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Most research in control engineering considers periodic or time-triggered control systems

with equidistant sample intervals. However, practical cases abound in which it is of interest

to consider event-driven control in which the sampling is event-triggered. Although there are

various benefits of using event-driven control like reducing resource utilization (e.g., processor

and communication load), their application in practice is hampered by the lack of a system

theory for event-driven control systems. To provide a first step in developing an event-driven

system theory, this paper considers an event-driven control scheme for perturbed linear systems.

The event-driven control scheme triggers the control update only when the (tracking

or stabilization) error is large. In this manner, the average processor and/or communication

load can be reduced significantly. The analysis in this paper is aimed at the control performance

in terms of practical stability (ultimate boundedness). Several examples illustrate the theory.

1. Introduction

Most research in control theory and engineering

considers periodic or time-triggered control systems

where continuous time signals are represented by their

sampled values at a fixed sample rate. This leads to

equidistant sample intervals and the analysis and

synthesis problems can be coped with by the vast

literature on system theory for sampled data systems.

However, there are cases when it is of interest to

consider event-driven control systems where the

sampling is event-triggered rather than time-triggered.

In an event-driven system it is the occurrence of an event

rather than the passing of time, that decides when a

next sample should be taken. The event-triggering

mechanisms can vary and several examples are given

in the following (Årzén 1999).

. Time-varying sample intervals occur in the control of

internal combustion engines that are sampled against

engine speed (Albertoni et al. 2005).
. The event-driven nature of the sampling can be

intrinsic to the measurement method, for instance,

when encoder sensors are used for measuring the

angular position of a motor (Heemels et al. 1999).

Other ‘‘event-driven’’ sensors include level sensors

for measuring the height of a fluid in a tank

(e.g., Förstner and Lunze (2001) and Lunze (2000)),

(magnetic/optic) disk drives with ‘‘encoder-like’’

measurement devices (Phillips and Tomizuka 1995)

and transportation systems where the longitudinal

position of a vehicle is only known when certain

markers are passed (de Bruin and van den Bosch

1998). Quantization of signals in which the sampling

is induced by crossings of the quantization

levels (Kofman and Braslavsky 2006) has a similar

effect.
. Also in modern distributed control systems it is

difficult to stick to the time-triggered paradigm. This

is specially the case when control loops are closed

over computer networks (Zhang et al. 2001, Cervin

et al. 2003) or busses, e.g., field busses, local area

networks, wireless networks (Ploplys et al. 2004,

Kawka and Alleyne 2005), etc., that introduce varying

communication delays.

Next to the various (natural) sources of event-triggering

and their relevance in practice, there are many other*Corresponding author. Email: m.heemels@tue.nl
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reasons why the use of event-driven control is of
interest:

. As stated in Årzén (1999), event-driven control is
closer in nature to the way a human behaves as a
controller. Indeed, when a human performs manual
control his behaviour is event-driven rather than
time-driven. It is not until the measurement signal
has deviated sufficiently from the desired set point
that a new control action is taken.

. Another important reason why event-driven control
is of interest is resource utilization. An embedded
controller is typically implemented on a real-time
operating system. The available CPU (central proces-
sing unit) time is shared between the tasks such that
it appears as if each task is running independently.
Occupying the CPU resource for performing control
calculations when nothing significant has happened
in the process is clearly an unnecessary waste
of resources. The same argument also applies to
communication resources. Indeed, reducing the
number of control updates leads directly to a
reduction in the number of messages to be transmitted
and thus to a lower (average) bus load. As commun-
ication busses have limited bandwidth, reducing
their load is very beneficial. Moreover, lower bus
loads also save energy. Especially for wireless
communication via battery-powered devices, this is
an important aspect as wireless communication is
a severe power consumer (e.g., ElGamal et al. 2002,
Stark et al. 2002).

. Also from a technology point of view, event-driven
controllers are becoming more feasible, particularly
for distributed real-time sensing and control. For
example, for sensors in sensor networks, TinyOS is
an event-driven operating system that is already used
in several applications (Levis et al. 2004).

Although the above discussion indicates that in many
situations it is logical to study and implement event-
driven controllers, their application is scarce in both
industry and academia, at least at the level of (servo)
feedback control loops. These feedback loops are at
the lowest level in the control hierarchy for high-tech
systems at which fast dynamics dominate the behaviour.
At the supervisory level of the control hierarchy it
is more common to use discrete-event controllers that
can be well described (often after abstracting away from
the continuous dynamics) by discrete-event system
theory; see e.g., Cassandras and Lafortune 1999.
A major reason why, at the low level feedback loops,
time-driven control still dominates is the difficulty
involved in developing a system theory that fits these
types of event-driven systems in which the continuous
dynamics are profound. Traditional time-driven con-
trollers are designed with a main focus on the

performance of the controlled process. The aim of

event-driven control is to create a better balance

between this control performance and other system

aspects (such as processor load, communication load,

and system cost price).
In many situations one tries to circumvent the event-

driven nature of the control system in order to still use

the system theory for time-driven systems. For instance,

when sensors are event-based (i.e., the measurement

data arrives not equidistantly in time) often one designs

asynchronous observers that provide estimates of the

state variable of the plant at equidistant times.

For instance, in Glad and Ljung (1984), de Bruin and

van den Bosch (1998) and Krucinski et al. (1998)

approaches based on Kalman filtering are used, while
in Phillips and Tomizuka (1995) a Luenberger-type

observer is applied. Since estimates of the state are

now available at a constant sample rate, standard

(state feedback) control analysis and design methods

can be applied. Another example of neglecting the event-

driven nature is to assume (or impose as stringent

conditions for the software engineers) that the real-time

platforms used for implementing controllers are able

to guarantee deterministic sample intervals. In reality

this is, however, seldom achieved. Computation and/or

communication delays of networked control systems

(Zhang et al. 2001, Ploplys et al. 2004, Kawka and

Alleyne 2005, ten Berge et al. 2006) are inevitable and

can degrade the performance significantly. To study

the effects of computation and communication delays in

control loops, in Cervin et al. (2003) the tools Jitterbug

and Truetime are advocated. Other approaches extend

the periodic sampled-data theory to incorporate the

presence of latencies (delays) or jitter (variations

on delays) in servo-loops in the control design.

Typically, in this line of work (see, e.g., Hu and

Michel (2000), Zhang et al. (2001), Lincoln (2002),

Kao and Lincoln (2004), Balluchi et al. (2005) and

Cloosterman et al. (2006)) the time variations in the

‘event-triggering’ can be considered as disturbances

and one designs compensators that are robust to it.

In Schinkel et al. (2002, 2003) time-varying sample times

are considered. However, only a finite number of

possible sample times are allowed. Then one designs
controllers and observers that use feedback or observer

gains that depend on the known sample time. Stability

of the closed-loop is guaranteed via the existence of a

common quadratic Lyapunov function. However,

knowing the (future) sample time is unrealistic in

various cases including event-driven control.

Moreover, in the event-driven context as proposed

here a common Lyapunov function does not exist

as asymptotic stability cannot be achieved. As we will

see, ultimate boundedness (Blanchini 1994, 1999)
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with small bounds (a kind of practical stability) is the
most one can achieve.
There is another fundamental difference between

the previously mentioned work and the current paper.
We will study event-driven controllers for which we
design both the control algorithm and the way the
events are generated that determine when the control
values are updated. This is in contrast with the
approaches in Zhang et al. (2001), Lincoln (2002),
Schinkel et al. (2002, 2003), Kao and Lincoln (2004),
Balluchi et al. (2005) and Cloosterman et al. (2006),
where the variations in the sample times are considered
as externally imposed disturbances. In this paper the
selection of the event-triggering mechanism suits a
clear purpose: lowering the resource utilization of its
implementation while maintaining a high control
performance. The approach taken here is to update the
control value only when the (tracking or stabilization)
error is larger than a threshold and holding the control
value if the error is small. Event-driven control strategies
(Doff et al. 1962, Årzén 1999, Åström and Bernhardsson
2002, Årzén et al. 2003, Sandee et al. 2005, Johannesson
et al. 2007) have been proposed before to make such
a compromise between processor load and control
performance. In Doff et al. (1962), Årzén (1999),
Årzén et al. (2003), Sandee et al. (2005) and
Johannesson et al. (2007), the potential of event-driven
controllers has been indicated via various interesting
examples, but theoretical results on performance
of event-driven controllers are rare. Besides the math-
ematical analysis in Åström and Bernhardsson (2002)
and Johannesson et al. (2007) for first order stochastic
systems, the current paper is one of the first that
provides a theoretical study of the performance of event-
driven controllers (for higher-order systems).
To be more precise, this paper provides theory and

insight to understand and tune a particular type of
event-driven controlled linear systems. The performance
of these novel control strategies is addressed in terms of
ultimate boundedness (Blanchini 1994) and convergence
rates. Depending on the particular event-triggering
mechanism used for the control updates, properties
like ultimate boundedness for the perturbed event-
driven linear system can be derived either from a
perturbed discrete-time linear system or from a
perturbed discrete-time piecewise linear (PWL) system.
Since results for ultimate boundedness are known
for discrete-time linear systems (e.g., Blanchini (1994,
1999), Kolmanovsky and Gilbert (1998), Kerrigan
(2000) and Rakovic et al. (2005), and piecewise linear
systems see, e.g., Kvasnica et al. (2004) and Rakovic
et al. (2004)), these results can be carried over to event-
driven controlled systems. In this way we can tune
the parameters of the controller to obtain satisfactory
control performance on one hand and low processor/

communication load on the other. Initial experimental
studies of the achievable reduction in the processor load
by the particular type of event-driven controllers
proposed here, are very promising (Sandee et al. 2006).

The outline of the paper is as follows: in x 2 we present
two numerical examples that show the potential of
the proposed event-driven controllers for reducing
resource utilization while maintaining a high control
performance; after introducing some preliminaries in x 3,
we present the problem formulation in x 4; in x 5
the approach is given and the main results are presented
for two particular types of event-triggering mechanisms
in x 6 (the non-uniform case) and x 7 (the uniform case).
Section 8 shows how the intersample behaviour can
be included in the analysis. In x 9 it is indicated how the
main results can be exploited to compute ultimate
bounds for event-driven linear systems in combination
with existing theory for linear and piecewise linear
systems. Moreover, we provide conditions that guaran-
tee the existence of ultimate bounds that are bounded.
Based on these results, we develop tuning rules
for event-driven controllers as explained in x 10. In x 11
we present some examples that illustrate the theory
and we end with the conclusions.

2. Motivating examples

To show the potential of event-driven control with
respect to reduction of resource utilization we present
two examples; one academic example using state
feedback and one event-driven PID controller with the
aim of velocity tracking for a DC motor, a situation
occurring often in industrial practice.

2.1 Scalar state feedback example

Consider the following simple continuous-time plant

_xðtÞ ¼ 0:5xðtÞ þ 10uðtÞ þ 3wðtÞ ð1Þ

with x(t)2R, u(t)2R and w(t)2R the state, control
input and disturbance at time t2Rþ, respectively.
The additive disturbance satisfies �10�w(t)� 10. This
system will be controlled by a discrete-time controller

uk ¼
�0:45xk; if jxkj � eT

uk�1; if jxkj < eT;

�
ð2Þ

that runs at a fixed sample time of Ts¼ 0.1 time units.
Hence, xk¼ x(kTs) for k¼ 0,1,2, . . . . Here, eT denotes
a parameter that determines the region
B :¼ fx2R j jxj < eTg close to the origin in which
the control values are not updated, while outside B
the control values are updated in a ‘normal fashion’.
In this paper we will refer to this situation as uniform
sampling. We will also consider the (locally)
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non-uniform case where reaching the boundary of B will
be the event trigger—in addition to a fixed update rate
outside B - for updating the control values. Figure 1
displays the ratio of the number of control updates
in comparison to the case where the updates are
performed each sample time (i.e., uk¼�0.45xk for all
k¼ 0, 1, 2, . . .) and the maximal value of the state
variable (after transients) xmax :¼ lim supt!1 jx(t)j,
respectively, versus the parameter eT. The results
are based on simulations. Hence, one can reduce the
number of control computations by 75% without
degrading the control performance in terms of ultimate
bound xmax drastically (e.g., take eT¼ 3).

2.2 Event-driven PID controller

The most common controller in industry is still the
proportional integral derivative (PID) controller. We
will present an event-driven version of it. Also in Årzén
(1999) an event-driven PID controller is proposed
using a different event triggering mechanism. However,
a formal analysis of its properties is not presented in
Årzén (1999).
A standard transfer function for a continuous-time

PID algorithm is

CðsÞ ¼ Kp þ Ki=sþ KdsLðsÞ ð3Þ

with L(s), a low-pass filter to deal with high frequency
measurement noise. The transfer function of this filter
with a bandwidth !d is given in (4)

L sð Þ ¼
!d

sþ !d
: ð4Þ

To use this controller in a discrete-event environment,
the first step is to discretise the transfer function of the
controller. This can be done by means of approximation
formulas. A common choice for approximating the
integral part is to use Forward Euler. To approximate
the derivative part in combination with the filter L(s),

the Tustin approximation (Franklin et al. 1998) is used.
The resulting transfer function of the PID controller
in discrete-time is given in (5)

C zð Þ ¼ Kp þ Ki
Ts;k

z� 1

þ Kd
2!d

2þ !dTs;k

z� 1

zþ ð!dTs;k � 2Þ=ð!dTs;k þ 2Þ
:

ð5Þ

The controller in (5) is suitable as an event-driven
controller with Ts,k a varying sample time and
�k :¼

Pk�1
j¼0 Ts;j is the time instant at which the kth

control update is performed. We call �k, k¼ 0, 1, 2, . . .
the control update times. In conventional time-driven
control Ts,k¼Ts is fixed and the control update times
are equally spaced in time, but for event-driven control
Ts,k is allowed to change over time. In Årzén (1999) it
is shown that adapting Ts,k in (5) for every control
update improves the control performance considerably
although it requires additional control computations
and thus a bit higher processor load (in comparison to
the case where Ts,k is kept constant as a kind of ‘‘average
sampling period’’). The event-triggering mechanism
(selecting �k) is based on the tracking error e as follows:

�kþ1 ¼ infft � �k þ Ts;min j jeðtÞj � eTg ð6Þ

in which eT4 0 is a threshold value and Ts,min4 0 is
the minimum sample time. We will refer to (6) as the
locally non-uniform mechanism (cf. x 2.1, where the
uniform mechanism was introduced). This mechanism
uses a uniform sample time of Ts,min for large tracking
values e(t), but only when |e(t)|5 eT the control value
(so ‘‘locally’’) is held longer and the sample time varies.
For shortness we refer to this mechanism as non-
uniform in the remainder of the paper.

The event-driven PID controller is used in simulations
to control the angular velocity of a DC-motor. These
results will be compared to a standard time-driven PID
controller. A simplified motor model is taken with
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Figure 1. eT versus the control effort and xmax for system (1)–(2).
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input the motor voltage and output the velocity of the

motor axis. The transfer function is given by

P sð Þ ¼
A

�1sþ 1ð Þ �2sþ 1ð Þ
ð7Þ

with the time constants �1 and �2 equal to 0.33 s and

0.17 s, respectively. The static gain A is 10 rad/Vs.
The gains of the continuous-time controller in (3) are

determined by loop-shaping (e.g., Franklin et al. 2005)

in Kp¼ 30Vs/rad, Ki¼ 40V/rad and Kd¼ 2Vs2/rad.

In industrial practice, the sample frequency of the

time-driven controller is often chosen approximately

20 times the bandwidth of the open-loop system

(e.g., Franklin et al. (1998)). This bandwidth, defined

as the zero-dB crossing of the open loop amplification,

is 57Hz in the considered example. The sample

frequency is therefore chosen to be 1 kHz. To improve

the performance of the controller, a feedforward

term was added that feeds-forward the set-point speed

multiplied by a gain of 1=A ¼ 0:1 Vs=rad: Furthermore,

the output of the controller is saturated at þ10V and

�10V. The bandwidth of the low-pass filter fd is chosen

to be 200Hz (and thus !d¼ 2� � 200 rad/s).
Various simulations have been carried out with the

reference velocity shown in figure 2. In figure 3,

simulations of the standard time-driven PID controller

(5) with Ts,k¼Ts fixed and equal to 1ms and the event-

driven controller (with adaptation of Ts,k) are shown.

For comparison, the parameter eT of equation (6)

is chosen such that the maximum error of the event-

driven simulation approximates the maximum error

obtained from the time-driven simulation. The value

of Ts,min is chosen the same as the sample time of the

time-driven controller. The values are eT¼ 5 � 10�4 rad/s

and Ts,min¼ 0.001 s. As can be seen from figure 3,

the event-driven controller does not realise a zero

tracking error (in contrast with the time-driven

controller). This is especially evident for the phases

with (non-zero) constant deceleration (e.g., the time

period from 5 s to 8 s). However, in most industrial

applications there are often only requirements given
for the maximum value of the error.

The third plot in figure 3 shows the number
of samples that is needed for the control algorithms.
This amount is equal to 10 000 for the time-driven
controller as it is running on a constant sample
frequency of 1 kHz for 10 seconds. The number of
samples needed for the event-driven controller based
on (6) is 2400, leading to a reduction of 76% in the
number of control updates.

In the next simulations uniformly distributed
measurement noise is added to the output of the process
in the range of [�0.003, 0.003] rad/s, which is at most
3% of the maximal velocity. To obtain the best results
with the event-driven controller, the value of eT needs
to be increased to make sure it will not be triggered
continuously by the noise. The new value is
eT¼ 7 � 10�3 rad/s. The results of the simulations includ-
ing measurement noise are depicted in figure 4.
A slightly worse performance of the event-driven
controller compared to the time-driven controller is to
be accepted here, especially considering the considerable
reduction of control updates to less than 3100
(69% reduction).

Of course, the reduction in control updates has to be
related to its effect on resource utilization especially
since the event-triggering mechanism creates some
overhead as well. Depending on the ratio between the
(on-line) computational complexity of the control
algorithm, the overhead of the event triggering mechan-
isms and i/o access of the processor, the reduction of
control computation indeed lowers the processor load
considerably. In Sandee et al. (2006) the authors studied
this relation both theoretically and experimentally with
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respect to processor usage. These initial results are very
promising.
Both examples indicate the potential benefits of event-

driven control in practice. However, as already

mentioned in the introduction, a formal analysis
of this type of controllers is missing in the literature,

which hampers the exploitation of event-driven control.

To contribute in filling this gap, we will analyse state

feedback controllers using the uniform sampling of x 2.1
and the (locally) non-uniform sampling of (6). We will

focus on the stabilization problem. A precise problem

formulation will be given in x 1 after introducing some

preliminaries next.

3. Preliminaries

For a matrix M2R
n�m, we denote MT

2R
m�n as its

transposed. A matrix M2R
n�n is called positive

definite, denoted by M4 0, if M¼MT for all x2R
n

with x 6¼ 0 it holds that xT Mx4 0. For a set ��R
n we

denote its interior, its closure and its boundary by int�,
cl� and @�, respectively. For two sets �1 and �2 of R

n,

the set difference �1\�2 is defined as fx2�1 j x 6 2 �2g

and the Minkowski sum as �1��2 :¼ {uþv j u2�1,

v2�2}. The complement of ��R
n is defined as R

n\�
and is denoted by �c.
A matrix A2R

n�n is called Hurwitz, if all its

eigenvalues lie in the open left half of the complex

plane. The matrix is called Schur, if all its eigenvalues

lie in the open unit disc. We call the matrix pair (A,B)
with A2R

n�n and B2R
n�m Hurwitz stabilizable, if

there exists a matrix F2R
m�n such that AþBF is

Hurwitz. (A,B) is called Schur stabilizable, when there

is an F2R
m�n with AþBF Schur.

Consider a time-varying discrete-time system

xkþ1 ¼ fðk; xk;wkÞ ð8Þ

with xk2R
n the state and wk 2Wd the disturbance

at discrete-time k2N :¼ {0, 1, 2, . . .} or a time-varying

continuous-time system

_xðtÞ ¼ fðt; xðtÞ;wðtÞÞ ð9Þ

with x(t)2R
n the state variable and wðtÞ 2Wc the

disturbance at time t2Rþ. Wc and Wd denote the

disturbance sets, which are assumed to be convex,

compact and contain 0. We define the set Lloc1 ðT! R
p
Þ

as the Lebesgue space of locally integrable functions

from the time interval T�R to R
p. Similarly,

L
loc
1 ðT!WcÞ denotes all fw2Lloc1 ðT! R

p
Þ j

wðtÞ 2Wc for almost all t2Tg. Analogously, for

discrete-time signals we write W1d for the set of

infinite sequences given by {(w0,w1,w2, . . .) j

wk2Wd, k2N}.

Definition 1 (robust positive invariance): The

set ��R
n is a robustly positively invariant (RPI)

set for the discrete-time system (8) with disturbances

in Wd, if for any x2�, k2N and any w2Wd

it holds that f(k, x,w)2�. The set ��R
n is a

robustly positively invariant (RPI) set for the

continuous-time system (9) with disturbances in Wc,

if for any time tini2Rþ, any state xini2� and

any disturbance signal w2Lloc1 ð½tini;1Þ !WcÞ it

holds that the corresponding state trajectory satisfies

x(t)2� for all t� tini. We assume implicitly the well-

posedness of the system (9) in the sense that (local)

existence and uniqueness of solutions to (9) given an

initial condition and disturbance signal of interest is

satisfied.

Definition 2 (ultimate boundedness) (Blanchini

1994): We call the discrete-time difference equation

(8) ultimately bounded (UB) to the set � with

disturbances in Wd, if for each x02R
n there exists

a K(x0)4 0 such that any state trajectory of (8) with

initial condition x0 (and any arbitrary realisation of

the disturbance w2W1d ) satisfies xk2� for all

k�K(x0). Similarly, we call (9) ultimately bounded

(UB) to the set � with disturbances in Wc, if for every

initial condition x02R
n there exists a T(x0)40 such that

any state trajectory of (9) with initial condition x(0)¼ x0
(and any arbitrary realisation of the disturbance

w : 2Lloc1 ð½0;1Þ !WcÞ) satisfies x(t)2� for all

t�T(x0). We say that either the discrete-time or

continuous-time system is UB for initial states in X0,

if the above properties hold for all x02X0 (instead of

for all x02R
n).
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Figure 4. Simulation results with measurement noise added.
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4. Problem formulation

We consider the system described by

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ þ EcwðtÞ; ð10Þ

where x(t)2R
n is the state, u(t)2R

m the control input

and w(t)2Wc the unknown disturbance, respectively,

at time t2Rþ. The set Wc�R
p is convex and compact

and contains the origin. Ac2R
n�n, Bc2R

n�m and

Ec2R
n�p are constant matrices. The matrix pair

(Ac,Bc) is assumed to be Hurwitz stabilizable. The

control goal, which will be made more precise soon, is

a ‘practical stabilization problem’ in the sense of

controlling the state to a region close to the origin and

keep it there irrespective of the presence of disturbances.

Note that asymptotic stability cannot be obtained due

to the possible persistence of the disturbances.
As a controller for system (10) a discrete-time state-

feedback controller with gain F2R
m�n is considered, i.e.,

uk ¼ Fxk; ð11Þ

where xk¼ x(�k), uk¼ u(�k) using the zero-order hold

u(t)¼ uk for all t2 [�k,�kþ1). Hence, the system is given by

_xðtÞ ¼ AcxðtÞ þ BcuðtÞ þ EcwðtÞ ð12aÞ

uðtÞ ¼ Fxð�kÞ; for t2 ½�k; �kþ1Þ: ð12bÞ

The control update times �k are in conventional

time-driven control related through �kþ1¼ �kþTs,

where Ts is a fixed sample time meaning that the control

value is updated every Ts time units according to (11).

To reduce the number of required control calculations,

we propose not to update the control value if the state

x(�k) is contained in a set B close to the origin. As such,

we consider a set B that is open bounded and contains

the origin. Note that the openess of B is merely a

technical condition to make the following exposition

more compact and clear. It is not a restrictive condition.

We will consider two event-triggering mechanisms,

which were already discussed in x 2.

. The non-uniform mechanism as used in the example

of x 2.2 is given by

�1 ¼ infft � �0 j xðtÞ 62 Bg and �kþ1

¼ infft � �k þ Ts j xðtÞ 62 Bg; k > 0: ð13Þ

. The uniform mechanism as used in the example of

x 2.1 is given by

�kþ1 ¼ inff jTs > �k j j2N; xð jTsÞ 62 Bg: ð14Þ

We will use �0¼ 0 as the first control update time

(irrespective if x(0)2B or not). In the non-uniform case

we have a kind of ‘‘start-up behaviour’’ as �1 is defined a

bit differently than �kþ1 for k4 0. In both the uniform

and non-uniform case the system is controlled with a
fixed sample time Ts when the state x(t) is far away from
B. In the uniform case still every Ts time units it
is checked, whether or not the state x( jTs) lies in B
and the set of control update times is a subset of
{ jTs j j2N}. The latter set can be considered the
collection of control check times. The non-uniform
case does not have this constant checking rate, but has
locally (inside B) a non-uniform character as new
control updates are triggered by reaching the boundary
of B. It might be the case that for certain initial
conditions x(0)¼ x0 and disturbance signals
w2Lloc1 ð½0;1!WcÞ there are only a finite number of
control update times (i.e., �kþ1¼1 for some k and thus
�kþ2, �kþ3, . . . do not exist). In this case we have that the
corresponding state trajectory denoted by xx0;w lies
inside B for all times t4 �kþTs in the non-uniform
mechanism and for all control check times jTs4 �k in
case of the uniform mechanism. Hence, for state
trajectories where this phenomenon occurs we already
have some ultimate boundedness properties. We intro-
duce the notation S(x0,w) in this context as the index
set corresponding to all finite control update times for
initial state x0 and disturbance signal w. The notation
S0(x0,w) is the index set corresponding to all control
update times �� that are not only finite themselves, but
also the next control update time ��þ1 is finite. In the
above situation with �k51 and �kþ1¼1,
S(x0,w)¼ {0, . . . , k} and S0(x0,w)¼ {0, . . . , k�1}.

With regard to practical implementation, it has to be
observed that the uniform mechanism is easier to
implement, although it is more difficult to analyse, as
we will see.

As already mentioned, the control objective is a
‘‘practical stabilization problem’’ in the sense of
controlling the state towards a region � close to the
origin and keeping it there.

Problem 1: Let a desired ultimate bound �d�R
n

containing 0 in the interior be given. Construct Ts, F
and B such that the system (12) with the control update
times given by either (13) or (14) is UB to �d.
For the moment, we ignore the transient behaviour of the
event-driven system. The reason is that this is easily
inherited from properties of the discrete-time linear
system with the fixed sample time Ts (cf. (15) below).
We will return to this issue later in x 10 in which it is
explained how to tune the controller to get a satisfactory
ultimate bound �d and convergence rate towards �d.

5. Approach

Problem 1 will be solved in two stages as is typical for
sampled-data systems. First properties on UB to a set �
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are obtained for the event-driven system (12) on the

control update times only. Next bounds on the

intersample behaviour (see x 8 below) will be derived

that enlarge � to ~� such that the ultimate bound ~� is

guaranteed for all (continuous) times t.
We first introduce the formal definitions of robust

positive invariance and ultimate boundedness ‘‘on the

control update times’’ for the system (12) together with a

particular event-triggering mechanism

Definition 3: Consider the system (12) with either (13)

or (14) as event-triggering mechanism.

. For this system the set ��R
n is called robustly

positively invariant (RPI) on the control update times

for disturbances in Wc, if for any initial state x0 and

w2Lloc1 ð½0;1Þ !WcÞ the corresponding state trajec-

tory xx0;w of the system has the property that

xx0;wð�kÞ 2� for some k2S0(x0,w) implies

xx0;wð�kþ1Þ 2�:
. This system is ultimately bounded (UB) on the control

update times to the set � for disturbances in Wc, if

for any initial condition x0 there exists a K(x0) such

that for any w2Lloc1 ð½0;1Þ !WcÞ the corresponding

state trajectory xx0;w satisfies for all k2S(x0,w),

k�K(x0) that xx0;wð�kÞ 2�:

Note that we only impose robust positive invariance or

UB-related conditions on the finite control update times

and not for time instants beyond. However, as noted

in the previous section, for state trajectories xx0;w with

S(x0,w)¼ {0, . . . , k} a finite collection, it holds that

xx0;wðtÞ 2B for t4 �kþTs in the non-uniform mechan-

ism and xx0;wð jTsÞ 2 B for all jTs4 �k in case of the

uniform mechanism. Hence, we already have some

ultimate boundedness properties with respect to the set

B in this situation. The situation with S(x0,w) is an

infinite set is the case of interest here.
In the analysis of the event-driven control scheme

the discretized version of (10) and (11) using the fixed

sample time Ts given by

xdkþ1 ¼ ðAþ BF Þxdk þ wd
k ¼ Aclx

d
k þ wd

k ð15Þ

with

A :¼ eAcTs

B :¼

Z Ts

0

eAc� d�Bc

wd
k :¼

Z �kþ1

�k

eAcð�kþ1��ÞEcwð�Þd�

Acl :¼ Aþ BF

9>>>>>>>>=
>>>>>>>>;

ð16Þ

will play an important role. Indeed, for both the uniform

and non-uniform sampling case, the system behaves

away from the set B (at the control update times) as (15).

We use the shorthand notation xx0;wð�kÞ ¼ xdk here. This

system is only representing the system (12) at the control
update times, when �kþ1¼ �kþTs. The bounds on w(t)

via Wc are transformed into bounds on wd
k given by

Wd :¼

Z Ts

0

eAcðTs��ÞEcwð�Þd� j w2L
loc
1 ð½0;Ts	 ! WcÞ

� �
:

ð17Þ

Since Wc is convex, compact and contains 0, also Wd

is convex, compact and contains 0. Since (Ac,Bc)

is assumed to be Hurwitz stabilizable, it follows that

for almost all choices of Ts4 0, that (A,B) is Schur
stabilizable. (see exercise 3.20 in Trentelman et al. (2001)

for a detailed discussion and conditions on Ts that

guarantee that Hurwitz stabilizability of (Ac,Bc) trans-
fers into Schur stabilizability of its discretized version

(A,B)). In general F will be chosen such that AþBF is

Schur. In x 9.1 we will provide conditions that guarantee
the existence of a bounded set � to which the event-

driven system will be UB to.

6. Main results for the non-uniform mechanism

The first theorem below states that ultimate bounds
for the linear discrete-time system (15) can be used to

find ultimate bounds for the event-driven system (12)

on the control update times {�k}k with non-uniform

sampling (13).

Theorem 1: Consider the system (12)–(13) with Wc a
closed, convex set containing 0 and B an open set

containing the origin. Let Wd be given by (17).

(i) If � is a RPI set for the linear discrete-time system

(15) with disturbances in Wd and clB��, then � is

a RPI set for the event-driven system (12)–(13) on

the control update times for disturbances in Wc.
(ii) If the linear discrete-time system (15) with

disturbances in Wd is UB to the RPI set � and

clB��, then the event-driven system (12)–(13) on
the control update times is UB to � for disturbances

in Wc.

Proof: (i) Let an arbitrary initial state x0 and

w2Lloc1 ð½0;1Þ !WcÞ be given and consider the cor-

responding state trajectory xx0;w of the system (12)–(13)
and assume that xx0;wð�kÞ 2� for some k2S0(x0,w).

Since �kþ1 is finite as well, there are two possibilities:

. �kþ1¼ �kþTs. This means that the update of the state

over the interval [�k, �kþ1] is governed by (15) for some

wd
k 2Wd. Since � is a RPI set for (15) with

disturbances in Wd, this means that xx0;wð�kþ1Þ 2�

(irrespective of the realisation of the disturbance).
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. �kþ1 6¼ �kþTs. Note that for k4 0 it holds that
�kþ14 �kþTs. Only for k¼ 0, it may hold that
�1� �0þTs. According to (13) this implies
that xx0;wð�kþ1Þ 2 @B � clB Since clB��, it holds
that xx0;wð�kþ1Þ 2�.

This proves that � is RPI for (12)–(13) on the control
update times for disturbances in Wc.
(ii) Consider an initial state x0. If x02�, then due to

the RPI property of � on the control update times as
proven in the first part of the proof, the state trajectory
xx0;w stays within � on the control update times
(irrespective of the disturbance
signal w2Lloc1 ð½0;1Þ !WcÞ), i.e., xx0;wð�kÞ 2� for
k2S(x0,w). Hence, one can take K(x0)¼ 0 in
Definition 3. Suppose x0 6 2�. Since (15) is UB to �
for disturbances in Wd, there exists a time K(x0)
such that any discrete-time trajectory xd with initial
condition xd0 ¼ x0 of (15) satisfies xdk 2� for k�K(x0)
(irrespective of the disturbance signal w2W1d ). We
claim that this K(x0) satisfies also Definition 3 for x0.
Indeed, let w2Lloc1 ð½0;1Þ !WcÞ and consider the

trajectory xx0;w of (12)–(13) for initial condition
x(0)¼ x0 and disturbance signal w. Let �k2Sðx0;wÞ
satisfy �k � Kðx0Þ. We proceed by contradiction. Assume
that xx0;wð�kÞ 62� for k¼ 0, . . . ,K(x0). Since
xx0;wð�kÞ 62� for k ¼ 0; . . . ; �k, and thus xx0;wð�kÞ 62 B
for k ¼ 0; . . . ; �k, it holds that �kþ1¼ �kþTs and
xx0;wð�kþ1Þ and xx0;wð�kÞ are related through (15)
for some wd

k 2Wd for all k ¼ 0; . . . ; �k� 1. Hence,
xx0;wð�kÞ ¼ xdk for k ¼ 0; . . . ; �k. However, xdKðx0Þ 2� and
�k � Kðx0Þ. We reached a contradiction. Hence, there is a
k2 {0, . . . ,K(x0)}, say k̃ such that xx0;wð� ~kÞ 2�. Since �
is RPI for (12)–(13) on the control update times, we have
xx0;wð�kÞ 2� for all k� k̃ and k2S(x0,w). As K(x0)� k̃,
this completes the proof of statement (ii). œ

7. Main results for the uniform mechanism

As mentioned before, the non-uniform update scheme is
hard to implement in practice. Uniform sampling might
be more relevant from a practical point of view.
However, in contrast to non-uniform sampling the
properties of the discrete-time linear system do not
transfer to the event-driven system in this case. As
we will see, we will need a discrete-time piecewise linear
(PWL) model (see, e.g., Sontag (1981) and Heemels
et al. (2001)) to analyse event-driven systems using
uniform sampling. We will present two approaches to
this problem. A first PWL model uses (xT(�k), u

T(�k�1))
T

as state variable, while the second PWL model only uses
x(�k). This implies that the first model has a higher
(nþm)-dimensional state variable than the second
(n-dimensional), but as we will see next, it only needs

two linear submodels, while the second PWL model
might need much more.

7.1 A bimodal higher order piecewise linear system

To derive results on ultimate boundedness on the
control update times for the event-driven system with
the uniform mechanism, we will embed the control
update times {�k j k2S(x0,w)} in its superset
{ jTs j j2N}. From (12)–(14) together with the discretisa-
tion (15) it can be observed that the behaviour of the
system (12) and (14) on the control check times
{ jTs j j2N} can be included in

xdkþ1

udk

 !
¼

AþBF 0

F 0

� �
xdk
udk�1

� �
þ

I

0

� �
wd
k; if xdk 62B

A B

0 I

� �
xdk
udk�1

� �
þ

I

0

� �
wd
k; if xdk2B

8>>><
>>>:

ð18Þ

for wd
k 2Wd. Note that the fact �0¼ 0, i.e., at the initial

time a control update u0 ¼ Fx0 is performed, can be
included by considering initial states in the set
X0 :¼ fðxT0 ; u

d T
�1 Þ

T
j ud�1 ¼ Fx0g.

We need the following definition.

Definition 4: Let � be a subset of R
n
�R

m.
The projection �n(�) of � on the first n components
of the vector space R

n
�R

m is defined as
{x2R

n
j 9 u2R

m such that (xT, uT)T2�}.

As {�k j k2S(x0,w)}� { jTs j j2N} for any x0 and
disturbance signal w, we will formulate a result on
ultimate boundedness on the control check times, a
concept that can be defined analogously as UB on the
control update times as in Definition 3.

Theorem 2: Consider the system (12) and (14) withWc a
closed, convex set containing 0 and B an open
set containing the origin. Let Wd be given by (17). If the
piecewise linear discrete-time system (18) with distur-
bances in Wd is UB for initial states in X0 to the set �,
then the event-driven system (12) and (14) on the control
check times is UB to �n(�) for disturbances in Wc.

Proof: As system (12), (14) coincides with (18) on
the control check times and (18) is UB to �, we have
that for any x0 there exists a Kðx0; u

d
�1Þ with ud�1 ¼ Fx0

such that ðxd T
k ; ud T

k�1Þ
T
2� for all k � Kðx0; u

d
�1Þ. Since

ud�1 is a function of x0, it holds that there is a
K̃(x0) :¼K(x0,Fx0) such that xx0;wðkTsÞ 2�nð�Þ for all
k� K̃(x0).

7.2 A multi-modal lower order piecewise linear system

As already mentioned, the above approach leads to a
piecewise linear system with an (mþ n)-dimensional
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state vector. As this might be prohibitive for

numerical tools computing ultimate bounds for

PWL systems (when the number of control inputs m is
large), an alternative approach is presented in

this section.

7.2.1 The unperturbed case. Consider (12) on the
control check times, which can be described by

xdkþ1 ¼ Axdk þ Budk

udk ¼
Fxdk; if xdk 6 2 B

udk�1; if xdk 2B:

(
9>>=
>>; ð19Þ

with xd0 :¼ x0 and ud�1 ¼ Fx0. We make the following
observation. When the state xdk is outside B the state

update in (18) does not depend on udk�1 and hence,

the information on udk�1 is not necessary. Only in

case xdk 2B the previous control value has to be

known as it is going to be held for at least one, but
possibly multiple check times. However, we can

explicitly compute this update relation depending

on how many check times the control value is held.

This update relation will map the state just before
entering B (at a control update time) to the state

just after leaving B again (at the next control update

time). It will turn out that in this way a piecewise

linear (PWL) model is obtained in which we abstract
away from the number of discrete-time steps that the

system is inside B. Using this PWL system proper-

ties related to UB can again be translated to the

original system (12) and (14) on the control update
times. The advantage with respect to (18) is that we

only have an n-dimensional state vector now.
To define the map hp for the different periods of

time (denoted by p) that the state stays in B, we consider

first the case p¼ 0, i.e., xdk 6 2 B and xdkþ1 6 2 B the system
update matrix is given by

xdkþ1 :¼ h0ðx
d
kÞ ¼ ðAþ BFÞxdk: ð20Þ

For p¼ 1 we assume that xdk 6 2 B, xdkþ1 2B and then

xdkþ2 6 2 B. The function h1 defines the mapping from

xdk to xdkþ2 in this case. This update of the state

variable is given by xdkþi ¼ Axdkþi�1 þ Budkþi�1, i¼ 1, 2
with udkþ1 ¼ udk ¼ Fxdk (since the control value is held).

Hence,

xdkþ2 ¼ h1ðx
d
kÞ :¼ ½AðAþ BFÞ þ BF	xdk: ð21Þ

Similarly, suppose we stay p steps in B before leaving B

again (i.e., xdk 6 2 B, then xdkþ1 2B, x
d
kþ2 2B; . . . ; xdkþp 2B

and then xdkþpþ1 6 2 B). We obtain the function hp
that maps xdk to xdkþpþ1 as follows by using repetitively

xdkþi ¼ Axdkþi�1 þ Budkþi�1, for i¼ 1, . . . , pþ 1.

Since udkþp ¼ udkþp�1 ¼ � � � ¼ udk ¼ Fxdk, we can express

xdkþpþ1 as a function of xdk,

xdkþpþ1 ¼ hpðx
d
kÞ :¼ fA

pþ1 þ ½Ap þ Ap�1

þ Ap�2 þ � � � þ I 	BF gxdk: ð22Þ

Now that the maps hp are defined, the regions Dp must

be determined in which the map hp is active. As Dp

is given by those xdk 6 2 B that satisfy xdkþ1 2B,

xdkþ2 2B; . . . ; xdkþp 2B and xdkþpþ1 6 2 B, we have for

p¼ 0, 1, 2, . . .

Dp :¼ fx 6 2 B j hjðxÞ 2B for

j ¼ 0; 1; . . . ; p� 1 and hpðxÞ 62 Bg: ð23Þ

We also define the set of states that remain inside B

forever after entering it from outside B

D1 :¼ fx 6 2 B j hjðxÞ 2 B for all j ¼ 0; 1; . . .g: ð24Þ

Note that Di\Dj¼; if i 6¼ j.
Finally, we introduce the set RB which contains

all possible values of xdk outside B, that can reach B

within one discrete time-step

RB :¼ fx 6 2 B j h0ðxÞ 2Bg:

With these definitions, it holds that

R
n
¼ B [ RB [D0 and RB ¼ D1 [

[1
i¼1

Di: ð25Þ

To obtain a finite representation of the piecewise linear

system, we need the existence of a pmax such that

RB ¼ D1 [
[pmax

i¼1

Di ð26Þ

in which pmax is the maximal (finite) number of discrete

steps that the system (19) can stay inside B after entering

it from outside B.
Deriving conditions for which the existence of such a

finite pmax is guaranteed is an open issue. One of the

complications is for instance that Di¼; does not

necessarily imply that Diþ 1¼;. Also the computation

of D1 is not straightforward. A computational

approach can be obtained by increasing pmax until

the right-hand side of (26) is equal to the left-hand side

(see x 11.2 for an example). However, still analytical

results proving the existence of a finite pmax and possibly

an upper bound for it, would be very beneficial.

One such condition is formulated in x 7.2.2.
The iteration parameter k related to the control check

times kTs is replaced by a new ‘‘discrete-time variable’’ l

corresponding to the control update times �l after

abstracting away from the motion of the system’s state

inside B. Therefore, we replace xdkþpþ1 ¼ hpðx
d
kÞ by
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xdlþ1 ¼ hpðx
d
l Þ and obtain the piecewise linear system

xdlþ1 ¼ fPWLðx
d
l Þ with

xdlþ1 ¼
hpðx

d
l Þ; when xdl 2Dp; p ¼ 0; 1; . . . ; pmax

0; when xdl 2D1 [ B:

(

ð27Þ

Some observations on the PWL system (27) are in order.

. The dynamics of the event-driven system (12), (14)

and the PWL system (27) coincide on

B
c
nD1 ¼

Spmax

i¼0 Di for the control update times

in the sense that xx0 ð�lþ1Þ ¼ xdlþ1 ¼ fPWLðx
d
l Þ ¼

fPWLðxx0 ð�lÞÞ for xdl ¼ xx0 ð�lÞ 2B
c
nD1, where xx0

denotes the solution of the event-driven system (12),

(14) for initial condition x(0)¼ x0 and �l with l2S0(x0)

a control update time. Moreover, xdl ¼ xx0 ð�lÞ 2D1
implies that �lþ1¼1.

. On D1[B the piecewise linear model was completed

by adding dynamics to the system for the case when

xdl 2D1 and xdl 2B. As will be proven below, it is

not important how the dynamics are chosen exactly

on these sets as long as they do not map outside B.
. A set Dp is in general not convex. It might even not

be connected. See, the example in x 11.2.

We state now the main result of this section.

Theorem 3: Consider system (12) and (14) without

disturbances (i.e. Wc¼ {0}) and B is an open set

containing the origin. Assume that there exists a

pmax51 such that (26) holds. If the PWL system (27)

is UB to the positively invariant set � and B��, then the

event-driven system (12) and (14) is UB to � on the

control check times.

Proof: The system (12) and (14) on the control check

times is described by (19). Therefore, we consider

solutions in terms of trajectories xd of (19) in this proof.
If xd0 2� then we either have that the state trajectory

of (19) satisfies xdk 2� for all k¼ 0, 1, 2, . . . (which is

in accordance with the properties of the theorem) or

the state trajectory leaves � for some control check

time. Hence, without loss of generality we can consider

the case that there exists a k0 (take the smallest) for

which xdk0 6 2� and thus xdk0 2B
c
¼ D1 [

Spmax

i¼0 Di

because B��. Observe that the dynamics of (19) and

(27) coincide on
Spmax

i¼0 Di (modulo the motion inside B,

which lies in � and therefore is not affecting the UB

property to �). Hence, since xdk0 2D1 [
Spmax

i¼0 Di, the

system (19) follows the dynamics of the PWL system

(27) (modulo the motion inside B) for k� k0 until D1
is reached—if ever (say at k1� k0 with k1 possibly equal

to1). If D1 is reached, the state xdk of (19) stays inside

B�� for all k4 k1 by definition of D1. Hence, on the

discrete-time interval [k0, k0þ 1, . . . , k1) the state of

system (19) follows the motion of (27) and hence,
the inheritance of the UB property follows. œ

Remark 1: The theorem also holds for pmax¼1.
However, the use of theorem in practice is lost due to
the infinite character of the piecewise linear system.

Note that the larger p is, the more event times we are not
updating the control value and thus we are not using the
CPU for performing control computations. So, the
larger pmax the more we can potentially save on
processor load, but the more complex (the more regions)
the resulting PWL model will be for the performance
analysis. Advantageously, the computation of the
ultimate bounds is performed off-line.

7.2.2 Finite PWL representations. In this section we
present a sufficient condition that guarantees
the existence of a finite PWL representation (27)
(i.e., the existence of a finite pmax such that (26) holds).

Theorem 4: Consider system (19) with B a set that
satisfies 02 intB. Assume that all the eigenvalues of the
matrix A lie outside the closed unit circle of the complex
half plane and AþBF does not have an eigenvalue 1
(which is typically the case as AþBF is chosen such that
all eigenvalues are inside the open unit circle). Then (26)
holds for a finite pmax and D1¼;.

Proof: We need two algebraic results in the proof, that
will be established next.

. Since A has all its eigenvalues outside the closed unit
circle, A� 1 is Schur (i.e., all eigenvalues inside the
unit circle). This implies that there is a positive definite
and symmetric matrix P (denoted by P4 0) such that
ðA�1ÞTPA�1 � P < 0. Premultiplying the latter
inequality by AT and postmultiplying by A and
noting that A is invertible yields P�ATPA5 0.
Hence, there exists a matrix P4 0 and a �4 1 such
that

ATPA > �P: ð28Þ

. Next we prove that the matrix (AþBF)� (I�A)�1

BF is invertible. Suppose that (AþBF)z¼ (I�A)�1

BFz. This implies A(I�A�BF)z¼ 0. Since A is
invertible this yields (AþBF)z¼ z. As AþBF does
not have an eigenvalue 1, this give z¼ 0 and hence,
the invertibility of (AþBF)� (I�A)�1 BF is proven.

To finish the proof, we recall that pmax is the maximal
number of discrete steps that the system (19) can stay
inside B after entering it from outside B. Let x0 be the
last state outside B and x1 :¼ (AþBF)x0 the first state
inside B. Inside B the state is governed by

xkþ1 ¼ Axk þ BFx0: ð29Þ
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as the input is held at the value Fx0. For shortness of

notation, we omit superscript d here, the system (29) has

an (unstable) equilibrium at xeq :¼ (I�A)� 1 BFx0. If we

define �xk :¼ xk�xeq, k¼ 1, 2, . . . , then we can observe

that �xkþ 1¼A�xk. Together with (28) this yields

�xTkP�xk > �k�1�xT1P�x1. The latter inequality indi-

cates that xk will move arbitrarily far away from x12B

for sufficiently large k. Indeed,

ðxk�x1Þ
TPðxk�x1Þ

¼ ð�xk��x1Þ
TPð�xk��x1Þ¼ kP

1=2ð�xk��x1Þk
2

�ðkP1=2�xkk�kP
1=2�x1kÞ

2>
� ffiffiffiffiffiffiffiffiffi
�k�1

p
�1

�2
kP1=2�x1k

2:

ð30Þ

Note that �x1 ¼ ½ðAþ BFÞ � ðI� AÞ�1BF	x0. Since B

contains 0 in its interior, (AþBF)� (I�A)�1BF

is invertible and P is positive definite, there exists a

�4 0 such that for all x0 6 2B we have �xT1P�x1 � �.
Hence, using (30) we obtain that

ðxk � x1Þ
TPðxk � x1Þ � ð

ffiffiffiffiffiffiffiffiffi
�k�1

p
� 1Þ2� for all

k¼ 1, 2, . . . (as long as xk2B). Since B is bounded the

expression �:¼ sup{(x�y)TP(x� y) j x2B, y2B} is

finite. Hence, if k is large enough to satisfy

ð
ffiffiffiffiffiffiffiffiffi
�k�1

p
� 1Þ2� > �, it follows that xk must be outside

B (as x1 lies inside B). This completes the proof.
An upper bound on pmax follows from the proof

above.

Corollary 1: Consider system (19) with B a set that

satisfies 02 intB. Assume that all the eigenvalues of the

matrix A lie outside the closed unit circle of the complex

half plane and AþBF does not have an eigenvalue 1.

. Let P4 0 be a solution to ATPA4 �P for a �4 1,

which is known to exist.
. � :¼minz2=B z

T
½ðAþ BFÞ � ðI�AÞ�1BF	TP½ðAþ BFÞ�

ðI� AÞ�1BF	z > 0:
. �:¼ sup{(x� y)TP(x� y) j x2B, y2B}.

Let kmin be the smallest integer k that satisfies

ð
ffiffiffiffiffiffiffiffiffi
�k�1

p
� 1Þ2� > �. Then pmax� kmin.

7.2.3 The perturbed case. In this subsection we briefly
indicate how the derivation given above needs to

be modified in order to include additive disturbance in

the event-driven system (12) and (14). At the control

check times the trajectory of the system (12) and (14)

is described by the discrete-time system

xdkþ1 ¼ Axdk þ Budk þ wd
k

udk ¼
Fxdk if xdk 6 2 B

udk�1 if xdk 2B

(
9>>=
>>; ð31Þ

for some realisation of the disturbance wd
k 2Wd,

k¼ 0, 1, 2, . . . . In this case we will also compute a
PWL system, but now the mappings hp will depend not
only on the state xdk but also on the disturbance sequence
ðwd

k;w
d
kþ1; . . . ;wd

kþpÞ. Suppose the state trajectory stays p
steps in B before leaving B again (i.e., xk 6 2 B, then
xdkþ1 2B, xdkþ2 2B; . . . ; xdkþp 2B and then xdkþpþ1 6 2 B).
We obtain the function hp that maps xdk to xdkþpþ1
similarly as in x 7.2.1

xdkþpþ1 ¼ hpðx
d
k;w

d
kþp; . . . ;wd

kÞ

¼ Ahp�1ðx
d
k;w

d
kþp�1; . . . ;wd

kÞ þ BFxdk þ wd
kþp

¼ fApþ1 þ ½Ap þ Ap�1 þ Ap�2 þ � � � þ I 	BF gxdk

þ ½Apwd
k þ Ap�1wd

kþ1 þ � � � þ wd
kþp	: ð32Þ

One can observe that the dynamics depend on different
sizes of the disturbance sequence

ðwd
k;w

d
kþ1; . . . ;wd

kþpÞ 2 Wd � � � � �Wd|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
pþ1 times

¼:W
pþ1
d :

In this sense we could describe the system by using an
‘‘embedding’’ in the product space R

n
� ln1, where ln1

denotes the space of (infinite) sequences ðwd
0;w

d
1;w

d
2; . . .Þ

that are bounded in the sense that supk2N kw
d
kk <1.

Indeed, all the maps hp can be reconsidered as having
arguments in R

n
� ln1 by defining for p¼ 0, 1, 2, . . .

xdkþp ¼ Hpðx
d
k;w

d
kÞ ¼ hpðx

d
k;w

d
kþp; . . . ;wd

kÞ; ð33Þ

for ðxdk;w
d
kÞ 2R

n
� ln1, where wd

k ¼ ðw
d
k; . . . ;wd

kþp�1;
wd
kþp; . . .Þ. Each map Hp is valid on regions Dp that

can be determined as

Dp :¼ fðxdk;w
d
kÞ 2B

c
�W1d j Hjðx

d
k;w

d
kÞ 2B for

j ¼ 0; 1; . . . ; p� 1 and Hpðx
d
k;w

d
kÞ 62 Bg: ð34Þ

In a similar manner as for the unperturbed case, we also
define the set of states and disturbance sequences that
remain inside B forever after entering it from outside B

D1 :¼ fðxdk;w
d
kÞ 2B

c
�W1d j Hjðx

d
k;w

d
kÞ 2B for all

j ¼ 0; 1; 2; . . .g: ð35Þ

Note that Di\Dj¼; if i 6¼ j. Moreover, observe that in
this case the ‘switching’ of the dynamics is dependent on
the disturbance input as well and not solely on the state
as in the unperturbed case.

Finally, we introduce the set RB which contains all
possible values ðxdk;w

d
kÞ in B

c
� ln1 for which B is reached

within one discrete time-step

RB :¼ fðxdk;w
d
kÞ 2B

c
�W1d j H0ðx

d
k;w

d
kÞ 2Bg:

Similarly to the unperturbed case, (25) holds. However,
it does not hold in R

n, but in the embedding space
R

n
�W1d . Moreover, to obtain a finite representation
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of the PWL system, we need the existence of a pmax

such that (26) holds, where pmax is the maximal (finite)
number of discrete steps that the system (19) can stay
inside B after entering it from outside B (for a
particular disturbance realisation). In the perturbed
case, there are two reasons for the ‘‘infinite represen-
tation’’ of the PWL system. First of all the number of
regions can be infinite (as in the unperturbed case),
but also the length of the disturbances sequence
determining the update from xdk to xdkþpþ1 can be
infinite. Hence, the existence of a finite pmax leads on
one hand to a finite number of regions of the PWL
system and on the other implies that the infinitely
dimensional space R

n
� ln1 can be replaced by

R
n
� ðR

n
Þ
pmaxþ1. Indeed, if we abstract away from the

motion inside B and replace the iteration parameter k
corresponding to the control check times by the new
discrete-time variable l corresponding to the control
update times, we obtain the PWL system
xdlþ1 ¼ fPWLðx

d
l ;w

d
l Þ with

xdlþ1 ¼

Hpðx
d
l ;w

d
l Þ; when ðxdl ;w

d
l Þ2Dp; p¼ 0;1; . . . ;pmax

0; when ðxdl ;w
d
l Þ 62

[pmax

p¼0

Dp

8>><
>>:

ð36Þ

with wd
l 2W

pmaxþ1
d : Note that there is a slight abuse

of notation in (36) as we replaced wd
k 2W

1
d by

wd
l 2W

pmaxþ1
d in both Hp and the representations of the

sets Dp.
A similar result as Theorem 3 can be derived in this

case as well.

8. Including intersample behaviour

The above results only provide statements on the control
update or control check times. The behaviour of the
system in between these control check/update times
is not characterised. However, since at the control
check/update times we obtain UB to a set �, we know
that the state trajectories enter � in finite time. Using
this observation, an ultimate bound including the
intersample behaviour of (12) together with (13) or
(14) can be computed from

xx0;wðtÞ�xx0;wð�kÞ ¼ ½e
Acðt��kÞ � I 	xx0;wð�kÞ

þ

Z t

�k

eAcðt��ÞBcuð�kÞd�

þ

Z t

�k

eAcðt��ÞEcwð�Þd�; ð37Þ

where t2 [�k, �kþ1).

In the non-uniform case we either have xx0;wðtÞ 2B or
t� �k5Ts in (37). In the latter case using the bounded-
ness of Wc we can easily see that

kxx0;wðtÞ � xx0;wð�kÞk � CTsðkxx0;wð�kÞk þ 1

þ kFkkxx0;wð�kÞkÞ ð38Þ

for all Ts 2 ½0;T
max
s 	. The constant C ¼ CðAc;Bc;Ec;

Tmax
s ;WcÞ depends on the system parameters, Ac, Bc, Ec,
Wc and Tmax

s . Hence, if the system (15) is UB to a RPI
set � with clB�� (as in Theorem 1), then the event-
driven system (12)–(13) is UB to the set ~� :¼ �� Bð0; "Þ
with " :¼ supx2� CTsðkxk þ 1þ kFkkxkÞ and Bð0; "Þ :¼
fx2R

n
j kxk � "g.

In the uniform case a similar bound holds as in (38)
with the minor modification

kxx0;wðtÞ � xx0;wð jTsÞk � CTsðkxx0;wð jTsÞk þ 1

þ kFkkxx0;wð�kÞkÞ; ð39Þ

where jTs and �k are the largest control check time and
largest control update time smaller than t, respectively.
Two situations can occur: (i) S(x0,w) is a finite set or
(ii) S(x0,w) is an infinite set. In the latter case both
xx0;wð jTsÞ and xx0;wð�kÞ lie ultimately in �, which yields a
similar bound as in the uniform case.

In the former case, there is a �k such that xx0;wðkTsÞ 2B

for k � �k, but it might be the case that xx0;wð�kÞ is
outside � (it is just the last state at which a control
update was performed). The only information on
xx0;wð�kÞ is that it lies in RB (in the unperturbed case)
or there exists a wd

k 2W
1
d such that ðxx0;wð�kÞ;w

d
kÞ 2RB

(the perturbed case). In case that AþBF is invertible,
the set RB is bounded, which gives a bound on
kxx0;wð�kÞk. Hence, using (39) a bound on the inter-
sample behaviour can be derived. Note that D1¼;
implies that this case is actually absent. Hence, if the
conditions of Theorem 4 are fulfilled, then S(x0) is
infinite for all x0 2=B and this situation does not have
to be considered.

Alternatively, in case there are physical reasons that
the control inputs are restricted to a bounded set or if
the method outlined in x 7.1 is used in which also
ultimate boundedness of the u-variables is proven,
a bound like CTs(kxkkþ 1) can be directly computed
independent of the designed controller gain F.

9. Existence and computational aspects of the

ultimate bounds

In this section we will provide conditions that guarantee
the existence of bounded ultimate bounds for the
event-driven systems at hand. Moreover, we will also
present techniques that can be used to compute the
ultimate bounds.
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9.1 Existence of ultimate bounds that are bounded

As already remarked before, we assume that the pair

(Ac,Bc) is Hurwitz stabilizable in (12), which implies that

for almost all values of Ts4 0 the pair (A,B) as in (16) is

Schur stabilizable as discussed in Excercise 3.20 in

Trentelman et al. (2001). As such, we assume that Ts4 0

is chosen such that (A,B) is Schur stabilizable and the

control gain F 2R
m�n is such that AþBF is Schur.

When Wc is a bounded set, we also have that Wd is a

bounded set. We will start by considering the non-

uniform case and we will define the minimal robustly

positive invariant (mRPI) set for the discrete-time linear

system in (15).

Definition 9.1 (Minimal Robustly Positively Invariant

Set F1): The set F1 is the minimal robustly

positively invariant set of the discrete-time linear

system (15) with disturbances in Wd, if the following

statements hold.

(i) 02F1;
(ii) F1 is robustly positively invariant of (15) with

disturbances in Wd,
(iii) any other robustly positively invariant set F

of (15) with disturbances in Wd satisfies

F1�F .

It is shown in Kolmanovsky and Gilbert (1998) that the

mRPI set F1 of the system (15) with disturbances inWd

is bounded in case AþBF is Schur andWd is a bounded

set. Moreover, it is well-known Blanchini (1994) that

�F1 for �4 1 forms also a RPI set for the system (15)

with disturbances inWd and is even an ultimate bound if

AþBF is Schur. Selecting �4 1 large enough such that

clB � �F1 gives an ultimate bound for (15) satisfying

the conditions of Theorem 6.1. Hence, using the results

in Section 8 on the intersample behaviour, this reasoning

shows that a bounded ultimate bound for the event-

driven system (12)–(13) with the non-uniform mechan-

ism exists when AþBF is Schur, B bounded and Wc

bounded.

The uniform case is a bit more complicated as

illustrated by the following example.

Example 9.2: Consider the continuous-time system

with scalar state given by

_xðtÞ ¼ xðtÞ þ
1

e� 1
uðtÞ, ð40Þ

where e denotes Euler’s number being approximately

2.718. When we use a sample time Ts¼ 1 its discretized

version is given by

xdkþ1 ¼ exdk þ udk: ð41Þ

The event-driven controller using the uniform mechan-

ism is selected as

udk ¼
�exdk; when jxkj � ";

udk�1; when jxkj < ":

(
ð42Þ

Hence, A¼ e, B¼ 1 and F¼�e. Consequently,

AþBF¼ 0. If we now take initial condition

xd0 ¼M � ", then it is not hard to see that

udk ¼
ð�eÞ1þðk=2ÞM; when k is even

ð�eÞ1þðk�1Þ=2M; when k is odd;

(

xdk ¼
ð�eÞk=2M; when k is even

02B; when k is odd:

(

Since M was arbitrary this implies that the event-driven

system does not have a bounded ultimate bound and

becomes even unstable although the corresponding

discrete-time system xdkþ1 ¼ ðAþ BFÞxdk ¼ 0 is asympto-

tically stable. Note that in case the non-uniform event

triggering mechanism is used, the set clB ¼ ½�", "	 forms

an ultimate bound.

The reason that the boundedness of B and Wd

together with AþBF being Schur is not sufficient for

the existence of a bounded ultimate bound, is that RB
might not be bounded. Hence, one might reach 02B

from a point xdk arbitrarily far away from the set B using

a large control value udk ¼ Fxdk. Since the control value

will be held at the next step, xdkþ1 ¼ Fxdk is also very large

again. This might lead to undesirable phenomena such

as an instability or limit cycles and (thus) the absence of

a bounded ultimate bound. However, if AþBF is

invertible, the set RB is bounded and the following

result can be derived.

Theorem 9.3: Consider system (12) with a bounded

disturbance set Wc and B is a bounded and open set

containing the origin. Assume that AþBF is Schur. Then

the following statements hold.

. The event-driven system (12) using the non-uniform

mechanism (13) is UB to some bounded set �.
. If in addition AþBF is invertible, then the event-driven

system (12) using the uniform mechanism (14) is UB to

some bounded set �.

Guaranteeing the existence of bounded ultimate bounds

is certainly of interest. Additionally, it would be

beneficial to have computational means to construct

such ultimate bounds. This will be the topic of the next

sections, after which we will discuss in x 10 how they

depend on the set B.
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9.2 Computational aspects for the non-uniform case

In Theorem 1 it was shown that properties of robust
invariance of sets and UB for the discrete-time linear
system (15) carry over to the event-driven system
(12)–(13) on the control update times. As such it is of
importance to be able to compute RPI sets and UB
for discrete-time linear systems. We already introduce
the mRPI set in Definition 5, which is one useful RPI
set for which computational algorithms are available.
For instance, the forward algorithm of Kolmanovsky
and Gilbert (1998) can be used to compute F1. If Wd

contains the origin in its interior, then it is even known
that the algorithm terminates in finite time when AþBF
is chosen to be Schur.
Besides the forward algorithm to find F1, there

are various other ways to compute RPI sets for discrete-
time linear systems (e.g., Blanchini (1994, 1999),
Kolmanovsky and Gilbert (1998), Kerrigan (2000),
Rakovic et al. (2005)). We will present here one
approach based on ellipsoidal sets as in Kolmanovsky
and Gilbert (1998). To use the ellipsoidal approach of
Kolmanovsky and Gilbert (1998), we assume that Wd

is included in an ellipsoid of the form
ER�1 :¼ fw j wTR�1w � 1g for a matrix R4 0.
Techniques to find such an over-approximation are
given in Boyd et al. (1994).
Along the lines of Kolmanovsky and Gilbert (1998)

it can be shown that feasibility of

P� ��1AclPA
T
cl � ð1� �Þ

�1R > 0 and P > 0 ð43Þ

for some � 2 (0,1) yields (using Schur complements and
suitable pre- and postmultiplications) that

ðAclxþ wÞTP�1ðAclxþ wÞ < �xTP�1xþ ð1� �ÞwTR�1w:

From this it is easily seen that xTP�1x� 1 and
wTR�1w� 1 imply (Aclxþw)TP�1(Aclxþw)� 1.
This shows that �¼ {x j xTP�1x� 1 is a RPI set
for (15). By suitable scaling such that clB���
for �4 1 again an ultimate bound is obtained for the
event-driven system (12)–(13) on the control update
times.

9.3 Computational aspects for the uniform case

Also for PWL systems several ways to compute
invariant sets are available (Kvasnica et al. 2004,
Rakovic et al. 2004).
For the higher-order bimodal PWL system (18),

we observe that in the first mode the x-evolution
is given by xdkþ1 ¼ ðAþ BFÞxdk þ wd

k. This means
that when xd0 6 2 B the corresponding trajectory will
eventually satisfy xdkþ1 2�F1 for any �4 1
with clB��F1, where F1 denotes the mRPI set

containing 0 for xdkþ1 ¼ ðAþ BFÞxdk þ wd
k and distur-

bances in Wd. Hence, any state trajectory xd for the
bimodal PWL system (18) with an initial state xd0 6 2 B
reaches the set

ðAþ BFÞxþ w

Fx

� �
j for some x and w that satisfy

�

ðAþ BFÞxþ w2�F1 and w2Wd

�
: ð44Þ

at some point. When xd0 2B, then the update of system
(18) gives

xd1
ud0

 !
¼
ðAþ BFÞxd0 þ wd

0

Fxd0

 !
;

which also lies in the set defined in (44). This means that
all state trajectories of (18) reach the set in (44). Hence, if
one constructs a RPI set � for the system (18) containing
the set in (44), then �n(�) is an ultimate bound for the
PWL system (18) and according to Theorem 2 also for
the event-driven system (12) and (14) on the control
check times.

In the above reasoning, one can actually replace the
set F1 by any other RPI set for the linear system
xdkþ1 ¼ ðAþ BFÞxdk þ wd

k with disturbances in Wd that
contains 0 (e.g., based on ellipsoidal sets as in the
previous section).

In case of the lower-order PWL model we will present
an approach based on ellipsoidal sets although techni-
ques using reachability analysis Kvasnica et al. 2004)
can be exploited as well. Actually, the example in x 11.2
uses both the ellipsoidal and the reachability approach
for illustration purposes.

Theorem 6: Consider theevent-drivensystem (12)and (14)
without disturbances (i.e., Wc¼ {0}) and B an open set
containing the origin. Let P4 0 be a solution
to AT

clPAcl � P < 0. Take �* small such that
�
 � maxp2 f1;...;pmaxg supfx

TPx j x2 hpðDpÞg and �
 �
maxfxTPx j x2 clBg, where hp(Dp) denotes the image of
the map hp with its arguments in Dp. Define the set
�(�*) :¼ {x2Rn

j xTPx��*}. Then the PWL system (27)
is UB to the positively invariant set �(�*) and clB��(�*)
andconsequentlytheevent-drivensystem (12)and (14)onthe
control check times is also UB to the set �(�*).

For brevity we omitted the proof.

10. Tuning of the controller

In this section we indicate how the ultimate bound �

depends on B, thereby facilitating the selection of
desirable ultimate bounds by tuning B. We will present
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here results for the non-uniform case (with disturbances)

and the uniform case without disturbances.

10.1 Non-uniform sampling

The following result can be inferred from Blanchini

(1994).

Theorem 7: Consider the system (12)–(13) with Wc a

closed, convex set containing 0, F and Ts40 given and B

an open set containing the origin. Let Wd be given by (17).

. If � is a RPI set for the discrete-time linear system (15)

with disturbances in Wd containing clB, then for any

�� 1 �� is a RPI set for (15) with disturbances in Wd

containing �clB.
. If the discrete-time linear system (15) with disturbances

inWd is UB to � containing clB, then for any �� 1 (15)

with disturbances in Wd is UB to �� containing �B:

This result shows that � scales ‘‘linearly’’ with B for

scaling factors larger than one. Consider the minimal

RPI set F1 containing 0. For small B this gives the

ultimate bound for the event-driven system on the
control update times as long as the chosen B lies inside

F1. Strictly speaking, an ultimate bound is the set �F1
for any small �4 1 as F1 is only approached

asymptotically by some trajectories of the discrete-time
linear system (15). If B is taken larger and clB is not

contained in F1 anymore, the linear scaling effect as

in Theorem 7 occurs. This effect is nicely demonstrated

in the first example below.

For the tuning of the controller one typically selects
the state feedback gain F such that AþBF is Schur and

guaranteeing suitable transient behaviour. Indeed, out-

side B the dynamics is given by the discrete-time linear

system (15), which implies that the convergence towards
the ultimate bound is determined by F. Selecting F such

that AþBF has desired eigenvalues, yields a desirable

speed of convergence. If an ultimate bound � with

clB�� is computed for a pre-selected B, one tunes the

size of the stabilization error �� by scaling �B.
However, a fundamental limitation is given by F1 as

this is the error bound caused by the persistent

disturbances when B¼ {0}. One cannot go beyond this

ultimate bound without changing F, although still some

effect of the disturbance will remain present. However,
in the unperturbed case any scaling factor holds for any

�4 0 (as F1¼ {0} in this case).

10.2 Uniform sampling for the unperturbed case

In this section we will consider the unperturbed case, i.e.,

Wc¼ {0}.

Theorem 8: Consider the system (12) and (14) with
Wc¼ {0}, F and Ts4 0 given and B an open set
containing the origin. If the PWL system (27) correspond-
ing to B is UB to the positively invariant set � and B��,
then for any �4 0 the PWL system (27) corresponding
to �B is UB to the positively invariant set �� and
�B���.

Proof: In the proof we will indicate the dependence of
fPWL, hp and Dp on the set B via superscripts, i.e., fBPWL,
hBp and DBp , respectively. Let �4 0. The mappings hBp do
not depend on B, only on p, the number of discrete-time
steps the control value is held. Hence, h�Bp ¼ hBp . This
yields together with the linearity of the mappings that
D�B

p ¼ �D
B
p and D�B

1 ¼ �D
B
1. Hence,

f�BPWLð�xÞ ¼ �f
B
PWLðxÞ. Indeed, if x2DBp , then

�x2�DBp ¼ D�B
p . As a consequence, it holds that

f�BPWLð�xÞ ¼ h�Bp ð�xÞ ¼ �h
B
p ðxÞ ¼ �f

B
PWLðxÞ. The same

reasoning can be applied to x2B and x2DB1. If we
denote the state trajectory xd;x0;B of the system (27)
corresponding to B from initial state x0, then we obtain
the relation xd;�x0;�B ¼ �xd;x0;B. From the latter
relationship, the result in the theorem follows. œ

This theorem gives a means, similarly to the
non-uniform case, to tune the ultimate bound by
suitably selecting the event-triggering mechanism para-
meterised by B. Scaling B with a constant �4 0 leads to
an ultimate error bound that is � times the bound
belonging to B. Note that due to the absence of
perturbations, we can scale B with any �4 0 instead
of only �4 1.

Analogous results can be derived for the bimodal
PWL system (18) without disturbances.

11. Examples

11.1 Non-uniform sampling

To illustrate the theory in case of non-uniform sampling
(13) we will use the example (1) of x 2 with F¼�0.45.
Note that in the introduction we used uniform sampling.
In figure 5 the ratio of the number of control updates in
comparison to the case where the updates are performed
each sample time (i.e., udk ¼ �0:45x

d
k for all xdk) and the

maximal value of the state variable (after transients)
xmax :¼ lim supt!1 jx(t)j (the ‘‘minimal ultimate
bound’’), respectively, versus the parameter eT are
displayed, where B¼ {x2Rj jxj5 eT}.

The figure of the ultimate bounds can nicely be
derived from the theory. First, we compute for the
system (1), the discretised version (15) with sample time
Ts¼ 0.1

xdkþ1 ¼ 1:051xdk þ 1:025udk þ wd
k; udk ¼ �0:45x

d
k ð45Þ
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or

xdkþ1 ¼ 0:590xdk þ wd
k ð46Þ

with �3.076�wd
k� 3.076, i.e., Wc¼ [�10, 10] and

Wd¼ [�3.076, 3.076]. The minimal RPI set F1 for
(46) containing {0} is equal to the ‘‘ellipsoid’’
[�7.50, 7.50]. Hence, note that as long as eT5 7.50 the
ultimate bound of the system (12)–(13) is equal to F1
(or strictly speaking to the set �F1 for a small �4 1 as
discussed in x 10.1). This explains the constant line in the
xmax versus eT plot in figure 5 up to eT¼ 7.50. At the
moment eT becomes larger than 7.50, the condition of
Theorem 1 that clB�F1 does no longer hold.
However, we can now use the ‘‘scaling effect’’ from
Theorem 7. Theorem 7 implies that ðeT=7:50ÞF1 is RPI
and the linear system (46) is UB to ðeT=7:50ÞF1 when
eT4 7.50. Since clB � ðeT=7:50ÞF1 holds, Theorem 1
implies that ðeT=7:50ÞF1 is RPI for (46) and the event-
driven system (12)–(13) is UB to ðeT=7:50ÞF1. This
explains the linear part in the xmax versus eT plot in
figure 5. Hence, we can reduce the number of control
updates with almost 80% in this set-up without reducing
the control accuracy (e.g., take eT¼ 5)!

11.2 Uniform sampling

To demonstrate the results of x 7.2.1 for uniform
sampling, we have taken the example of an unstable
system with two states (n¼ 2) given by (12) with

Ac ¼
1070 270

270 40

	 

; Bc ¼

453

874

	 

ð47Þ

The controller matrix is taken to be F¼ [�2.4604 –
�0.2340]. The matrices in the discrete-time version (15)
are equal to

A ¼
3:00 0:50

0:50 1:10

	 

B ¼

1:00

1:00

	 

ð48Þ

for Ts¼ 0.001. Note that the the eigenvalues of
Acl¼AþBF are 0.7� 0.7i and of A are 0.97 and 3.12.
B ¼ fx2R

2
j jx1j < eT; jx2j < eTg with eT¼ 6. We

computed pmax by continuously increasing p, calculate
Dp and checking if

Sp
i¼1 ¼ RB holds. This results in

pmax¼ 3 and thus RB ¼
Spmax

i¼1 Di. Note that this implies
that D1¼;. Figure 6 displays the calculated sets RB
and Dp, p¼ 1, 2, 3 as given by equation (23).

The dynamics that are valid inside Dp, calculated with
equation (22) are

h0ðx
d
l Þ ¼

0:537 0:264

�1:96 0:863

	 

xdl

h1ðx
d
l Þ ¼

�1:82 0:985

�4:34 0:843

	 

xdl

h2ðx
d
l Þ ¼

�10:1 3:13

�8:12 1:18

	 

xdl

h3ðx
d
l Þ ¼

�36:6 9:73

�16:4 2:62

	 

xdl :

ð49Þ

As could be expected, the dynamics corresponding to h0
is asymptotically stable. The dynamics corresponding to
h1, h2 and h3 are unstable.

Since we have obtained the PWL-description of
the system we can apply the theory presented in x 9.3.
Using the ellipsoidal approach as presented in
Theorem 6 we obtain the ellipsoid � in figure 7, where
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Figure 5. The control effort and xmax versus eT for the example of x 11.1.
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we took the smallest value of �*. The event-driven
system is UB to � on the control check times.We also
computed the reachable set �reach for the PWL system
from points in RB. For the computation of this set a
combination of tools from (Kerrigan 2000) and
Kvasnica et al. (2004) was used. Note that �reach is a
positively invariant set for the PWL system. Since
B��reach and outside B the dynamics on the event
times is equal to xdkþ1 ¼ Aclx

d
k, �reach is also an ultimate

bound for the event-driven system on the control check
times.
Figure 7 also shows a time simulation of the

continuous time system. A (red) dotted line shows the
intersample behaviour in which the small (red)
diamonds indicate the values at the control check
times. It can be seen that the trajectory is not restricted
to the depicted �reach (in blue (dark grey)), due to the
intersample behaviour. Bounds on the intersample
behaviour can be obtained using the techniques as
described in x 8. Note that if we would scale B to �B for
a positive constant � the sets � and �reach would scale
accordingly and hence, a desirable (arbitrarily small)
stabilization error can be achieved in this case.

12. Conclusions

Although in many practical control problems it is
natural and logical to use event-driven controllers,
their application is still scarce in both industry and
academia. A major reason why time-driven control still
dominates is the absence of a system theory for
event-driven systems. Due to the various benefits of
event-driven control, it is worthwhile to overcome the
difficulties in the analysis of this type of control.

This paper studies event-driven controllers with the

purpose to reduce the required (average) processor load

for the implementation of digital controllers. An

introductory example already illustrated the achievable

reduction of control computations (up to 80%). That

this reduction of control computations indeed leads to

a significantly lower processor load (in spite of the

introduced overhead of the event-triggering mechanism)

has been experimentally validated in Sandee et al.

(2006). Of course, one still has to make the trade-off

between this reduction in resource utilization on one

hand and the control performance on the other.

This paper provides the theory that gives insight in the

control performance for a particular event-driven

scheme. The control performance is expressed in terms

of ultimate bounds and convergence rates to this bound.

It is shown how these properties depend on the

parameters of the control strategy. The results are

based on inferring properties (like robust positive

invariance, ultimate boundedness and convergence

rates) for the event-driven controlled system from

discrete-time linear systems (in case of non-uniform

sampling) or piecewise linear systems (in case of

uniform sampling). We presented computational

means and tuning rules that support the design of

these controllers.
This paper is one of the first that aims at deriving

a formal analysis of event-driven control. Although

it analyses a particular event-driven control structure,

it already indicates the complexity and challenges for

the analysis and synthesis of these type of control loops.

Given the advantages of event-driven controllers and

the various sources of event-triggering mechanisms

present in industrial practice, it is fruitful to continue

this line of research and developing a mature
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event-driven system theory. Future work will focus on
the finite number of regions of the piecewise linear

model, on tuning theory for the perturbed event-driven
system with the uniform mechanism and on extending
the current work to include reference tracking. From
a broader perspective, we will consider also the analysis
and synthesis of control schemes based on other event-

triggering mechanisms like low resolution sensors as
was initiated in Heemels et al. (1999).
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