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We have performed a systematic analysis of gene identification in genomic sequence by similarity search against
expressed sequence tags (ESTs) to assess the suitability of this method for automated annotation of the human
genome. A BLAST-based strategy was constructed to examine the potential of this approach, and was applied to
test sets containing all human genomic sequences longer than 5 kb in public databases, plus 300 kb of
exhaustively characterized benchmark sequence. At high stringency, 70%–90% of all annotated genes are
detected by near-identity to EST sequence; >95% of ESTs aligning with well-annotated sequences overlap a
gene. These ESTs provide immediate access to the corresponding cDNA clones for follow-up laboratory
verification and subsequent biologic analysis. At lower stringency, up to 97% of annotated genes were
identified by similarity to ESTs. The apparent false-positive rate rose to 55% of ESTs among all sequences and
20% among benchmark sequences at the lowest stringency, indicating that many genes in public database
entries are unannotated. Approximately half of the alignments span multiple exons, and thus aid in the
construction of gene predictions and elucidation of alternative splicing. In addition, ESTs from multiple cDNA
libraries frequently cluster over genes, providing a starting point for crude expression profiles. Clone IDs may
be used to form EST pairs, and particularly to extend models by associating alignments of lower stringency with
high-quality alignments. These results demonstrate that EST similarity search is a practical general-purpose
annotation technique that complements pattern recognition methods as a tool for gene characterization.

Similarity search has been less successful as a tool
for gene identification in genomic sequence than
pattern-based methods such as GRAIL (Uberbacher
et al. 1996) and GeneParser (Snyder and Stormo
1995), largely because of the limited pool of mRNA
sequences available for use as a probe. Recently,
however, this technique has become more feasible
with the rapid accumulation of collections of ex-
pressed sequence tags (ESTs), single-pass end se-
quences from cDNA clones randomly selected from
multiple libraries. Large-scale EST sequencing
projects have been undertaken with the goal of rep-
resenting a substantial fraction of all human genes
as ESTs (Adams et al. 1995; Williamson et al. 1995;
Hillier et al. 1996), and have produced over one mil-
lion ESTs in publicly available databases (Boguski et
al. 1993; Adams et al. 1995), as well as a number of
proprietary collections. A similar project for mouse
ESTs has generated >200,000 sequences to date, and
initiatives for other organisms, while operating on a

smaller scale, constitute a growing fraction of the
public EST dataset as well.

ESTs represent 200–500 nucleotide gene signa-
tures that provide information not derivable from
pattern recognition techniques alone. In principle,
similarity to an EST is a highly reliable indicator that
a sequence is associated with a gene or pseudogene,
because cloning of non-mRNAs into the cDNA li-
braries from which ESTs are derived is presumed to
be rare. In practice, this assumption remains to be
tested. The cDNA clones associated with most hu-
man ESTs are also publicly available, so that identi-
fication of an EST often provides rapid access to a
laboratory reagent useful for further characterizing a
potential gene of interest. Other information asso-
ciated with ESTs, such as the library of origin, can
supply useful information about expression pat-
terns within an organism, or conservation of struc-
ture across species. ESTs are also particularly valu-
able reagents for detecting alternative splicing and
polymorphisms and for locating the 38 ends of
genes, which can be used to distinguish related
genes from each other (Boguski and Schuler 1995).
None of these tasks are well handled by pattern rec-
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ognition techniques, which rely heavily on coding
potential as a predictive metric, generally producing
a single gene prediction from a set of exons.

Computational analysis will be critical in pro-
viding a framework for further characterizing se-
quence generated by large-scale sequencing efforts.
Because the need for high throughput requires that
much of this initial annotation be generated auto-
matically, the reliability of the techniques used
must be examined with care. This annotation must
be sufficiently reliable to guide investment of labo-
ratory resources in further investigation of predicted
genes. The principal purpose of gene identification
techniques, then, will be to predict the presence of
a gene in a region of genomic sequence, and, where
possible, provide the means to obtain or design re-
agents, such as cDNA clones or PCR primers, for use
in the laboratory. This laboratory follow-up will re-
main the gold standard for elucidation of gene
structure, regulation, and function.

A growing number of anecdotal reports under-
score the utility of ESTs in the characterization of
human genes at both the mRNA (Clark et al. 1994;
Cerretti et al. 1995; Greene et al. 1996; O’Dowd et
al. 1996; Wilson and Majerus 1996) and genomic
(Chen et al. 1996; Heiss et al. 1996; Lamerdin et al.
1996) levels. In the former case, ESTs of interest are
often recognized by a moderate degree of sequence
similarity to a gene or motif of known function.
Cross-species relationships are often critical compo-
nents of this process, and systematic efforts have
been made to identify ESTs containing conserved
sequences (Bassett et al. 1995; Banfi et al. 1996). In
the large-scale analysis of genomic sequence, how-
ever, high-stringency sequence comparison plays a
crucial role, because ESTs that are very similar to a
genomic query sequence provide higher confidence
in the identification of a gene ab initio. In addition,
the data may supply information about expression
in various contexts, and can illuminate structural
variations that may not have been described previ-
ously, because they are rare forms of the mRNA, or are
expressed in a context not available for study (Wolfs-
berg and Landsman 1997). Directed extension of
gene predictions with low-stringency results, espe-
cially involving sequences from different species,
will be useful in filling out these initial predictions.

We have, therefore, undertaken to evaluate the
potential of nucleotide similarity to ESTs as a com-
putational probe for expressed regions in human
genomic sequence. In particular, we have focused
on its potential as a gene-finding technique in large
sets of sequences, and on properties that are espe-
cially relevant to systematic first-pass annotation. In

this context, the most important characteristic is
high positive predictive value, so that the resulting
annotation forms a reliable resource, and does not
lead to the frequent misapplication of laboratory
efforts. Once an area of interest has been so identi-
fied, additional similarity data, obtained from both
high and low stringency analysis of nucleotide and
predicted amino acid sequences, can add further in-
formation about gene structure, variation, and po-
tential function (Bedian et al. 1997; Wolfsberg and
Landsman 1997). Such information may be used
not only to further biologic evaluation of specific
genes, but as the basis for preliminary investigations
of genome-wide structure and function.

RESULTS

Construction of Genomic Test Sets

To assess the effectiveness of ESTs as a probe for
transcribed regions, we compiled three test sets of
genomic sequences. The first, designed to include as
many sequences as possible, was based on all hu-
man genomic sequence entries of length 5 kb or
more identified in the Genome Sequence Database
(GSDB). This produced a test set (set AS) comprising
774 sequences, in which all or part of 634 genes
were annotated. The average mRNA size for these
genes was 8350 nucleotides (median 5340), with an
average of 7 exons per gene, and an average exon
size of 245 nucleotides (median 136). Although this
set is still quite small compared with the estimated
human gene complement of 60,000–100,000 (Ante-
quera and Bird 1993; Fields et al. 1994) and does not
represent a random sample of all human genes, it is,
to our knowledge, the largest collection of human
gene structures that can be obtained at present.

The second set was a subset of the first, in which
we selected only entries containing whole genes (set
WG). This set included 226 entries containing 287
genes, with an average mRNA size of 9770 nucleo-
tides (median 5670), an average of eight exons per
gene, and an average exon size of 236 nucleotides
(median 135).

Finally, we constructed a third set of benchmark
sequences (set BE) that had been extensively char-
acterized experimentally, and whose annotation re-
flected, insofar as we could determine, an exhaus-
tive transcript map of the genomic sequence. Com-
prehensive annotation of this sort is essential to
identify false-positive and false-negative results of
any gene-finding technique. This is particularly dif-
ficult to assess in many public sequences, because
annotation is often restricted to transcripts that

EST-DRIVEN GENE ANNOTATION

GENOME RESEARCH 363



form the focus of the accompanying references.
Variant or additional transcripts in the sequence
may remain unidentified, or, if identified, unchar-
acterized or unpublished. For example, even in re-
gions such as the HLA gene cluster, where an exten-
sive body of work has accumulated, available anno-
tation does not yet completely describe the gene
content of the sequence (Bedian et al. 1997). There-
fore, it was necessary to restrict this set to a small
number of sequences for which there was clear evi-
dence of exhaustive transcript mapping: ∼170 kb
from the DiGeorge syndrome minimal critical re-
gion (Gong et al. 1996; DGCR, IC accession nos.
L77569, L77570, AC002522; GSDB accession nos.
GSDB:S:75553, GSDB:S:75554, and GSDB:S:1725789),
which was examined by use of cDNA library screen-
ing, exon amplification, and RT–PCR between
GRAIL-predicted exons, and the extensively studied
human b-globin gene cluster (IC accession no.
U01317; GSDB accession no. GSDB:S:1257806).
This set comprised 17 genes, five of which are in-
tronless and do not contain a clear ORF; it is not
known whether these are partial clones of noncod-
ing genes or genes with small coding regions, or
whether they represent sterile transcripts arising
from the gene-dense DGCR. The average mRNA size
of 9500 nucleotides (median 1650) was somewhat
smaller than that for set WG, as was the average
number of exons per gene, four. However, the aver-
age exon size of 330 nucleotides (median 170) was
larger than that for set WG. Both of the latter dif-
ferences arise because of the presence of the DGCR
single-exon transcripts, as well as the three-exon
structure of the b-globin gene family members.

Definition of Stringency Classes

To better understand the behavior of ESTs as a gene-
finding probe, we used several stringency classes for
interpretation of similarity results (Table 1). The
identity thresholds for different classes ranged from
95%, just below the estimated level of sequencing
error in ESTs (Nishikawa and Nagai, pers. comm.),
to 70%, just above an estimate of the identity in
untranslated portions of transcripts conserved be-
tween human and mouse (Makalowski et al. 1996).
Although it is certainly possible that cross-species
conservation might produce positive results at any
of these identity thresholds (Cerretti et al. 1995), we
expected that the majority of alignments, particu-
larly at higher levels of identity, would be with hu-
man ESTs. We also wished to determine how often
an alignment involved the entire EST, and how of-
ten it was limited to a short region, as one might
expect from reuse of functional motifs or crossover
between coding exons of related genes. Therefore, at
each level of identity we constructed two stringency
classes, the first of which also imposed the require-
ment that a large part of the EST be involved in an
alignment with the genomic sequence that met the
identity threshold, whereas the second did not im-
pose this requirement. These coverage requirements
are indicated by the suffix L (long) and S (short),
respectively, in the name of each stringency class.
For stringency class 95L, we imposed the additional
requirement that the alignment be contiguous
along the EST, because we were interested in iden-
tifying ESTs that were identical to the genomic
query sequence within the limits of sequencing er-

Table 1. Definitions of Stringency Classes

Stringency
class

Identity
threshold

(%) Length threshold
Parent
class

No. of EST alignments in class

set AS set WG set BE

95L 95 contiguous 80% — 24011 9621 1748
95S 95 1 HSP 95L 25597 10259 1857
90L 90 200 nts 95L 62215 26436 4438
90S 90 30 nts 90L 104687 39305 4903
80L 80 80% 90L 109440 42731 6016
80S 80 10% 90S 223608 80666 7574
70L 70 contiguous 100 nts 90S 219833 78684 6455
70S 70 100 nts 70L 257409 92936 6951

For each stringency class, the identity and length thresholds, and the parent classes, if any, are shown. EST1

genomic sequence alignments were assigned to stringency classes using these criteria as described in the text.
The final three columns show the number of alignments assigned to each class from the search results for each
genomic test set.
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ror. Gaps in the alignment along the genomic se-
quence were always accepted, as this is a natural
consequence of mRNA splicing. A similar require-
ment for contiguous coverage along the EST was
imposed for stringency class 70L, to filter out align-
ments that consisted of multiple short patches of
low-grade similarity; these were accepted as part of
class 70S.

Identification of Annotated Genes

Each sequence in the genomic test sets was used to
search all of dbEST as described below, resulting in
the alignment at different stringency thresholds of
between 1748 and 257,409 ESTs with genomic se-
quences (Table 1). EST matches to annotated genes
were determined, and the re-
sults are summarized in Figure
1. At the 95% identity thresh-
old, 70%–80% of the anno-
tated genes were detected by
an EST aligning with at least
one exon; this is consistent
with previous results with
larger test sets of mRNAs
(Aaronson et al. 1996; White
and Kerlavage 1996). Not sur-
prisingly, the fraction of genes
detected is somewhat higher
for set WG than for set AS.
Multiple functional classes of
gene product (e.g., hormones
or cytokines, structural pro-
teins, and enzymes involved in
intermediary metabolism)
were represented among both
genes identified and genes
missed in different stringency
classes (data not shown).

Relaxation of the identity
threshold to 90% yields an in-
crease of ∼10% in the number
of genes identified. This was
primarily caused by the pres-
ence of additional ESTs that
were excluded at the 95% iden-
tity level, rather than crossover
of ESTs among closely related
members of gene families. We
expect that the gain in sensi-
tivity is the result of a combi-
nation of two phenomena.
First, a sequencing error rate
slightly above average, or iso-

lated sequencing errors in small exons, may pull the
identity level of the alignment for an exon below
95%. A 90% threshold will be less sensitive to these
effects, as well as to edge effects produced by ex-
tension of BLAST alignments across exon bound-
aries. Second, relaxation of the requirement for con-
tiguous coverage of the EST in class 90L permits a
number of ESTs with small internal gaps to be
scored as positive. These gaps may represent diver-
gent regions skipped in BLAST alignments, sequenc-
ing errors or artifacts in cDNA clones, deletions oc-
curring during cDNA library construction, inser-
tional polymorphisms in the human population, or
small differences in structure between closely re-
lated genes.

Further decreasing the identity threshold to

Figure 1 Correlation of EST results with annotated genes. (A) Determination
of overlap between EST alignments and annotated genes. The bottom line shows
the exon/intron structure of a portion of a hypothetical gene. The top tier of bars
denote individual EST alignments; those in black are scored as overlapping the
gene, whereas those in gray are scored as complete misses. The middle tier
shows the projected CRs derived from these alignments; nucleotides in the black
portions of CRs are scored as falling within an annotated exon, whereas those in
the hatched portions are scored as falling outside of known excons. (B) Fraction
of all annotated genes that were identified by at least one EST alignment. (j)
Data for set AS; (d) data for set WG; (l) data for set BE. (C) Fraction of all EST
alignments that do not overlap annotated exons. (D) Fraction of nucleotides in
projected EST alignments that do not fall within annotated exons. EST align-
ments with each genomic query sequence were projected onto the query se-
quence as described in the text. Solid lines denote fraction of nucleotides from
all projected CRs; broken lines denote fraction of nucleotides from projected CRs
at least partially overlapping annotated exons.
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80% detects only 5% more of the annotated genes,
suggesting that the 90% identity threshold provides
sufficient freedom to account for most sequencing
errors and allelic variation, but remains above the
level of identity existing between members of gene
families. It is of interest that at the 90% and 80%
identity thresholds, relaxing the length threshold
leads to the identification of a substantial number
of additional genes, particularly in set AS. This may
occur because the 90S and 80S classes are less sen-
sitive to the fragmentation of an alignment by in-
dels into smaller HSPs, each of which may be pulled
below the identity threshold by a small number of
mismatches. Although this may prevent the accu-
mulation of extensive coverage in high-identity
HSPs, some of the resulting HSPs are likely to retain
high identity levels, and therefore satisfy the re-
quirements for the classes with lower coverage
thresholds. It is also possible that the lower coverage
thresholds permit the detection of genes based in
conservation of small functional domains among
related genes, whereas the 90L and 80L classes re-
quire more substantial conservation of gene struc-
ture. At each downward step in stringency, the in-
crease in sensitivity is primarily the result of inclu-
sion of new ESTs. However, crossover events—de-
tection of a new gene at a given stringency by one or
more ESTs that detected a different gene at a higher
stringency—do occur more frequently in the steps
from 90% and 80% identity to lower levels than
they occur at steps down from the 95% threshold.
As expected, crossover events are more common at
steps down from the 90S classes than the 90L class;
there were too few crossover events from the 80S
class to 70L and 70S to assess the effect of the length
threshold in this case (data not shown).

Estimation of False-Positive Rates

Because we were interested in using this technique
as a tool to guide further investment of laboratory
resources, we attempted to assess the false-positive
rate in two ways. For experiments such as library
screening or sequencing using cDNA clones associ-
ated with ESTs, the critical question is whether the
EST correctly identifies one or more exons, or is an
artifact arising from intronic or intergenic sequence.
As a first measure of reliability, we examined the
frequency of complete misses, that is, cases in which
an EST aligned with the genomic sequence but did
not overlap an annotated gene at all (Fig. 1C). This
provides an upper bound for the chance that an EST
would be erroneously selected for laboratory follow
up. At the highest stringencies, overlap is nearly

complete in set BE, whereas ∼6% of the ESTs iden-
tified by set WG do not overlap known genes. The
overall proportion of 58 and 38 ESTs in these strin-
gency classes approximately matches that of dbEST
as a whole (data not shown). One might expect that
use of alternative coding exons within a gene would
be reflected primarily in 58 ESTs and alternative
polyadenylation in 38 ESTs, whereas ESTs arising
from unannotated genes and pseudogenes would
more closely reflect the polarity distribution of the
entire EST database. Therefore, although all of these
phenomena undoubtedly contribute to the com-
plete misses we observed, we suggest that unanno-
tated genes may be the principal source of these
ESTs. Not surprisingly, the fraction of discordant
ESTs produced by set AS is greater even for the high
stringency classes. 58 ESTs are not recruited more
frequently by this set than by set WG (data not
shown), again suggesting that unannotated genes,
rather than incomplete annotation of genes on the
basis of partial cDNAs, underlie most of these ESTs.

The proportion of complete misses rises with
the relaxation of the length threshold at 90% iden-
tity, and does so even more sharply at 80% identity.
The existence of these additional alignments may
provide further evidence for the presence of short
conserved motifs in genomic DNA. Because these
data are based on alignments to ESTs, such regions
presumably occur within genes and pseudogenes,
but their functional significance is unclear. It is un-
likely, however, that they arise from a class of un-
known or inadequately masked interspersed repeat
elements, because in the 80S stringency class, which
contains the most complete misses, <30% of these
ESTs align with loci in more than one genomic se-
quence, and <6% align with loci in more than five
genomic sequences.

The drop in the fraction of complete misses
from the 80S class to the 70L and 70S class likely
arises because of the greater length threshold im-
posed in the 70% identity classes. Further, there is
little difference in the results for stringency classes
70L and 70S, probably because the difference be-
tween these classes involves only contiguity of the
alignment, not its overall length.

Experiments such as RT–PCR or oligonucleotide
hybridization, which use short primers synthesized
directly from the sequence, depend on the accuracy
of a specific region in an alignment, rather than on
the EST as a whole. Therefore, we also estimated the
false-positive rate as the fraction of nucleotides from
the query sequence that participate in EST align-
ments but fall outside annotated exons (Fig. 1D).
This provides an upper bound for the rate at which
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ESTs falsely identified a region of genomic sequence
as part of an exon, because it also includes sequence
scored as nonexonic as a result of missing annota-
tion for a true gene. Set BE provides an estimate of
the ideal false-positive rate at each level of strin-
gency. At the 95% identity threshold, ca. one in four
nucleotides falls outside an annotated exon; this
fraction rises as stringency is relaxed so that in all
test sets a majority of the nucleotides in EST align-
ments fall outside annotated exons. At high strin-
gencies, however, the fraction of contiguous ranges
(CRs; the projections of overlapping segments of
EST alignments from a given search onto the ge-
nomic sequence) that do not overlap exons at all is
much lower (data not shown). Because there are sev-
eral ways to identify regions more likely to have
detected a true gene, it is also useful to examine the
per-nucleotide false-positive rate for those CRs that
do overlap known exons. For set BE, this is a stable
17% 5 1% across all stringency classes. As ex-
pected, the values are somewhat higher for the
other test sets, but do not exceed 27% for any strin-
gency class.

There are many possible reasons nonoverlap-
ping regions might arise, not all of which represent
errors in gene identification. These include the pres-
ence of undiscovered genes within or beyond a
known gene, alternative exon, splice site, or poly-
adenylation site usage in known genes, complete or
partial pseudogenes, spurious incorporation of ge-
nomic DNA into cDNA clones from which ESTs
were derived, and imprecision in alignment of an
EST with genomic sequence at an exon/intron
boundary. Errors in reverse transcription, such as
priming on hnRNA or on poly(A) tracts in repeat
elements and pseudogenes, can also lead to identi-
fications that are accurate reflections of the cDNA
structure, but do not correspond to normal expres-
sion of an underlying gene.

Clustering of ESTs Over Annotated Genes

To better understand the relationship between ESTs
and expressed regions of genomic DNA, we have
further analyzed those alignments involving ESTs
that overlap known genes. Our intent was twofold:
to identify criteria that might be used to recognize
alignments most likely to represent actual genes,
and to obtain as much additional information as
possible about gene structure and expression from
EST alignments.

The clustering of multiple EST alignments may
supply additional information about exon struc-
ture, potential peptide products, and possibly varia-

tions in expression of a predicted gene. First, it re-
duces the likelihood that the model is based on a
rare artifact such as cloning of genomic DNA into a
cDNA library. Second, multiple ESTs may also iden-
tify patterns consistent with alternative exon usage
(Bedian et al. 1997). Third, the positions of ESTs
from each end of different cDNA clones may reveal
different portions of the gene, and, by comparison
of cDNA size to separation of ESTs on the genomic
sequence, provide clues about exon/intron struc-
ture. Fourth, the presence of ESTs from multiple
sources may provide a coarse initial impression of a
gene’s expression pattern. Finally, clustering of ESTs
on long genomic sequences facilitates the develop-
ment of gene indices (Merck 1996), because it permits
genome-directed assembly of nonoverlapping ESTs.

Therefore, we have examined separately the
clustering of EST alignments over known genes and
new CRs (Fig. 2). Over 81% of the genes identified at
the 95% identity threshold, and over 90% of the
genes identified at the lower identity thresholds,
were detected by ESTs from more than one cDNA
clone. (The single exception, class 80L for set BE,
represents identification of one additional gene by a
single EST.) The number of ESTs in a particular strin-
gency class similar to a single gene varied from one
to >5000; a typical distribution (class 90L for set
WG) is shown in Figure 2B. In contrast, >42% of the
new CRs resulted from alignment with a single EST.

For the purpose of first-pass annotation, the in-
verse of this analysis is particularly important:
Given a significant alignment between the genomic
sequence and one or multiple ESTs, what is the like-
lihood that a gene has been identified (Fig. 2C)? As
one might expect, this depends on the criteria used
to cluster ESTs. If one requires that the alignments
involving all members of a cluster overlap with each
other along the genomic sequence, the frequency
with which a singleton does not detect an exon
ranges from 29% to 89%. Therefore, the presence of
a singleton by overlap is not in itself a strong indi-
cation that the alignment is a false-positive identi-
fication. However, if gene annotation is used to
cluster all ESTs overlapping a given gene, then a
singleton alignment is much less likely to identify a
known gene: This occurs for <40% of the genes in
sets WG and BE at any stringency, and <5% for
classes 90L, 95S, and 95L. These data indicate that if
criteria other than overlap are used to construct
gene predictions, the presence of only a single EST
alignment may provide much stronger evidence
that the prediction is not correct. This principle
must not be applied too rigidly, however, as it is
expected that some genes will be underrepresented
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in EST collections. This is particularly true of genes
with a very low level or narrow window of expres-
sion; information about the tissue source and size of

the parent library, and possible functional assign-
ment by amino acid similarity, may help to assess
this possibility in specific cases.

Although the presence of a lone EST by overlap
is not necessarily a strong a priori predictor of accu-
racy, the clustering of multiple ESTs is, particularly
at high stringency. The presence of two or more
overlapping EST alignments corresponds to identi-
fication of an annotated gene 44%–80% of the time
in set AS (>75% for classes 95L, 95S, and 90L), 60%–
96% in set WG (>95% for classes 95L, 95S, and 90L),
and 74%–100% in set BE (>99% for classes 95L, 95S,
and 90L). These values do not change significantly
if per-gene clustering is used instead of overlap clus-
tering. Under either strategy, then, clustering of
ESTs can be used as a triage criterion for selecting
gene predictions for more intensive follow up: Al-
though a singleton does not necessarily rule out the
presence of a gene, the clustering of multiple ESTs is
a strong indicator of a correct gene identification.
Moreover, multiple ESTs may permit the construc-
tion of a more complete gene prediction for further
study, as discussed below.

Because cDNA library amplification and nor-
malization may increase the representation of a
given clone in a library from which ESTs are gener-
ated, two ESTs with different clone IDs may actually
represent the same original mRNA. The origin of
clones in different cDNA libraries, however, pro-
vides clear evidence of their independence. It has
the further advantage that, like clone IDs, it is usu-
ally recorded automatically as ESTs are generated,
but because the library of origin is generally con-
stant for all ESTs in a particular sequencing run,
assignment is less subject to tracking error than
clone ID. For example, in our analysis of 120,996
cDNA clones in this study, we identified only five
instances in which the ESTs with the same clone ID
had differing library IDs. Information about library
of origin for the ESTs in a cluster also provides an
initial estimate of conservation and expression for a
gene prediction, in a manner analogous to the labo-
ratory zoo blot or multi-tissue Northern or PCR
analysis. Factors such as the tissue source and qual-
ity of the library, as well as whether it has been
normalized, will also be important for interpreting
an EST’s contribution to this type of estimate.

To determine whether this criterion was useful
in practice, we examined the distribution among
cDNA libraries of those ESTs identifying annotated
genes in this study. Seven hundred eighty-one li-
braries were represented, contributing from 1 to
24,026 ESTs (average, 207, median, 19) to the results
for a particular stringency class. A summary of the

Figure 2 Clustering of ESTs over genes. (A) Solid
lines indicate the fraction of annotated genes identified
by a single EST. Broken lines indicate the fraction of all
CRs not overlapping an annotated gene that are de-
fined by a single EST. (j) Data for set AS; (d) data for
set WG; (l) data for set BE. (B) Number of ESTs over-
lapping each annotated gene in set WG that was iden-
tified by ESTs from the 90L stringency class. The 41
largest clusters, each a different size in the range 156 to
2195 ESTs, are not shown. (C) Solid lines indicate frac-
tion of singleton ESTs by overlap that detect a gene;
broken lines indicate fraction of multi-EST clusters by
overlap that detect a gene.
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data by stringency class is presented in Figure 3.
Once again, we found that in the great majority of
cases, if a known gene is identified by any ESTs, it is
identified by ESTs from multiple cDNA libraries,
confirming that coarse expression profiles can often
be derived from EST clusters. It should be noted,
however, that a number of the cDNA libraries con-
tributing ESTs to dbEST overlap in tissue/cell type
and developmental stage, so these data overestimate
to some extent the breadth of the expression pro-
files that can be generated from ESTs.

Expression profiles are particularly valuable
when they demonstrate cross-species conservation,
which may provide a starting point for functional
analysis of a predicted gene. In addition, cross-
species alignments are less likely to arise from clon-
ing artifacts such as tissue contamination (except-
ing libraries made from somatic cell hybrids). Al-
though human ESTs were the principal contributors
to alignments in this study, detecting >97% of the
genes identified in each stringency class, ESTs from
73 species were represented. Not surprisingly,
mouse was the second most common species, with
ESTs present in 3%–86% of the alignments with
known genes. Overall, ESTs from 9 species detected
>10%, and 16 species >5%, of the genes identified in
a given stringency class. Most genes identified in
stringency classes 90L and higher were detected by
ESTs from a single species, whereas 2–3 species/gene
was more common in classes 90S and below; in all
cases, <10% of genes were detected by ESTs from 4
or more species.

Use of cDNA Clone Information to Establish
Inter-EST Relationships

When using ESTs for gene finding, it is often diffi-
cult to determine which sets of nonoverlapping

alignments between ESTs and the genomic se-
quence should contribute to a single gene predic-
tion. At the most basic level, one might simply use
proximity as a criterion, by collecting all ESTs whose
alignments fall within a certain distance of each
other along the genomic sequence into a gene pre-
diction. Although this is effective in regions of low
gene density, it fails to address the possibility of
interleaved or adjacent genes. However, a signifi-
cant increase in resolution may be obtained by con-
sidering the polarity of ESTs as well. Because most
ESTs (including all ESTs from the I.M.A.G.E./W.U.
initiative) are derived from oligo(dT)-primed cDNA
clones, 38 ESTs effectively mark the 38 ends of genes,
often forming a cluster of heavily overlapping align-
ments near a polyadenylation site. Alternative poly-
adenylation sites for a single gene may appear as
separate clusters of 38 ESTs that lie very close to each
other, or that are each linked to 58 ESTs upstream of
all of the clusters. The position of alignments in-
volving 58 ESTs depends on the length of the parent
cDNA clone, so they are less likely to overlap with
each other, but may form a pattern upstream of a 38

cluster that helps to define the extent of a gene. In
the absence of overlapping genes, this may be suf-
ficient to distinguish among genes in a region.

Among all ESTs in dbEST whose polarity is
known, there is an overall preponderance of 58 ESTs
(55% 58, 27% 38, 18% unknown). We have exam-
ined the polarity of ESTs aligning with genomic se-
quence, to see whether the methods used here in-
troduce a bias in the polarity of ESTs scored as sig-
nificant. In the two large test sets, the distribution
of ESTs in search results approximates that of dbEST
as a whole (data not shown). Moreover, >66% of the
genes identified in set AS, and >85% in set WG,
align with at least one 58 and 38 EST, confirming the
utility of this technique in setting initial boundaries
for gene predictions. Interestingly, of the remaining
genes, from 4-fold to 15-fold more were detected
solely by 58 ESTs than by 38 ESTs. This is signifi-
cantly greater than the ratio of unpaired 58 ESTs to
unpaired 38 ESTs in the database: For those ESTs
produced by the W.U./Merck/I.M.A.G.E. project,
this ratio is 1.6. The excess of 58-only identifications
may be due, in part, to the greater likelihood that 58

ESTs will fall within a coding region, and therefore
cross over between conserved regions of related
genes. Because such crossovers do not occur fre-
quently at high stringencies, however, other factors
must contribute to this phenomenon as well.

It should be possible to link pairs of 58 and 38

ESTs derived from a single cDNA clone by straight-
forward database queries. Although this identifies

Figure 3 Diversity of cDNAs identifying annotated
genes. For each stringency class, the fraction of all
identified genes that were detected by ESTs arising
from >1 cDNA library (—), 5 or more cDNA libraries
(- - -), or 10 or more cDNA libraries (– - –) is shown.
(j) Data for set AS; (d) data for set WG.
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only a subset of the ESTs arising from a gene, it is
very unlikely to create false associations between
ESTs from interleaved or nested genes. Moreover,
additional ESTs that overlap with either of the origi-
nal pair may be included in the gene prediction
with high confidence, because few instances of dis-
tinct genes with overlapping exons have been dem-
onstrated. When we examined our results, however,
we found several limitations to the practical appli-
cation of this approach. Approximately 17% of all
ESTs meeting threshold criteria for alignment have
no associated clone ID and are therefore excluded
immediately. In the two large test sets, 60%–67% of
the clones identified by the remaining ESTs, com-
prising 45%–61% of the ESTs, did not have both 58

and 38 ESTs in the database (ranges indicate values
for different stringency classes). Therefore, only
39%–55% of the ESTs can be linked in this way.

When we examined the data for these ESTs, we
found that in a substantial number of cases, only
one member of an EST pair produced an alignment
with genomic DNA meeting the threshold criteria
for a particular class, although both ESTs were pres-
ent in the database (Table 2). As expected, the pro-
portion of pairs for which one member was missed

was highest at the 95% identity threshold, and there
was a particular tendency to miss the 58 member at
this level. Similar observations have been made in a
prior study (Wolfsberg and Landsman 1997). How-
ever, at less stringent identity thresholds, the fre-
quency with which only one end of a clone was
scored as positive remained relatively high. The best
results overall were obtained at the 90% identity
level; the strongest effect of the length threshold
was seen at the 80% identity cutoff.

A certain number of discordant EST pairs are
expected in cases in which one member consists of
repeat sequence, is derived from a genomic region
beyond the end of the query sequence, or has been
assigned an incorrect clone ID. However, these rea-
sons were not sufficient to explain the results we
had observed. In particular, we were concerned that
the inability to introduce gaps into alignments
would force BLAST 1.4.8 to break into multiple
high-scoring segment pairs (HSPs) those alignments
in which the overall identity between an EST and
the genomic sequence was high, but many small
indels were present. This might occur, for instance,
because of alternative readings of compressions or
low quality traces from a sequencing gel. The

Table 2. Linking of ESTs by cDNA Clone ID

Data set Class Det. both Missed 5* Missed 3* No 5* No 3* Pol. unk. Efficacy

AS 95L 6 17 13 10 18 36 17
95S 6 17 13 10 17 37 18
90L 23 8 9 10 22 28 58
90S 18 8 8 10 28 27 53
80L 16 10 8 10 28 29 48
80S 10 14 10 11 28 27 31
70L 11 14 10 11 28 26 31
70S 10 15 11 11 26 27 27

WG 95L 7 20 14 11 19 30 18
95S 7 19 14 11 18 31 18
90L 27 7 9 10 23 23 63
90S 24 6 7 10 31 23 66
80L 20 8 7 10 30 25 59
80S 13 12 9 10 31 25 39
70L 14 11 9 10 32 24 40
70S 12 13 10 11 29 25 34

Linking results for cDNA clones derived from all ESTs aligning with entries in the two large test sets. For all columns except the last,
values are the percentage of cDNA clones contributing ESTs to the specified stringency class for which the indicated linking result was
obtained. Column headings are as follows: (Det. both) ESTs from both ends of the clone fall into the specified stringency class; (Missed
58) the ESTs from both ends of the clone are present in dbEST, but only the 38 EST falls into the specified stringency class; (Missed 38)
the ESTs from both ends of the clone are present in dbEST, but only the 58 EST falls into the specified stringency class; (No 58) the 58

EST from the clone is not present in dbEST; (No 38) the 38 EST from the clone is not present in dbEST; (Pol. unk.) it was not possible
to determine the polarity of ESTs from the clone; (Efficacy) the percentage of clones having ESTs from both ends in dbEST for which
both ends were detected in the given stringency class.
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smaller HSPs would more easily be pulled below the
identity threshold for a stringency class by a small
number of mismatches, leading to exclusion of the
EST from that class. Therefore, we selected for fur-
ther analysis 3815 of the cases from all test sets and
classes where an EST had not been scored positive
for the stringency class into which the EST from the
other end of the same clone fell. For each genomic
test sequence in this subset, we performed a search
and analysis against the 3815 ESTs using either
blastn version 1.4.8, as done previously, or WU-
BLAST 2.0 (Gish 1997), which permits gaps in align-
ments, as the search engine.

The repeated BLAST 1.4.8 searches identified
ø5% of the missed ESTs for all classes except 80S
and 70S in set WG, and classes 95L, 95S, 90L, and
80L in set AS, indicating that the depth of the origi-
nal searches was adequate to identify most positive
ESTs from these classes in dbEST. The recovery rate
for the remaining classes ranged from 11%–28%,
suggesting that especially in lower stringency
searches, it may be necessary to screen very large
numbers of alignments to recover all ESTs of inter-
est. In contrast, use of the WU-BLAST 2.0 algorithm
led to the recovery of an average of 27% (range 8%–
54%) across all stringency classes of entries missed
in the BLAST 1.4.8 searches by use of sequences in
sets AS and WG. Interestingly, however, when WU-
BLAST 2.0 was used as the engine for dbEST searches
with all of the query sequences from the test sets,
the overall success rates for linking members of EST
pairs were similar to those seen for BLAST 1.4.8
(data not shown). We expect that this occurs be-
cause in addition to identifying members of EST
pairs missed by BLAST 1.4.8, WU-BLAST 2.0 recruits
additional ESTs, and hence additional pairs, into a
stringency class, in which one EST is missed for rea-
sons other than small indels.

This observation suggests that missed ESTs may
be recovered by allowing for an overall reduction in
stringency. When we recomputed the results for
this set of missed ESTs, taking into account ESTs
from the stringency class whose identity threshold
is one step lower, an average of 66% (range 32%–
97%) of the missed ESTs are recovered across all
stringency classes in the results from sets AS and
WG by use of either BLAST 1.4.8 or WU-BLAST 2.0.
In each class except 90L and 80L, the incremental
recovery was greater with BLAST 1.4.8 than with
BLAST 2.0; in the latter two classes, WU-BLAST 2.0
recovered an additional 23%–37% of the missed
ESTs. These results indicate that once a gene has
been found using high-stringency alignments, sig-
nificant additional information may be gained by

recruiting lower-stringency alignments by clone ID
linking. This is effective when using either the
widely available BLAST 1.4.8 or the currently experi-
mental WU-BLAST 2.0 as a search engine.

At least part of the remaining missed ESTs may
be accounted for by masking of repeats in the origi-
nal searches. For instance, of the ESTs missed in
class 90L for set WG, 1.4% consist nearly completely
of repeat sequence, and 5.3% included at least one
segment of repeat sequence ù35 nucleotides long. It
may, therefore, be useful when constructing gene
predictions to specifically determine whether a
missed EST contains significant repeat sequence. If
so, an attempt may be made to align it to the ge-
nomic sequence without masking, by use of very
high stringency to minimize the chance of spurious
alignment at similar repeats.

Determination of Gene Structure

Alignments between ESTs and genomic sequence
also aid in elucidating the exon/intron structure of
genes. A single EST that aligns with multiple widely
separated regions in the genomic sequence is almost
certain to have arisen from a spliced transcript. Ap-
proximately half of all ESTs aligning with annotated
genes identify multiple exons in this fashion. For
both set AS and set WG, little variation was seen
across stringency classes; the range of values was
53% 5 7%. A typical distribution of the number of
exons detected by single ESTs is shown in Figure 4.

It is considerably more difficult to predict gene
structure by use of multiple independent EST align-
ments. Because there are strong constraints on the
size of internal exons in mammalian genes (Berget
1995), distance between ESTs may be used to detect
probable introns. However, 38 terminal exons may
be much longer, and it is impossible to determine
simply on the basis of distance whether a pair of EST

Figure 4 Detection of multiple exons by ESTs. The
fraction of all EST alignments detecting genes from set
WG in stringency class 90L that span the indicated
number of exons is shown.
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alignments both fall within the final exon of a gene
or span the last intron. This problem arises fre-
quently in EST-based gene predictions, because the
cDNA libraries from which most ESTs have been
generated preferentially include the 38 portions of
transcripts. Nonetheless, a significant amount of in-
formation about internal exons is returned by EST
alignments (Fig. 5). As the stringency thresholds for
the alignments are relaxed, the total fraction of ex-
ons detected by ESTs increases from 43% to 83% in
the larger test sets (data not shown). The corre-
sponding values are higher for set BE (70%–94%),
but this may simply reflect the smaller average gene
size in this set.

Even when an EST split across multiple exons is
not present, other methods may prove useful in es-
timating exon structure. Where two ESTs are linked
by a common cDNA clone of origin, the distance
between them along the genomic DNA may be com-
pared with the estimated size of the cDNA clone,
and the presence of an intron detected, although
not its boundaries. The locations of EST alignments
may also be compared with results from gene find-
ers that analyze coding potential along the se-
quence, and consistent predictions constructed.

DISCUSSION

The data presented here demonstrate that current
EST databases constitute an effective general-

purpose probe for gene detection in human ge-
nomic sequence by use of straightforward similarity
search techniques. With appropriate use of strin-
gency thresholds to filter search results, it is possible
to detect >80% of all known genes in genomic se-
quences at least 5 kb long, whereas 99% of the EST
alignments, 83% of the CRs, and 68% of the nucleo-
tides overlap known exons in sequences whose tran-
scription map is well annotated. This is reasonably
close to the sensitivity of many existing gene recog-
nition tools on the basis of various pattern-
matching techniques (Burset and Guigo 1996). In
addition, the high positive predictive value pro-
vided by ESTs does not appear to degrade signifi-
cantly on long sequences; this has been a concern in
preliminary use of some existing gene finders. These
characteristics are particularly important for large-
scale annotation, where the primary goal is to detect
genes and direct laboratory follow-up (Bailey et al.
1998).

Because of the requirements in large-scale an-
notation for high throughput and consistent data, it
is also important to develop methods for automated
sequence analysis. Rule-based systems are particu-
larly useful in this regard; the data presented here
suggest several principles as the foundation for such
an approach to EST-driven annotation. Initial gene
identification is best made at higher stringencies,
such as the 90L class described here, to maintain
high specificity while detecting as many genes as
possible. Additional criteria, such as clustering of
ESTs from multiple cDNA libraries and the presence
of ESTs spanning multiple exons, may be used to
further select regions of particular interest and to
nucleate gene predictions for further study. Clone-
of-origin relationships permit recruitment of addi-
tional ESTs, which may lead to better definition of
gene structure; it is useful at this step to consider
lower stringency data that are linked to high-
stringency events. The resulting gene predictions
present evidence about the location of genes, may
yield initial information about polymorphism, al-
ternative exon usage, and expression patterns, and
provide a link to cDNA reagents to assist in labora-
tory investigation.

EST-driven methods carry with them a number
of weaknesses as well. The greatest of these is the
incomplete coverage of rare genes in EST collec-
tions. The good overall sensitivity found in this
study is reassuring, as is the observation that genes
of many different functional types are identified by
ESTs, but it is still likely that a number of genes,
particularly those with small tissue or developmen-
tal windows of expression, will be absent from EST

Figure 5 Position of exons identified by ESTs. Results
shown are for EST alignments in stringency class 90L
detecting exons from genes in set WG. The abscissa
indicates the relative position of an exon within a gene,
expressed as an offset from the 38 end of the gene,
with the value 1 corresponding to the final exons.
(Solid line) The ordinate indicates the fraction of anno-
tated genes having an exon at that position, for which
the specified exon was identified by at least one EST.
(Broken line) The ordinate indicates the fraction of all
ESTs that detect the specified exon in an annotated
gene.
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databases for the foreseeable future. This may, to
some extent, be compensated by the presence of
ESTs from related members of gene families; it will
be instructive to explore further the utility of low-
stringency nucleotide- and amino acid-based simi-
larity search, of both orthologous cDNA libraries
and those from related species. It is also useful
to repeat analyses frequently, because the size and
coverage of available EST databases increases con-
stantly. Once a gene is detected, focused applica-
tion of alternative methods, such as Smith-
Waterman alignments combined with splice signal
prediction, may prove useful for refining its struc-
ture. Misassigment of identifiers in EST databases
may also introduce noise into gene predictions.
Even in the absence of false-positive components,
EST-based gene predictions are likely to provide
only partial gene structures, as the underlying cDNA
clones do not generally reflect the full length of
an mRNA. Finally, it remains difficult to interpret
singleton EST alignments within a genomic re-
gion.

There are several areas for further study, then,
that will assist in taking full advantage of EST-based
annotation strategies. It will be essential to integrate
similarity-based techniques and traditional pattern-
matching methods, as each complements the other
in many important respects. For example, ESTs are
often effective in identifying the 38 end of a gene,
whereas gene finders that rely heavily on measures
of coding potential have difficulty identifying 38

UTRs. Conversely, pattern-matching may prove
more effective in the 58 portions of genes, which
oligo(dT)-primed cDNA clones often fail to reach.
Peptide-based alignment methods may also be ef-
fective in increasing sensitivity by better detecting
conserved functional domains, and in providing a
better starting point for prediction of gene function.
Such searches, however, are much more compute-
intensive than nucleotide comparisons; except in
specialized centers, their use may be practically re-
stricted to regions of special interest.

Careful evaluation and characterization of com-
putational annotation remains important as part of
a systematic approach to large-scale sequence anno-
tation, because these data will, in many cases, be the
primary source of guidance for investment of labo-
ratory resources. To do this effectively, though, it
will be necessary to increase the number of bench-
mark sequences available as test beds for annotation
systems. The annotation in most currently available
sequence entries from databases such as GSDB or
DDBJ/EMBL/GenBank generally reflects data ob-
tained as part of a focused biologic investigation,

rather than exhaustive characterization of a particu-
lar region. However, the critical characteristic of
benchmark sequences is that the annotation of their
gene content is as complete as possible; ideally, the
locations of all genes, as well as alternatives for exon
usage, have been established by use of reliable labo-
ratory techniques. This makes it possible to accu-
rately assess both the positive and negative predic-
tive power of gene finding methods. The limitations
of our set BE underscore the need for a greater num-
ber of benchmark sequences to be generated as an
early part of genome sequencing efforts. Several
large genomic sequences have been published re-
cently with annotation including a transcript map,
but these have still been limited to confirmation of
specific computational predictions (e.g., Ansari-Lari
et al. 1997; Frazer et al. 1997). Transcript mapping
has also been performed in a number of disease-
associated regions (e.g., Heiss et al. 1996; Hu et al.
1997; Ruddy et al. 1997); when genomic sequence
becomes available for these regions, they will pro-
vide starting points for benchmark sequences as
well. There has been some initial effort in the ge-
nomics community to facilitate such analyses
(Bidaud 1997), but the production, collection, and
updating of benchmark sequences must be encour-
aged on a much larger scale. In many cases, it may
be necessary to perform several cycles of computa-
tional prediction and laboratory verification to de-
fine the transcript map of a region.

Much work remains to be done in the design of
systems for high-throughput, rigorous annotation
of genomic sequence. It has, however, become gen-
erally accepted that high-quality, consistent anno-
tation will constitute an important step in the pro-
cess of making sequence data useful to biologists
studying gene function and regulation. Similarity-
based methods, particularly those that are EST-
driven, will form an important component of such
annotation systems for species in which significant
EST data are available. This study has focused on
human genomic sequences, because Homo sapiens is
the mammalian species having the largest number
of ESTs available at present, but we expect that the
principles derived from these results will generalize
well to other species with similar genome structure.
With some modifications (e.g., to account for larger
exon sizes) this approach is likely to be useful for
more distantly related species as well. These prin-
ciples provide a solid basis both for the interpreta-
tion by individual investigators of single search re-
sults, and for rule-based systems functioning as part
of an integrated approach to genome-scale annota-
tion.
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METHODS

Computational Resources

Computation was performed on a collection of Sun SPARCs-
tations and UltraSPARCs running the Solaris 2.4 or 2.5 oper-
ating system. Software tools constructed as part of this project
were written in C, Perl 5, SICStus Prolog, and Sybase Transact
SQL. Publicaly available software tools were compiled locally
where possible, otherwise executable images were obtained
from the authors. Public sequence databases were available
via local flatfile copies, which were updated from servers at
the U.S. National Center for Biotechnology Information
(NCBI) daily, and periodically regenerated completely to in-
sure synchronization with the master versions.

EST Sequences

The complete dbEST database (Boguski et al. 1993) was used as
the target for EST similarity searches. During the time the
searches were performed, this comprised ∼1.4 million EST se-
quences, of which ∼875,000 were derived from human
cDNAs. The entire sequence of each EST was used in similarity
searches.

Genomic Test Sequences

Test sequences were identified by querying the GSDB (Keen et
al. 1996) periodically between April 1996 and February 1997
for human sequence entries 5000 nucleotides or longer for
which the molecule sequenced was DNA or dsDNA. The IC
accession number was then used to retrieve each entry as a
flatfile from a local copy of GenBank. Entries were screened
manually, and those that were actually mRNA sequences, or-
ganellar DNA, or proviral DNA were excluded, as were entries
consisting solely of interspersed repeat elements. We also ex-
cluded entries containing the T-cell receptor genes, because
these contain annotation for a large number of V-region seg-
ments representing a single type of gene that is likely to be
under-represented in EST databases, and which, therefore,
skewed the test results.

The feature table for each entry was analyzed by use of
the SSP1 parser (Overton et al. 1994), as well as other software
written specifically for this investigation, to identify gene-
related features and define the extent of annotated genes. In
cases where SSP1 failed or produced errors, results were re-
viewed manually. The location of a gene was considered to be
the union of all exonic regions specified in exon, mRNA,
CDS, 58 UTR, and 38 UTR features. Where appropriate, in-
formation from prim transcript, polyA signal, and
polyA site features was used to extend the first or last exon
of a gene. For genes subject to alternative splicing, initiation
of transcription, or polyadenylation, all alternatives were con-
sidered to be part of the gene. Where a single database entry
contained multiple genes, the values of the gene, standard
name, and product qualifiers were used to group features.
Features in different entries with the same gene names were
considered part of the same gene. Sequences from the DGCR
were received directly from the investigators, and the loca-
tions of genes were annotated manually based on information
provided by them. Where multiple entries contained genes
with the same name and ù90% sequence identity, they were
considered duplicates, and all but one were discarded.

Because in many cases the annotation did not unam-
biguously indicate whether a complete mRNA was present in
an entry, we adopted as a working criterion for inclusion in
set WG the presence of a complete coding region, with evi-
dence, such as a polyA signal feature, that the 38 end of the
gene was present.

BLAST Similarity Searches

Prior to searching, interspersed and simple sequence repeats
were masked off in the genomic query sequence by use of a
copy of CENSOR (Jurka et al. 1996) version 1.1 kindly made
available by the authors. Repeat templates consisted of a col-
lection of human repeat elements (v. 5.0, Jurka et al. 1992),
simple repeat elements (v. 3.0, Jurka and Pethiyagoda 1995),
and the cloning vector pUC19. CENSOR was run once with a
linear gap penalty and again with a logarithmic gap penalty to
better identify partial repeats; the default alignment param-
eters (Conservative 2 set: DASHER window size of 150 with no
overlap and a score threshold of 4.5; LOCAL score threshold
of 25.0 and ratio threshold of 2.0) were used at each step. The
masked sequences were then used as a query in a similarity
search against all of dbEST by use of blastn version 1.4.8
(Altschul et al. 1990). BLAST was chosen as the search algo-
rithm because significant HSPs involving all parts of the se-
quences are reported, rather than a single optimal alignment.
This makes it possible to deal easily with the large gaps, cor-
responding to introns, which one expects will occur in an
alignment of cDNA sequence to genomic sequence. The rapid
execution of BLAST-based search engines relative to other
common alignment algorithms also makes it the option of
choice for large-scale annotation in laboratories without ex-
tensive computational resources. Furthermore, because we
have focused on close nucleotide similarity as a criterion for
gene identification, BLAST’s somewhat lower sensitivity to
distant relationships than algorithms such as FASTA was not
a significant liability. In all BLAST searches against dbEST,
default values were used for parameters controlling align-
ments (E = 10 E2 = 0.024 M = 5 N = 14 W = 11). The output
reporting parameter V was set to 1, and B was initially set to
250, and increased until the final 10 alignments in the output
failed to reach the thresholds for any stringency class, or to a
maximum value of 5250. This maximum was reached in
searches with 96 of the genomic query sequences. In searches
against the sample database of 3815 ESTs described below, B
was set to 4000. After each search, sequence position num-
bering was corrected to account for BLAST’s deletion of
masked regions, and a summary of each reported HSP was
saved.

WU-BLAST2 Comparisons

Alignment of selected ESTs and genomic sequences was per-
formed by use of the currently available implementation of
wu-blastn version 2.0a10 (Gish 1997). Default parameters
(identical to those for blastn 1.4.8 above, except B = 4000
Q = 10 R = 10) were used. Each genomic sequence was used as
the query against a database of 3815 test ESTs, and the results
for ESTs of interest were classified by use of the same rules as
were used for the BLAST 1.4.8 search results.

Classification of Similarity Results

Alignments of an EST with a genomic query sequence were
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classified by use of a set of rules that considered the degree of
identity between the two, and the fraction of the EST that was
similar to the query sequence (Table 1). An alignment was
included in a particular stringency class if it was a member of
one of that class’s parents, or if it met the length and identity
thresholds for that class directly. In determining whether a
length threshold was met, each HSP or gapped segment pair
(GSP) was considered to cover a continuous span along an EST
from the starting position to the ending position of the seg-
ment. All HSPs or GSPs meeting a given identity threshold
were used to determine whether that alignment met the
length threshold for the stringency class under consideration.

Analysis of EST Origin

The clone ID, library of origin, and polarity (i.e., 58 or 38 end)
of each EST studied were retrieved by direct query to the
dbEST SQL server maintained by NCBI from the clone uid,
id lib, and p end fields, respectively, of the EST table. A
suffix consisting of whitespace or the word end was removed
from the polarity value, if present, and the word prime was
replaced with the symbol (8) to regularize the representation;
if the resulting string was neither 58 nor 38, it was considered
uninterpretable. Manual review of these uninterpretable val-
ues indicated that, with rare exceptions, they designated ESTs
whose polarity was, in fact, not determined. ESTs were con-
sidered to have arisen from the same cDNA clone if they
shared the same clone ID.

Correlation of EST Results with Gene Annotation

An EST was considered to identify an annotated gene at a
particular identity threshold if any HSP or GSP in the BLAST-
generated alignment between that EST and the genomic se-
quence overlapped any portion of that gene’s location. A
similar criterion was used for identification of individual ex-
ons by an EST. Because polarity information was not available
for all ESTs, we did not require that this overlap occur on the
same strand. A cDNA clone was considered to identify an
annotated gene if either of the ESTs arising from that clone
identified the gene.

In places where EST alignments to the genomic sequence
fell outside of annotated genes, all overlapping segments of
EST-genomic alignments were projected into a single new CR
on the genomic sequence, to approximate a portion of an
exon in a potential unannotated gene. Each annotated exon
was also considered to be a single CR in the genomic se-
quence.
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