘.%i) 19)
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X = 2+ 25k, (P, t-t") + k(k-l)Mf(P".t-t+)

From eqs. (109).(117), and (120)

Q,(P,t) = ap*o(p,pt,t) fasp . (p,PY,s)s% + artrip,p")
2 t+=4!- J,. d et 24(

xfdp'a(p*,p*) fasp (P,P',s)A(P')sz + dr*r(p,p* Ry ")
Jerroe* e fosp, tg

1
xfasp (P.P*,5)fap [ duB)(a.0".P") Z(H)Mn(P".t=t°)s2'“
0 n=0

" " 2
+ Z t'</t'dp T(P’P+)sk(P+)j:ispsk(P,P+,s) dp Bsk(P+,P ){s .

ZSkM (P",t- t ) + k(k- 'I)M (P",t- t ) fdP T(P, P )
xfdp ' o(p*,p*) fasp. (P, ,s) faPE(P* ,P*)fdPCB(P",PC) § (?)s~"
f j ] f .[ ;—-:0"
M (PS,t-t') + aP*T(p,PH ) aP o (Pt P ) fdsp, (P,P",s)
X n :Z:.‘Z t+<t f f k

N ves C Cy... C C
xfap o fap c, (P'P),eeep)) LIRS farSa (e, .P)

{s2+ 2s i My (PO.t-t') + 22 My (PG ,t-t') 3‘} My (Pgot-t*)}

(120)

(121)



B) Choice of Non-Analog Kernels and Weight Multipliers.

By using non-analog kernels one tries to obtain the same M.l as in

the analog game but with a smaller variance. If there are no Russian

Roulette or splitting events, i.e.

+, +
RO(P ) = Sk(P ) =10

then it is easy, if somewhat tedious, to show how to pick kernels and

weight multipliers which result in a game with the same M.l

as in the

analog game. Substituting the definitions of Chapter II into eq. (108)

results in
M (R,w,t) = de+dw+T(R.R+)5(w+-w wl/:!R'dw'q(R')
r t+<tv t

P 5(R'-R+)6(w'-wo[\v+)-,:1R"dw"E(R'.R")s(w"-we w') dRcdwc
]

x 8(R°-R") ‘H(w"-wco)ﬁ(wc-w“) + (]-H(w"-wco) )

x[:—:’l 6(wc-we) + (- -:;’-Il) S(wci’}ﬁr(Pc.t-t')

e e
- +, + +.., + +
+ Y +de dw' T(R,RY)S(w*-u wzﬁiR'dw'a(R')a(R'-R )
t
k=2 t<t
] + see ' oo - 1Yese
X 6(w W 2/3R]dw] dedwkek(R ,R], .Rk)s(w] wekw )

k
. c c_of
X S(Wk-wekw ) !JTIGRidwciG(Ri-Ri)QH(wi"wco)s(wci-wi)

+ (]'H("i'wco) )[;Z— <S(wci W) + (1-;%)6(%1 )J}

\> '
X ;M"(Rj’wcj st-t ) + Qr(P-t)

(122)
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Performing the integrations over & functions and noting:

- \ . . .
1) W, wekw for all i, thus either W, 3_wco or W, < L for all i (123)

2) Mr(R.O,t) = 0 since a particle of weight zero can contribute

nothing to the score, hence Mr(R,wﬁn'],t) =6n’]Mr(R,w,t) (124)

3) tt changes to t' when the integration of 6(R'-R+) makes

R' = R' (124A)

one arrives at

M (R.w,t) = !(th'T(R,R')o(R')ﬁR"E(R',R"){H(wwtwcwe "fco)

1
"wtwowe]

" -1t - - T ————
X Mr(R ’wtwowe]’t £+ (] H(wwtwowe] wco)) v,

xM(R',w ,t-t')} + J{' dR'T(R,R")a(R* ) fdR, =+ [dR
r e } Eg; AP 1 k

l s - - .

X ek(R ,R], ’Rk) {.H(wwtwowek wco) %i; Mr(Rj,wwtwowEk,t t')
e e k-b -..'-b
] 1 W W b]+ +bk W W 1 k
PIEDN (=" =)
1 kK €
X i Mr(ijWe’t‘t‘)vsb. ]}"' Qr(R’wst) (]248)
J= 3’

The sums over the bz‘s give all possible combinations for the

+ (l -H(wwtw owek'wco))

survivals or deaths of the k particles playing the weight cutoff

game. Survival of the zth particle corresponds to b2=1 and death

corresponds to b2=0. The 8.1 in eq. (124B) allows only surviving
J’
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particles to contribute.

Using eas. (A16) and (A18) one arvives at

MP(R,w”t) = JihR‘T(R,R')U(R'ZIBR“E(R',R") {H(ww Wi =W )

£t to E] co
W W_W
" 4 - . t0Ey
X Mr(R ,wwtwoweu,t t') + (ﬂ H(wwtwowel wco) ) —_
e
x M (R",w ,t-t“)} + :E: J{;R“T(R.R')U(R'ZIGR «soJdR
e k2 %t 1k

K
X ek(R',R]9-.=,Rk){H(wwtwawek—wco) ;g; Mr(Rj,wwtwowEk,t-t')

W, W W
+ Lo €4 ( ‘
__;% 1~H(wwtwowek=wco) ) & Mr(Rj’we’t't )

+Q (Rw:t) (125)

Eq. (125) is of the form

M (Row,t) = KM (R,w,t) + Q. (R,w,t) (125A)

where the form of the operator K can be inferred from eq. (125).

A Neumann sequence may be generated using the iterative procedure

(index i)

M?(R,w,t) =0 (1258)
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and

11 (Ryust) = K Rowt) + Q(Rawat). (125¢)
With suitable restrictions on K (see Appendix C) the Neumarn
sequence converges to a unique solution. From here on, it will be

ass'med K is such that there exists a unique solution to the Mr equation.
Now attempt to separate the weight dependence of Mr' Replace w by
aw in eq. (125) and then substitute

M (R.aw,t) = arFr(R,w,t) = a"w F(R,1,t) (125D)

into eq. (125), divide the result by ar, and note that for a>0

H(ax-b) equals H(x-b/a), this yields

(R w,t) = dR’T(R,R*)o(R" ZIQR"E(R' ,R") {H(ww W W =W, /a)
t'<t 1
W W W
X Fr(R ,wwtwdwe],t-t )} + (]-H(wwtwowe1-wco/a)) we/a 1
w o
x F (R" ,t=t“)} + g_/: dR'T(R,R")o(R") dR]"- de
= t <
X € (R‘,R“, ,R ) \H(ww w w W, /a) }f:F (R SWW, W W »t-t')
€k
W, W W
toe Wy
k
+ —;£73~——‘(I-H(wwtwowcl-wco/a)) ;g; F (R 3 £t )}

+Q (Roaw,t)a (125E)

If v, and W, are proportional to the particle weight, that'is:

we(aw) = awé(w) (125F)

wco(aw) = awbo(w) (1256)
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and if Qr is proportional to the rgh power of the particle weight,

that is

Q. (Riaw,t) = a'Q (R,w,t) (125H)
then eq. (1258) for Fr is independent of "a" and identical to eq. (125)
for Mr. Thus if eqs. (125F) - (125H) hold the separation works and Fr
equals Mr’ which implies

M (Row,t) = w'M _(R,1,t). (1251)

(Conditions (125F) and (125G) make the particle's history independent

of its weight as in Chapter 1)
When r is equal to one, conditions (125F) and (125G) are not
required. To see this, use eqs. (125D) and (125H) to set every weight

argument in eq. (125E) to w and then use H(x) + (1-H(x) ) = 1 to obtain

F](R.w,t) = dR'T(R,R')a(R*) dR“E(R',R")wtw ) F](R,w,t-t')
tr<t &

+ ):f dR'T(R,R*)a(R")fdR --fda g, (R',Ry,*** R, I, W W
e AP 1 Kk o™ k’"t"a%e

X j};F] (RosWst-t') + Q Ry, t). (1259)

k

Note that F, is independent of We and Weo SO €4 (125H) is the only

1

requirement for
M](R.w,t) = wM](R,l.t) (125K)

From eq. (110) and the definitions in Chapter II
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Q (R,w,t) = t+_{dn*dw*1(a,a*)a(w+-wt)aU?*.Fl-vt)

xj.dsp (P,R+.w+.s)s + de+dw+T(R,R+)6(w+-ww )
d oA t

xde'dw'o(R' )6(R'-R+)6(w'-w°w+2/¢'isp0(P.R‘,w' ,S)A(R')s

+ +ﬁR+dw+T(R,R+)6(w+-th:1R'dw'o(R‘)6(R'-R+)6(w‘-w+w°)
t'ct

xﬁsp](P.R‘.w'.s)s dR"dw"E(R‘,R")6(w"-w€ w')
1

X G(mv‘-wow+)/;lspk(P,R',w',s)s dR]dw ses §dR. dw

1 kK

X Ek(R.’R]""’Rk_) 6(w]-wskw')-wd(wk-wskw') (126)

Performing the integrations over the delta functions and using

(123) and (124A)
Q] (R,w,t) = t+£{-dR+T(R,R+)6(Ir-?"]-vt)jc-lspd(P,R".wt,s)s

+ dR'T(R,R')o(R' )A(R' )fdsp (P,R"' ,ww W ,s)s
t"<{ f 0 ta

+ de"T(R,R')o(R')jc.isp.‘(P,R‘bwwtwo,s)s dR"E(R',R")
t'<t

£ 3 [dR'T(R,R')o(R'zlaspk(P,R',wwtwo,s)?ﬁR]-o-'deek(R‘,R.',...,Rk) (127)
k=2 t'<t

By eqs. (84) and (127) Q) must be proportional to w. Thus, by egs. (125H)
and (125K)

ML (R, t) = why (Rowgst) (128)
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From eq. (121) and the definitions of Chapter II

Q,(R,w,t) = +[dR"dw"T(R.R+)s(w*-wwt)s(l'F*-?I-vt)
t s

ﬁspd(P R ,w ,s)s + de dw T(R gt )6(w ~W )
t <t
xﬁR'dw'c(R')5(R'-R+)6(w'-w wc)jclispo(P.R'.w‘,s)szA(R')
drR dw+T(R.R+)6(w+-ww dR'dw'c(R')6(R'-R+)6(w'-w+w )
t z{ tf ¢
x‘/:isp.l (P,R',w' .S)j:iR"dw"E(R' sR" )6(w"-w€lw' )ﬁchdwcd(Rc-R")

1 n ({3 w_"
X { H(w"-w_ )6 (w_-w") + (1-H(w W) )[We sw_-w,)
W L c 2-n
+ L )6(%’]}2%’ M (R stet')s
e n=0
+ ;: +de+dw+T(R.R+)6(w+-wwt)de'dw'o(R')6(R'-R+)
=2 t <t
X 5(w‘-w+wo)‘/:15pk(P,R',w',s)ﬁiR]dw]--- dedwk k(R‘,R],'" Rk)
( Yeooslw -w_w') kﬁRcd 8(RS-R,)
X4 w]-wekw veeb(w, wek :ﬂ- 3 w‘:'i ;=R;

{ i
x JH(w.-w__)&(w owi) + (I-H(wi-wco) )[-w— 6(wc -we)

l 1 co Ci e i

2 k
(l-—)s(w )]}gs +25 z; M (Rg’"c ,t-t')
+ Zi M‘(Rc.w Wi-t') ﬁ M (RJ.wc .t-t')} (129)
=2
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Integrating over the delta functions and noting (123)-(124A)
QZ(R,W.t) = [ dR+T(R.R+)6(l?+-F|-vt2[ds pd(P.R".Wtwlt.s)S2
t =t

' ’ int ] 1 2
+ !qdR T(R,R'Jo(R')A(R Zﬁ!spo(P,R ,wwtwo.s)s
+ dR'T(R,R')a(R')[ds p,(P,R*' ,ww_w_,s)JdR"E(R',R")
'1[:<t f ! to f

{H(wwtwcwe - o) Zb( )M (R" ,ww W W ].t-t')sz'IrI

WW, W W

toe

lH(wwww -w )(52+25 1
g, €O

— M (R",w _,t-t' ))E
L 1 e

0O

+ é[«dRq(R’R')o(R')jas Pk(P.R'.wtwo,s)j:jR]... dR,

X ek(R ’Rl’""Rk) [H(wwt e W ) s +Zs tb‘l (Rn,wt R k.t -t')

k =1
k £-1
!
+2 ’g M (Rg,wwtw W k,t- t') 2 M (Rj,wwtwowe yt-t )f

=1
( i 1 MfoYe bl*""'bk
1-H{ww,w w W, )) (
taoe c b0 b=
k b _nc--bk k

Wtwowek 1 s 2
X ('I - -—w:—— lS + 2s gM](RR.we,t-t )sz’]

+ 2 2 M (R ,W .t-t')ﬁ E M (R..N ’t-t')G ~|
2R T i e eyl

52
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Combining the scattering and multiplication terms and using eqs. (A12)-

(A21)

0, Rost) =!; dR*T(R,R*)auF*-Fl-vg/&s pd(P,R+.wt,s)s?'
=t

2
+ dR°T(R,R')a(R')JA(R')Jds p~(P,R',ww W _,S)s
'{q f 0 to

+ % 't/:<th T(R9R )O(R )'/(.15 Pk(P,R',wtwa.s)j;iR]-.. de

s ese - 2 -t!
X ek(R .R]. ’Rk)[H(Wtwowek wco) is + 2s gMI(RE'Wtwowek't t')
2-1

K .
+ 2 E M](Rg,wtwcwe st-t') z; M](Rj,wwtwowe .t-t‘)$
= k J= k

WW W W
toe
+ (1-H(ww v\ w_ -w__) 52+Zs———-—-'s M, (R,,w _,t-t')
toek co Wy =]l | AN

twows 2 k _ ,
+ z(—m————") ;: My (RyoW ot-t") t] M](Rj,we,t-t')f] (130A)

We =2 j=1



Using eq. (128), and noting H(x) + (¥-H{x) ) = 1

Q, (Ruw, t) = E[gth“T(R,R“)a(|F“-F|-w;)j<'1s pd(P.R+.wwt.s)sz

) ] [} [} ] 2
+'t/"<th T(R,R' }a(R')A(R )ﬁis po(P.R ,wwtwc,s)s

(4

+ f dR'T(R,R")o(R')j::ls p,(P,R' yww w ,s)jc':lR s JdR
14t k to ] k

k
! see 2 - [}
X sk(R .R]. 'Rk) 35 + 2s EZ_] M](Rj ’Wt"owek’t t')

el

[
+ 2 }ﬁ: M. (R, ,ww W w_ ,t-t') M, (R, ,ww,ww ,t-t')z (1308)
= 1Yt € < 1"j> to €
Note that Q] and Q2 (eqs. (127) and (130B) ) are independent
of the weight cutoff game. By eqs. (84), (128), and (1308B) 02 must

be proportional to wo. Thus if the exit weight and cutoff weight

are chosen as in eqs. (125F)-(125G) then eq. (1251) with r=2 implies

MZ(R,wwo,t) = WZMZ(R,wo,t) (131)
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Consider eq. (125) for M,. Let * indicate analog functions.

For an analog game eq. (127) with wt=wo=w€]=w€:1 and w_ =9 becomes

Q‘{(R.w,t)= t+=f;lR+T*(R,R+)6(|'F"-F! -vt)./:jsp;(P.R+,w.s)s
+ dR'T*(R,R*)o*(R"')A*(R' ) Jdsp*(P,R' ,w,S)s
i fosry

+ dR'T*(R,R")o*(R") fdsp* (P,R" ,w,s)s JdR"E*(R' ,R")
t.!t‘ ? .[ 1

+ ; de'T*(R,R')cr*(R')j;!sp;(P,R'.w,s)sﬁR]u- dee;(R',R],-“,Rk) (132)
=2 t'<t

Now consider a non-analog game with weight multipliers:

T*(R,R*)/T(R,R")

£
0

x
i

o*(R*)/o(R')
E*(R',R")/E(R" ,R")

(133)

£
"

=
1

= e;(R'nR]9"':Rk)/5k(R':R]o""Rk)
Using eqs. (133),(127), and (84) the equation for 01 becomes:

-> * +
Q.l(R,w,t) = t+!t‘dR+T(R.R+)6(|;+-r|-vt) ‘I‘ﬁ(%ﬁ-f—))j‘clspd(P.R+,w,s)s

T*(R,R*) o*(R')
+ dR'T(R,R')a(R") ; ~+ A(R’)fdsp,(P,R',W,S)s
t.‘!t' T T(R.RT) o(RY) f 0

+ . /dR'T(R,R')o(R') T;%’:% cs%y:isp] (P,R',w,s)sJdR"E(R',R")
1<t 4

N T*(R,R') o*(R')
+ drR'T(R,R')o(R*) - — Jdsp, (P,R',w,s)s
kf.;t!t' TR St

xﬁR]--:/;leek(R',R].'".Rk) (133)
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Let

A(R') = A(R')
A (R') =ﬁR"E(R'.R") (135)
A(R) =de]--:[deek(R',R].---.Rk) k> 2
If

+ +
Pd(P,R WW,8) = pg(P,R sW,5), and (136)
?: A (R')P, (P.R"W,s) = D AX(R')PE(P.R',W,5), then (137)
=0 " k=0
Q) (Ryw,t) = Q3 (R,w,t). (138)

For an analog game eq. (125) with WS =W W =1 and wco=0 becomes

1 %
ME(R,w,t) = de TH(RR Jo* (R ) [dR"E*(R* ,R" IMH(R" yw, t-t ')
t'<t
; I.!t.dR T*(R,R" )o*(R" Zlc.!R ﬁRk e (R sRyaeee k)z; H(Riwst-t!)
+ Qy(Ryw,t) (139)

For the non-analog case eq. (125) becomes (using eqs.(128) and (133) )

M](R,w,t) . _({dR T(R,R')o(R')fdR"E(R® R“){H(wtwow ]-wco)

T*(R,R') o*(R') EX(ROR") w /o
X T%R R’ 3 UU(R T) ERT.R7) TRV awat-t?) + ('"(""t"o" €, "'co))

T*H(R.R') g*(R') E*(R',R") (R..”w't_t.)} v [RTRR )eR')
X T(RR) o) ERRT M g“f o

' ™(R,R') g*(R')
oo i) (Ko, n ) TR 8D
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3 EE(R'°R1""’Rk)
Ek(R SR]'.."RK) j=]

| T*(R,R')
M] (Rj ,W,t't' ) +(|'H(wwtwqwek-wco) ) T(R .R. )

L o) KRR R )
O(R') Ek(R"R]’...’Rk} § M](Rj’wvt‘t')} + Q](Rtwot) (140)

Using H(x) + (1=-H(x) ) = 1 eq. (140) becomes

M (Row,t) = J{;R'T*(R»R')o*(R') dR'E*(R* ,R" M, (R",W,t-t")

t'<t

'TH [J pec3 ' oo * ‘ vee o
+ é t'<th T (R;R )0 (R !/(.’R] deek(R ;R]9 :Rk) g MI(RJ’w’t t )

*+ 0, (R,w,t) (141)

Since Q] = Q? this is exactly the same equation that M? satisfies;

hence if eqs. (133), (136), and (137) are satisfied,
M](R.w.t) = M;(R,w,t). (142)

This shows it is possible to play a non-analog game whose mean score
is the same as the mean score for the analog game. In general

M2 # ME. which implies the variances are different; several examples

of this will be given in Chapter IV.
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Chapter 1V. Examples

In IV-A two different estimators for flux in a region are compared.
Using the equations of Chapter 111 it is shown (for an arbitrary medium)
that both estimators give the same mean but different variances. The
equations of Chapter I1I are then specialized in IV-B to one-speed
infinite medium problems, and an analytic solution method is provided
to solve these specialized equations exactly. The equations of IV-B
are then used in IV-C to predict the variances in four different tech-
niques for obtaining the expected number of collisions. Finally, in
IV-D the sample variances in Monte Carlo calculations are compared with

the predicted variances for each of the four techniques in IV-C.

A. Collision and Track Length Estimators Compared

Consider the problem of obtaining the integral of the flux over a
given region I in (?,7) space. Twe estimators can be used to solve
this problem; the collision estimator scores 1/0 every time a collision
occurs in I and the track length estimator scores the distance {track
length) a neutron travels through I' between evenis. It is shown below,
first on physical grounds and then using eqs. (125) and (127), that

these estimators result in the same expected value for the flux but

different variances.

Collision Estimator

The number of collisions per unit volume at energy E is equal to

the flux ¢(?,E) multiplied by the macroscopic cross section a(F,E). or
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dN(¥,E) = o(r,E)e(r,E)dV (143)
$(¥,E)dV = dN(¥,E)/o(T,E) (144)

Each collision in dV contributes 1/c to the flux in the volume dV. Thus
an estimate of the integral (over space, energy, and time) of the flux
in region T may be obtained by scoring l/c(?,E) at each collision occur-

ring in the regicn in the given time interval.

Track Length Estimator

The significance of this estimator follows from the property that
flux at a given energy equals speed times particle number density.6
Thus, the integral of flux over a given region at a given time equals
speed times the number of neutrons then in that region. For each
neutron, the integ}al of speed times the number of neutrons within the
region {(i.e. onc or zero) over the time interval equals the sum of one
times the track length within the region plus zero times the track length out-
side the region. Summing over all neutrons shows that the expected mean

track length equals the flux integrated over the region and the time

interval.

In accordance witii these conclusions, the equations of Chapior 111
will be shown here 70 imply that the M"s, but not the Mz's, of the two
estimators are equal. It is sufficient to prove the Q]'s. but not the
Qz's, are equal, for T(P.P+), c(P+.P". B(P',P"), E(P',P"), and

€ (P'sPysee+,P,) in eq. (108) do not depend on the scoring distributions
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p(P,P',s). An analog game will be considered here but one can use
the results of eq. (142) to generalize to a non-analog game.

Let x' be thé coordinate along 3, the direction of the neutron's
flight. Let
er o= (xty',2') (145)
so that the neutron's position is described in a Cartesian coordinate
system where the X' axis lies along 5. The transmission probability

that a particle travels a distance x' through a medium (of macroscopic

total cross section o) is

]
exp [i/rx o(?#ﬁh,v)dﬁ] if x'
0

v
(=]

(146)

T(R.x') = T(F,F*,V) !
' 0 if x' <0
That is
s(v-v")s(y* )6 (z*)T(R,x") if x' >
T(R,R') = (147)
0 if x' <0
Differentiating eq. (146)
- - >
dT(R,x') _ J -o(r+x' ,v)T(R,x") ifx'>0 (148)
dx’ 0 i x' <0

Now consider a spatially convex region T of (F.:) space (it will

be shown at the end of this section that the results are valid even if

I is not spatially convex). Let the possible path length inside I extend

from x] to X, and let T extend over all velocities.
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If vt is less than the distance to I', then the neutron cannot

reach I' in time t and x] = x2 =0, If F is inside I' then x] = 0, and

if v+ 3t is inside T then x

4]

? vt. If the neutron's flight path doe>

not intersect T then x. =

17 % " 0 and no score is possible.

Q's for Collision Estimator

For the collision estimator each collision inside I contributes a

score 1/0 and a free flight for the entire time remaining contributes

zero. Thus
§(s-1/0) R in T

Pk(ngﬂ,,S) = k = 0,1,2000 (149)
6(s) R' not in T

pd(PuP'QS) = §(s) (150)
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Let

o(x',v) = o(mdx',v) (151)

Using equations (146)-{151) with all weights unity, eqs. (127) and

(130) become

X

g (R,1,t) = [ 2 dx'T(Rx) (152)

=

1

X
Q,(R,1,¢) =j; 2 dx'T(R,X')[W?ﬁ) + Zﬁ!R"E(R',R")MI(R".l,t=~t')
1

@ k
0 PP - ] ] >
+ ;Zﬁm]-“ desk(R ,R], ,Rk)z 2 ;M](Rz,l,t t') + 20(x',v)

k 2-~1
; M](Rz,l.t-t“)_§ M.l(Rj,l,t-t')‘ } (153)

Q's for Track Length Estimator

For the track length estimator each track the neutron leaves in

I contributes a score equal to the length.of the track. Thus

Py (PsP",5) = py(P.P':s) = p(P,P',s) for k = 0,1,2:°, where (154)
§(s) if X' < x

p(P.P',s) = { 8(s-(x'-x,) ) if x; < x' < x, ) (155)
<x

5(5-(x2-x]) ) if X,
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Using eqs. (146), (147), (148}, (154), and (155) with 211 weights

unity eq. (127) becomes

"2 +
Q(R,1,t) = (x,-x, )T(R, vt} +’( dx'T(R,x* Jo(x* ¥) (x"=x,)
1

vt
+,[ dx'T(R,x"')o(x' .-\7)(x2-x]). (156)
2

Substituting eq. (148) into eq. (156) yields

x ! [ ]
0 (Rs15t) = (%)%, )T(R,vt) *f 2(x'-x1) ("de:'x ))dx'

X
T(R,vt)
- (xz-x‘) f aT. (157)
T(R,x,)
Integrating the first integral by parts,
*2
o R1.0) = [ TR e (158)
X
1

As expected, the Q] for the track length estimator equals the Q] for
the collision estimator. Substituting eqs. (146) and {147) into eq.
(130), noting that Weo is zero for an analog game, and using eqs. (82} -

(83) to collect terms in szz
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X

g
Q,(R.1,t) = T(R.vt)(xz-x])z + ;([
1

2 - 2
dx'T(R,x"')a(x" ,v)(x'-x])

vt - X2 -
+jx' dx'T(R,x')cx(x‘,v)(xz-x.l)2 +[ dx'T(R,x"Yo(x",v)
2 1

x [Z(X'-x] RE(RY RO (R 1,8t + foR oo faR €, (R AR poe R

x 32(x'-x]) iM] (RE,'I,t-t') + ZiM](RE.] yt-tt)
=1 2=2

2-1 vt
X M, (R.,1,t-t")( |+ dx'T(R.x')o(x'.V)[Z(x -Xq)
;1 j H .{; 2™

x-[dR"E(R',R“)M](R".'I,t-t') +de.|"- deek(R',R],-",Rk)

x Iz(xz-x])bﬂ](Rz,I,t-t') +2 iM](Rz,l,t-t')
2=1 i=2

2-1

x ZM](RJ.,],t-t')‘ (159)

=
02 for the collision estimator and Q2 for the track length estimator
are not generally equal, as can be seen by comparing the case in which

o approaches zero in the medium

Q2 + (x?_.-x])2 for the track length estimator (160)

Qz + ® for the collision estimator (161)
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Thus for optically thin systems the "2 for the track length estimator
will be much less than the M2 for the collision estimator, resulting
in the track length estimator having a much smaller variance than
the collision estimator.

The above analysis can be applied to ron-convex regions as well
as to convex regions. Any bounded region which arises in practice
can be approximated, to any accuracy desired, by a finite number of
convex parts (see Appendix D). For either estimator the Qr for any

region equals the sum of the Qr's for its parts.

<
Since the equation for Mr is linear, the Mr for any region equals the

sum of the Mr's for its parts. (The M1 fed into the equation for Qz

in any subregion should be the M] for the entire region I' and not the

M, for the subregion.)

]
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B. One-Speed Infinite Medium Equations

Consider a one speed problem in an infinite homogeneous medium
{with macroscopic total cross section o*) where an event score depends
only on the relative coordinate, ;'-;, between the next event point

and the departure point. Let
AE(R')=AE (k=0,1,2,¢*+) independent of R' (162)

so that all cross sections are constant.

Suppose one attempts to solve this problem using 2 non-analog

Monte Carlo Method+ in which

o(R'‘=¢c independent of R’ (163)

Ak(R')=Ak (k=0,1,2,°*+) independent of R’ (164)

With these choices, the fictitious Monte Carlo medium looks infinite
and homogeneous just as the real medium does. Since the Monte Carlo
medium is infinite and homogeneous Mr(?.ﬁ,w,t) should be independent of

rand 8. That is, any location looks the same as any other location

since there are no reference points, or

M (FEawa )M (w,t). (165)

T for simplicity weight cutoff is not considered (i.e. W.o=0)-
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The cross sections are all constant so the probability of an

> -
eventless transmission from r to r' is

—>.-+
e-olr L Y. T'-r is along the neutron's flight path
(166)
0 otherwise
Let
rer=(xt,y',2') (167)
If x' is taken along 5. the direction of the neutron's flight, then
the transmission probability kernel becomes:
T(P,P')=e™™ e('é-ﬁ-)c(y')c(z-)a(w'-wtw) (168)
where
o(R')=o (169)
The free flight kernel becomes
-gx ! -+ > .
D(P,P',t)=e 6(9-9')6(y')6(2')6(w'-wtw)6(x -yt) (170)

Substituting eqs. (82), (84), (86), (168), (169), and (170) into

eqs. (125), (127), and (130) results in eqs. (171), (172), and (173).

o pvt e
1 o =X ot
Mr(w,t) :g: dx'oe kAkMr(wwtwowe st-t )+Qr(w.t) (1)
k=170 k
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Q] =j-dx'e"°x.6(x'-vt2/:ispd(x' .wt,s)s

o vt 1
+ Ef dx‘ce °* dsp, (x',ww, W _,S)A S (172)
=07 j k te’ Tk

Q, de'é(x -vt)ﬁspd(x SWH, .s)e"”‘ 2

vt
+ Z dx'ce™® fdspk(x SWH LW 9s)A

k=0"0

2 . 1wl " ]

x {s +25kM1(wwthw€k,t-t Jk(k 1)M1(wwtw°wak.t t') (173)
Let
y = ovt (174)
yl = thu = o.x'l (]75)

Changing variables t and t' to y and y' results in

M (w.y) = f: kA fyd oY M ( ') + (176)
pwey) = 2, KA ] dy'e ™ M (win e, Ly-y ) +Q,
k=1 0 k
Q = e":/:isp (y.ww, ,s)s
1 a7t

Yy
+ H‘ dy'e 'yfdspk(y MWW .s)A 5 (177)
k=0 0
Q, = e":/:isp (ysw, o5)s”
2 d t

o0 Y _yt 2
+ 2 [aye Y [asp, ty' s, { s
=070 K to k{

] 2| <t}
25Kty e oY=y Tk (k1M (o vy )} (178)
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From eqs. (176) and (A6)

Mr(w,y) = EE; kAkT[Mr("wtwbwek’Y)] + Qr
Expanding Mr and Qr in power series
M.(w,y) = W' ng:)any"

Q, (w.y) = w"g by"

Substituting eqs. (180) and (180A) into eq. (179):

r :E: n_r lii r. [ < n r n
W ay =W KA, (www )T :E: ay ] + W }E: by

= = L [n=0 n no "

Let

- . v r
a= kz—l kAk(wtwowek)
then using eq. (A10)

) oo ) . J )

n _ n+l J n

Z ay = GZ (-1)" 'nla, -Z (-1) 'g.—:+ 2 bny
n=0 n=0 Jj=ntl n=0

Collecting like powers

n+1 -1
3 ° (:llETJE (-1)"m!a_+ b
' m=1

(179)

(180)

(180R)

(181)

(182)

(183)

(184)

Hence as long as Qr can be expanded in a power series the solution

to eq. (125) is given by eq. (184). Thus solving for the expected errors,

in a problem where the moments are dependent only on time and weight, has

been reduced to solving for the 2., given the bn'
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This power series method fails, of course, when Qr is not

anaiytic in y. Qr need not be analytic. Suppose
pk(y'.wwtwo.s) = 6(s) and

Pyly,wi, .s) = 8(s-ww H(y-y ) ),

then eq. (177) becomes

0, = wiHly-y Je™.

Thus Q] is independent of space (recall y is a relative coordinate) and

angle, but not amalytic in y.
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€. Theoretical Comparison of Four Estimators for Collisions

The variances of four Monte Carlo techniques for obtaining the
mean number of collisions a particle (and its secondaries) makes in
time t are compared below using the equations of section B.

Consider an infinite homogeneous medium with the following proper-

ties:

Aa = 1/3; a third of the collisions result in absorption (185)
AT = 1/3; a third of the collisions result in scattering (186)
AE = 1/3; = third of the collisions result in two exiting particles (187)

A; = 0 for m > 3;  no collision results in more than two exiting

\
N

particles (188)
o* = macroscopic cross section (188A)
a* = g kA'E = 1] (189)

The following four estimators for collisions are compared:

1) @analog collision estimator

2) track length estimator

3) survival biased collision estimator

4) survival biased track length estimator

All kernels, score distributions, and weight multipliers are chosen in
accordance with eqs. (133), (136), and (137) so that eq. (142) holds
when biased kernels are used, tius ensuring estimators 1) and 3) have

the samz M] and estimators 2) and 4) have the same M1. Estimators 1)

n



and 2) are the same as the estimators described in IV-A except that
the scores in 1) and 2) are a constant ¢ times the scores in IV-A. Thus
the M]'s for the estimators 1) and 2) will be o times the H1's for the
corresponding estimators in IV-A. The Ml's in IV-A are equal; hence the
M]'s for estimators 1) and 2) are equal. Thus estimators 1), 2), 3)
and 4) can be expected to have the same means but different variances.
One possible point of confusion should be addressed before obtain-
ing the variances for the four estimators. Quantities such as T*, o*,
A*, E*, and ez which describe the medium must be independent of biasing
schemes and choice of estimator. However, the score distributions
p*(P,P',s) (used with unbiased kernels) do depend on the choice of

estimator. Thus the p*(P,P',s) for estimators 1) and 3) are different

from the p*(P,P',s) for estimators 2) and 4).
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Game 1 Analog Collision Estimator

Unbiased kernels are used and the particle's weight is scored at every

collision. For an analog gamc a particle's weight never changes.

AO(R') = AE(R’) AO = Aa =1/3

]
—

T(R,RT) = T*(R,R+) y

[}
-t

o(R') = o*(R') w
E(R',R"} = E*(R',R") we =1 A, = A{ = 1/3

! = ' = =
EZ(R 0R].R = E%(R 'R]'RZ) W 1 A A

,)
D(R, R' »t) = D*(R, R' ot)

pk(P.P',s) = pE(P,P',s) = 8(s-w') Kk =0,1,2
py(P:P*,s) = p3(P,P',s) = &(s)

Substituting relations (185)-(197) into eq. (177)

Y oy
Q.lf A+A+A}dy f e gy
0

From eq. (182) and (191)-(194)

:ft
= www =1
k=1 k to ek

Using eqs. (A6) and (A10) eq. (198) bacomes

= WT[1] = w Z( L _.,.

(190 A,B)

(191 A,B)

(192 A,B)

(193 A,B,C)

(194 A,B,C)

(195)

1196)

(197)

(198)

(199)

(200)
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therefore from eq. (180A)

n+] '
b o= n> (201)

From eqs. (184) and (201)

a = -'—]jr)‘-:li (:Z: (1) a + l) (202)
Solving eq. (202) for the first few a:

a = 1

a, = 0

a = 0

Inductive Proof that a = 0 forn > 2

Suppose a = 0 then from eq. (202)
n-1

(~i)mm! a +1=20
2 .

From eq. (202)

n+2 -1
a = (D ((-1)"n! a, + :z: (-1)mm! ay + 1)

n+l (n+1)! e

-

= 3 =0
A (n¥1)! “n

Hence a, = 0 implies i = 0; but 2, = 0 hence an =\0 for n > 2.

Thus by eq. (180)

M, (w,y) = wy = wovt (203)
Using eqs. (190)-(197), (203), and (A6), eq. (178) becomes

. 2.1 2
Q, = [(AO+A1+A2)T[1] + (2A,+4A2)Tl.y] + 2A2T[y ]] W (204)
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Using eq. (A10)

@

2 n n o n
2y = L RO A R
WG, g (1) o 2 Y. (-1) STtge 2 n§=3: G i (205)

n=2
w"zqz=y + g- an % i (-1 -r“': (206)
n=3
By eq. (1804)
b] =
bz = /2 "
b, = % (:l%T_— forn > 3 (207)

From eqs. (184), (199), and (207)

ay = 1

3, = 1 |

a = (i'-)';ﬂﬁi_(-nmm: a_+ %} n>3 (208)
Using eq. (208)

a5 ° 37 3

a, ° 0

Proof (by induction) that a = 0 forn > 4
Suppose a = 0; then from eq. (208)
o,
(=1) m! am + 3 =0 (208A)
m=1

Uriting eq. (208) for n + 1

n -1 ‘
= (=0 ((4)%: a + t (-1)"'m: o+ %) (2088)

41 T () Lo
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Using 3= 0 and eq. (208A) in eq. (208B) results in a s 0. Thus
a, = 0 implies a =0forn24.
From eq. (180)
%mg)=fu+y2+§ﬁ) (208¢)
Using eqs. (203) and (208C)

VAR = M, (w.y) - M lwy) = wiiys v°) (209)

Game 2 Track Length Estimator

Unbiased kernels are used and the event score generated by a particle

of unit weight is ¢ times the distance traveliled between events.

AO(R') = AE(R”) AO = Aa {210)
T(RAR') = THR.RT)  w, =1 (211)
o(R') = o*(R") W= 1 (212)
E(R',R") = E*(R",R") w.o =1 A, = A% (213)
& 1 1
EZ(R',R],RZ) = EE(R”R]’RZ) ws2 = AZ = AE (214)
D(R.R*,t) = D*(R,RT,t) (215)
pk(P,P",s) = pE(P,P",s) = §(s=w'ox') = 6(s-w'y') k = 0,1,2 (216)
py(PsP',s) = P;(PnP';S) = §(s-w'ox') = &(s-w'y'} (216A)
From egs. (177) and (216)
-y y ‘y" ) 1 ‘
Q] = w[ye +j.§ dy'e iAOy + A]_Y + Azy } (217)
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Using eq. (A7) and (A8)

- =
Q/w=yeV +ylyl=ye + eV JZZ & (218)
- - j - y ] j+“ j
Q]/w=e'y ng—.-ﬁey(e -1) =E {-1) i,T (219)
=1 J=1 )

and from eq. (182) with r = 1

a=£kAw ww =1 (220)
= kekot

Q] {and hence bn) and o are the same as in game 1, Thus following the

same steps as in game 1 yields
M](w,y) = wy (221)

From eqs. (170) and (221)
Q, = wiyle™ + wzfydy'e"'y AyZanyleny
2 A { o 1 2
+ 2A,y'(y-y') + 4A2y'(y-y‘) + 2A2(y-y')2} (222)

Using eqs. (A6) ~ (A10)

- 2 -

Wi, =y - vyl + 2nviy] + 210 (223)
2 2,y L 22, 2

W 02-3(e 1) +3y +3 (224)

© n

-2 2 n

W, =y 52_: ()" & (225)

n=3

b.=0 b,=1 and forn>3 b = 2(-1)" 1 (226)

1 2 23 5,73 o
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From eas. (182) with r = 2

Q= |§ kAkwikwEwi = 1 (227)

Using eq. (184) a = 0, 2, = 1, and for n > 3

+1 -1
_(’1n m , _2.
a = —-%T—~ (-1)m a; - 3 (228)
m.‘:
-Lﬂ. = = =
Thus a3 =33 a4 = 0, a5 0, and a6 0.

A4
£

Proof (by induction) that a, © 0 for n >

Suppose a = 0; then from eq. (228)

n-1 o 2
2; (-1)"m: 2 - Z=0 (229)
m=
Again from eq. (228)
n+2 n-1
a,, - &HT[M)%: a +§:] (-1)"nt 3 - %] (230)
m=

Thus using eq. (229) in eq. (230) it follows that a = 0 implies

a = 0. But a

n+l 4= 0; hence for n > 4, a = 0.

Thus from eq. (i80)
M?_(w.y) = wz(y2 + §y3). and (231)

VAR = Mz(w,y) - Mf(w,y) = w2 % y3 (231A)

78



Game 3 Survival Biased Collision Estimator

The exit kernels are biased so that absorption cannot occur. This is
known as absorption by weight reduction, or survival biasing. A part-

icle of weight w generates a score of w every time the particle col-

lides.
AO(R') = 0 no absorption, called "survival biased" (232)
+ +
T(R,R') = T*(R.R') Wy © ! next collision location (233)
o(R') = o*(R') "o 1 rot biased (234)
[] " = 3 ] o = g_ = 3 = l
E(R',R") = SE*(R',R") weu 3 AP C3 (235)
" = 3 *(n? = g— = 3 = l
e(R":RyRy) = 265 (RYIR IR, e, "3 M7 2 (236)
P (P:P'ss) = pX(P,P',s) = 8(s-w') k=0,1,2 (237)
P4(PsP'ss) = py(P,P,s) = 6(s) (237R)
Substituting eqs. (232) - (237A) into eq. (177) yields
Yy '
Q = f dy'e (238)
0
Using egs. (A6) and (A10)
. n+l "
Q,/w = 1= 2 (™ & (239)
n=1 ’
Substituting eqs. (233) - (236) into eq. (182) with r=1 yields
= lu-g- .lcg =
m--23+223 1 (240)
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Q] and a are the same as they were in game 1; thus following the same

steps as in game 1 yields

M, (w,y) = wy

Substituting egs. (232) - (237A) and (241) into eq. (178) yields
f we”{ O+30ww+1+§uww+§uww3]

Using eqs. (A6) and (A10)

"2 -rﬁ]+nu]+$uﬁ

-2 R S
w g, 92 e

L

f =]
n

1

From eq. (180A)

-n"

n'

(=2
]
—t
o
o
0
e
Of—t

and for n>3 b =

Substituting eqs. (233) - (236) into eq. (182) yields

Inserting eqs. (245) - (246) into eq. (184) yields

- =2 =__9
a, ° 1 8, = ¢ 3, 3
a = (2(1) >forn33
n
Proof (by induction) that a_ = (- lﬂn+] for n>3
n:3
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(242)

(243)

(244)

(245)

(245)

(247)

(248)



Suppose

_ n+l 9
an = (-1) —T—; (249)
n'3

Writing eq. (248) for n+l

(-0" (2 SES m 2, .\N ]
A1 T (nt1)! (3_ & 117, + 3t -3 - §) (250)
Dividing eq. (248) by -3(n+1)

-2 n n-1
n__ _(-1] (gz' (_1)"‘,,,:3“‘-%) (251)

3(n+1) ~ 3(nt1)! \3 £

Subtracting eq. (251) from eq. (250)

a n n-1
3+ + 3(n:l) = 3énl1))f (%% (-1)'“m.'am + (-])"Zn.'an- %) (252)

Substituting a from eq. (248) into eq. (252)

a

S * 30Ty 7 O (253)

Substituting eq. (249) into eq. (253)

n+2
(-1 9 (254)

a n+]

n+1 (n+1)!3
Eq. (249) is true for n=3; thus by eq. (254) the assertion is proven.

Thus by eq. (180)

o
+
mywy) = [y + P+ 30 ()™ 2y (255)
n=3 n:3

VAR = Hy(w,y) - M (w.y) (256)
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Using cqs. (241) and (255)

VAR = wz [y - %yz + Z (-'I)M‘l
n=3

9

———

n
ni3

’

(257)



Game 4 Survival Biased Track Length Estimator

The exit kernels are biased so that absorption cannot occur and

the event score generated by a particle of unit weight is o times the

distance travelled between events.

AO(R') = 0 ao absorntion, "survival biased"

+ +
T(R,R') = T*(R,R) % 1 ] next collision location

o(R') = o*(R') w =1 | Mot biased

n ..3 ' » ...2_ —.3 :l
E(R..R ) - E'E*(R !R ) We - 3 A-I = Z‘A; 2
] =3» ' -—-2- = 3 =l
ep(R'RyRy) = 23 (RUR1Ry) W, =3 A =353 =3
pd(P,P'.s) = pk(P.P',s) = P;(P.P'.S) = p;(P.P'.s)
= §(s=-w'ox') = 6(s-w'y') k =0,1,2
Substituting eqs. (258) - (263) into eq. (177)
) Yy
Q] :wyey+ ]’dy.ey y'
0
Q]/w =ye ¥ 4+ e'y(-y-I) +1=1-e7
0 nx—fl
Q'I/Wa Z(-” n.

n=1

Substituting eqs. (259) - (262) into eq. (182) for r=1

(258)

(259)

(260)

(261)

(262)

(263)

{264)

(265)

(266)

(267)
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Q] and a are the same as in game 1; thus following the same steps as

in game 1 yields

M] (w,y) = wy

Substituting eqs. (258) - (263) and (268) into eq. {178)

Using eqs. (259) - (262) and (A6) - (A7)

y )
+ wzf dy'e 4 A2 {y'z + 4y'we (y-y') + 2w
0 2

2
02/w

22
Qz Wy

2 - 2 4
y'e™ - u[y’] + 20ly] + 3 TOy]

Usings Eqs. (A8.1) and (A11)

2 _ 10 -y
Qfw = ge~ -

2 2,10
QW =y + g

84

10,

10

_ Y oy
ey+w2f dy'ey A]{y'2+ Zy'wE
0

1

(y-y')}

2

)

(y-y')z}

(268)

(269)

(270)

(2n)

(272)

(273)

(274)



Using eqs. (273) and (274) in eq. (184)

-~ = I—"-—-S
a1 = 0 a 1 a3 3

2 3'3
n+l
=e! m ., 10
CI 3 4 (-1) moa, g n>3
m..‘
, ) ntl
Proof (by induction) that a, = (-1) —-; forn> 3
n'3 -

Suppose

ntl _6

p° 1)
ni3"

Writing eq. (276) for n+l

341 * (n+'|)' ( g (- 1) %me a * (- 1)" %—n! a -]—g

Dividing eq. (276) by -3(n+1)

e ) /o2 ; 10
3(n+1) = 3(n+1)" \ 3 "; (-l)"'m. a -

Subtracting eq. (278) from eq. (277)

a
_n___
A1 ¥ I1)

n
=3—(("‘—1-127-:-(gt(1)ma- 0, (1" 2na)

Using eq. (276) in the right hand side of eq. (279)

a

n =
1 Vi S0

Substituting eq. (276R) into eq. {280)

= (M-

a
1 (ne1):3™!

(275)

(276)

(276A)

(277)

(278)

(279)

(280)

(280A)
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Now eq. (276) is true for n=3, so by induction it is true for n > 3.

QED.

From eq. (180)

22 . 2% +1 6
My{iy) = Wy +w n);g(-l)" n—l—3;y" (281)

Using egs. (268) und (281)

2 2w +1 5§
VAR = M, {w.y) - M(w,y) = w ..):; -n" = y (282)
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Comparisons of Four Estimators for Collisicns

1 ] 1
¢! VAR=y+ 3y

#2 VAR = 5yt

. m(_”ml 9
=Lyt — yft
#3 VAR»y Gy ‘*“§3 Ty y

o(_“n-rn 6 f
#4 VAR » —y
3 o




D. Numerical Comparison of Four Estimators for Collisions

Monte Carlo calculations were performed (using the MCNP code at
the Los Alamos Scientific Laboratory) for each of the four games in
Iv-C. Forty thousand neutron histories were followed in each game.
The sample means and variances are compared below with the theoretical

means and variances predicted in IV-C.

M] = sample mean Score
ﬁé = sample mean-square Sscore
VAK = ﬁé - ﬁ? = sample variance
§E = (VK§740000)‘/2 = standard deviation of the sample mean
M] = mean score
M2 = mean-square Score
VAR = M2 - Mf = variance
1/2

Sm = (VAR/40000) = standard deviation of the mean
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Game 1 Analog Collision Estimator

y=1 2 3
ﬁﬂ .99786 1.9914 3.0000
. ﬁé 2.2039 7.6530 17.9861
VAR 1.2082 3.6875 8.9857
S .00550 .00960 .01499
M, 1.0000 2.0000 3.0000
M, 2.2222 7.7778 18.0000
VAR 1.2222 3.7778 9.0000
S, .00553 .00972 .01500

4
3.9954
33.9382
17.9748
.02120
4.0000
34.2222
18.2222

02134

5
4.9828
57.1933
32.3650
.02845
5.0000
57.7778
32.7778

.02863
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90

Track Length Estimator

y=1
.99935
1.2208
.22207
.00236
1.0000
1.2222
. 22222

.00236

2
2.0002
5.7783
1.7745

.00666
2.0000
5.7778
1.7778

. 00667

3
3.0027
15.0690
6.0524
.01230
3.0000
15.0000
6.0000

.01224

4
4.0002
30.1939
14.1815

.01883
4.0000
30.2222
14.2222

.01886

5
4.9816
52.3384
27.5215
.02623
5.0000
52.7778
27.7778

.02635



Game 3

Survival Biased Collision Estimator

y=1
.99735
1.8763
.88156
. 00469
1.0000
1.8846
.88455

.00470

2
2.0001
5.7110
1.7089

.00654
2.0000
5.7126
1.7126

.00654

3
2.9976
11.6566
2.6711
.00817
3.0000
11.6891
2.6891

.00820

4
3.9895
19.8487
3.9331
.0099z
4.0000
19.9610
3.9610

.00995

5
4.9831
30.4348
5.6034
.01184
5.0000
30.6335
5.6335

.01187
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Survival Biased Track Length Estimator

y=1
.99928
1.0328
.03420
.00092
1.0000
1.0341
.03415
.00092

2
1.9989
4.2499

.25409
.00252
2.0000
4,2528
.25283
.00251

3
2.9962
9.7701

.79303
.00445
3.0000
9.7927
.79272
. 00445

4
3.9951
17.7210
1.7605

.00663
4,0000
17.7518
1.7518

.00662

5
4.9862
28.0534
3.1910
.00893
5.0000
28.2001
3.2001

.00894



Chapter V. Conclusion

The equations for M] and M2 are useful for at least two reasons.

First, it is possibie to use the equations to prove certain well known

2,3,4,7,8 (e.g. see IV-A of this work). Second,

or conjectured results
the equations are useful in predicting errors in specific Monte Carlo
transport calculations (e.g. see IV-C). Often a proposed variance
réduction technique will reduce the number of histories required, but
increase the computation time per history. The equations for M] and
M2 allow prediction of how much a specific technique reduces the number
of histories required, to be weighed against a change in the time
require/! per history.
T'ie moment equations derived here are Tinear integral equations,
and thus can be solved by several techniques. One possibility is
simply to truncate the Neumann series of eq. (C7). Another possibility
is to convert the moment equations to their integro-differential forms
as Amster and Djomehri] do, and then use a PN or an SN solution technique.
(Sarkar and Prasad3 have used a P] approximation to the integro-differ-
ential forms of the moments equations to study the exponential transform.)
This work generalizes the theory developed by Amster and Djomehri]
to include:
1) Error prediction in Monte Carlo transport calculations of time-

dependent multiplying systems, even when supercritical.
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2) Score distributions which depend on the preceding event point
as well as the current event point. This allows prediction of
errors in calculations using a track length estimator.

3) Russian Roulette and splitting events. These are standard

variance reducing techniques.
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APPENDIX A - Useful Results

Result #1

Consider

8 =J/;(P,s-s*.t)srds (A1)
Let € = s-s*, that is s = S+s* (A2)
8 =ﬁ;(|=.s.t)(§+s*)"ds , (A3)

Using the binomial theorem

B =fd§ ~(r s*™ M u(p,§,t)
% n 2 XY

v
= (") s*"""fasu(p,8,¢)8" (A4)
n=0 \"

Using eq. (81)

r
& <:> 770 0, 0.8) = fasylps-sn,e)s” (A5)

(=)

n=



Resuii #2
Consider the operators
y -yt
TR = [ &' Riy-y'day'
0
Y -y
VIRw)1 = [ e Ry ey’
0

Fron integral tab1e55

@ j
viy"] = mte™Y r for m>0
jem+1 3
J
Viy"] = m! ( 1-e7Y f: L.) for m>0
50

Let x=y-y' in eg. (A6)

TIR(y)] = e-‘yfyexR(x)dx
0

From integral tabless

J

L = 0™ Y (I for mo

jem+l

-
" = (1™ me (e'y- f: -1y '}r) for m>0

J=0
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(A7)

(A8)

(A8.1)

(R9)

(A10)

(A11)



Result #3

Consider the sum

] ] b]+...+bk k_b -too-bk
s= 3 -3 x (1-x) | (w2)
b]=0 bk=0
This sum can be rewritten
] b] l-b] ] bk l-bk
S= Ex (1-x) E X (1-x) . (A13)
b]=0 bk=0 _
but
i "(-x)' =1, (A14)
n=
thus
S=1, (A15)
Consider the sum
] ] b +.--+b k-b -o.o_b
s= 35 3 x N LD M L (A16)
b,= b, =0 J i’
1 k
Rearranging the sum over the b's as in eq. (A13) and using eq. (A14)
] bj l-b‘j
S = ZF(J') Z:x -x) 78 | (A17)
J bj—O J
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or

S=x 2 Fj) (A18)
J -
Consider the sum
] ] b -I-oo--l-b k-b ""'b
s= 3 - T xt ko T KRG,
. b'i=0 bk_._.o j jl
X }z: (;(.«1)‘5%’:I (A19)

Rearranging the sum over the b's as in eq. (A13) and using eq. (A14)

1 b, 1-b,
s= 2R Y x7 ) T Y e (A20)
J bj 0 _ i

l-bl

0 (1-x) P
X X -X s Or
by 1

1
b, =0

s = x2 I F(3) D, 6(1) (R21)
j 2
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Appendix B

Simple Example of an Unreliable Sample Variance

Consider particles trying to penetrate a thick shield. If the
shield is any good, very few of the particles will penetrate the shield.
Thus, it is possible to simulate a huge number of particles without any
of the particles penetrating the shield. If none of the simulated
particles penetrate the shield, the sample mean and the sample variance
will both be zero. However, even for the best shields the probability
of penetration is some number €>0. The sample mean is thus in error,

at the same time the samp.e variance is indicating zero error.
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APPENDIX C

CONVERGENCE OF THE NEUMANN SERIES

FOR EQUATION (125)

Let x' be the coordinate along 8, the direction of the neutron's

flight. Let
FI_F = (x‘,y'.z')

so that the neutron's position is described in a Cartesian coordinate

system whose origin is at T and whose X' axis lies along Q. Let

X vt'

-> -> > > >
r’=r+ 0x' = revt’
T(R,R') = &6(v-v*')6(y")86(z' JT(R,¥', V")
o(R') = o(?'.c‘)

¢ ¢ e e = +l +I L X I ]
ek(R ,R +R ek(r ,V .R], ’Rk)

1’ k)

Thus ey. (125) may be rewritten:

M (R,w t) f vdt TR, rvt' Jo(r+vt',v)

eyt ! v LN -
X ZfR ...de (r+vt .v,R], »R ){H(wwtwcwek W)

5 e
X M (R.,ww ww ,t-t') + (1 ~H(ww, w -w ))
51 rJj toek we tas:k co
ﬁ MRt ) 4 QRME) (c1)
J:
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Define the operator
X(t")6(R,w,t=t') = VT(R,74+Vt' Jo(r+vt',V)

n&f <> - -+
X i dR]-a- deek(r+vt ,v,R],---,Rk) {H(wwtwcwek-wco)

R
toe

' —_k -
X :i; G(Rj,wwtwcwek,t-t ) + e (1 H(wwtwcwEk wco’)

J=
X G(Rj,we,t-t )}

=

Thus

t
Mr(R,wgt) =Jg. dt1x(t1)Mr(R,w,t-t]) + Qr(R.W.t)

or replacing t by t-t' and t] by t"
t-t*
M (RgWgt"t') =f dt"x(t“)M (R,W,t-t'-t") + Q (ng;;t-t')
r 0 r r
Mow use eqs. (C3)-(C4) to generate a Neumann series.
t t-t]
Mr(R,w,,t) =j; dt]x(tl){j; dtzx(tz)Mr(R,w,»-tlvtz)

+ Qr(Raw’t“t])} + Qr(st:t)

let T =¢
n 1

next term in the series

t
M (R.w,t) = QV(R.w,t) +j£ dt]x(t])Qr(R,w,t-T])

t t-T t-T
+J£ dt]x(t])JE &tzx(tz){JE e (e (Row,toT))

* 0 (R,

+t2+---+tn and substitute eq. (C4) into eq. (C5) for the

(C2)

(C3)

(C4)

(C5)

(C6)

101



Repetitively substituting for Mr(R’"’t'Tn) yields:

o .t t-T
5, (Ryw,t) = Q (Rt + qZ;fo atputy) [ abputty)eo-

t-T
xf gt xit )Q_(R,w,t-T ), the Neumann series. (€7)
A q*' '™ q

("zeroth event") and n

Physically Tn is the time elapsed between a particle's birth

th event, tn is the elapsed time between a

particle's n-]st and nth events, and finally, t-Tn is the history

time remaining after a particle's nth event.

In the following theorem, unless otherwise specified, egs. {C8)-

(C15) hold for all possible arguments of the bounded function. A1l

naxima are taken over the full range of all variables. For instance,

max(A,B,C) = max(A(X}, B(Y), C(Z) )

all X,Y,Z2

where X, Y, Z may be n-tuples of vectors.

Theorem C. The Meumann series (C7) converges if there exists a

uniform bound, B>1, such that:

1)

2)

3)

102

The particle starting weight is bounded.

w<B (cs)
A1l weight multipliers are bounded.
wt<B. "‘o<B’ and wek<8 (c9)
The exit weight from a Russian Roulette game is bounded.

! ¢ L N
Wo<B and wco(R )<we(R Ry ’Rk) (c10)



4) The speed is bounded.

v<B (C]] )

5) ‘the macroscopic total cross section is bounded, thus

T(R,7+vt' )o(revt’,v)<B (€12)

6) The number of particles departing an event is bounded.

k<B (C13)

7) The source function Qr(R,wo.to) is bounded

Qr(R’wo’to)<B for 0 .<w < max(wwww sWg oW) (C1a)

tUEk

0<t <t
s

Before proving this theorem, let us discuss conditions 1) - 7).
Conditions 1), 2), and the first part of 3) ensure that the particle
weights are always finite. The second part of 3) simply says that
in Russian Roulette, the exit weight is larger than the cutoff. The
speed of 1light bounds any particle velocity, so condition 4) holds.
Condition 5) is satisfied for any real problems. (For delta function
cross sections condition 5) could be altered to

t()'.-E > -+ + > >
T(R,r+vt' )o(r+vt’',v)vdt'<2eBy,
to-e

so that the expected number of next collisions in any time interval is

bounded.) Condition 6) should always hold in practice, although it is

somewhat stronger than the condition actually required:

i kA, <2.
k=1
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That is, the mean number of particles departing an event is bounded.
The source term Qr(R.w.t) must be bounded because it is the first
term of the Neumann series. (The limitation on wo in eq. (C14) is

required since we desire to bound both Qr(R,ww WoW: t-t') and
k

t
Qr(R.we,t-t') in order to say x(t')QT(R,w.t-t') is bounded.) Qr will
be bOqued if conditions 1) - 6) are met, M2 is bounded for £<r, and

the moments of the event score are bounded, i.e.,
J/asp(P.P'.s)sz<S , for f<r.
max -

For example, see egs. (127) and (130).

Thus we proceed in the following manner. Q] js bounded and thus
by theorem C, M1 is bounded. But M1 bounded implies 02 is bounded,
and thus by theorem C, M2 is bounded. But M1 and M2 bounded imply 03
is bounded, and so forth.

Proof of Theorem C

Consider a bounded function

0<w < max(ww,w w_,w )

te Ek e
G(R?wo’to) <6 for 0 Stost (c15)
Gm >
Note that H(wwtw w_-w__) <1 and that, since by assumption 3)
o', €O
W o<W,
co— e
WW, W W
to ek

(I-H(wwtwbwE -wco)) <1
e k
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Using these facts and eq. (C2)

x(t')6(R,w,t-t') < VT(R,Fvt' Jo(T+vt',v)
X Zﬁk seofdR €, (FHVE! VR ,eee R, J2KE (C16)

where the 2k comes from the two sums on j of eq. (C2). By egs. (82),

{C11), and (€12}

x(t")6(R,w,t-t*) < 2B G Z kA r+vt',v)
k:

At this point we insist
zkA (?ﬁt'&) < B.‘, where B.‘ > 1,
=1 &

which will certainly be true if k is bounded, in view of eq. (83).

Thus
x(t)6(R W, t-t') < 232319"1 2 (c17)

Now let's look at the qth term of the Neumann series of eq. (C7).

st~ T
f dt]x(t ) dtzx(t )---j dt xlt )Q (R,w,t-T )

Since the functions Qr and 1 both meet conditions (C15) then by (C17)

N <c"f dt]f dt dtq la ¢,

105



Recall that T" = t]+---+tn and let

y,=t-T =t-T

n n-
t y y y
1 -1
0 o <Jo 0 q
t y y
o -3 q-2
T ...fdy oc.fq dy y-dy-
0 1 0 q-2 0 g-1"g-1

t y Y
_ q-4 g-31 2
T -Jf dy °°° dy Jr 21 Y. 9Y,
0 1 0 q-3 0 2! ’q 9 q-2

l'tn . then

t q
e, 18
T "Jg @ N1 T g

Hence the qth term of the Neumann series iS
Nq < thq/q!

Thus the Neumann series is less than the series for exp (Ct) and

hence Neumann series (C7) converges. This completes the proof of

theorem C.
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APPENDIX D

Approximation of a Bounded n-Dimensional Region

by Convex Subregions

Theorem Any bounded n-dimensional set possessing a volume as defined
by the Peano-Jordan content, can be approximated arbitrarily closely
(in volume) by a finite number of closed convex, n-dimensional
intervals which are separate.

This theorem can be demonstrated using well-known results from the
theory of volume and measure in mathematics. Here the term closed

interval is defined as the Cartesian product of n one-dimensional

closed intervals -- namely, a closed interval I is defined as the set

of points P = (x].xz.---,xn) in n-space satisfying the inequalities

a. < x, 1<i<n.

< b,
1 1~

1

By separate it is meant that any two of the closed intervals have only

boundary points in common.

The theorem follows immediately from the development of the

theory of content.9 A bounded set has content if the inner conteni is

equal to the outer content, and each of these latter two quantities is

approximated to any desired degree of accuracy by the volume of a finite

sum of separate intervals, (The volume of an n-dimensjonal interval I
n

is given by the product'TT’(bi-ai), as expected.) Since an interval
i=]
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is convex, the result follows. Clearly the approximation is not unique -
in fact, there are infinitely many ways to make the approximation.

The above resuit states that whenever a bounded set in n-space has
a volume as defined by the content, then the approximation by convex
intervals exists. This definition of volume, although supevseded by
the definition of measure (Lebesque) for purely mathematical reasons
in the modern theory of integration, is entirely adequate for ail prac-
tical applications. For the latter, any region occurring in a real
problem will have the same volume measured by the two definitions,

content and measure. It is true that unbounded regions can arise where

the above result does not hold, but usually in practice unbounded
regions either can be approximated by a finite set of convex sub-
regions or else the unbounded region can br rc-laced. without any

appreciable loss of accuracy, by a boundasd region.
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