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ABSTRACT 

This study compared meteorologists, an expert system, and simple weighted-sum models in a limited-infor- 
mation hail forecasting experiment. It was found that forecasts made by meteorologists were closely approximated 
by an additive model, and that the model captured most of their forecasting skill. Furthermore, the additive 
model approximated the meteorologists’ forecasts better than the expert system did. Results of this study are 
consistent with the results of extensive psychological research on judgment and decision making processes. 
Potential implications are discussed. 

1. Introduction 

The future in weather forecasting is a partnership 
between person and machine (Snellman 1977; Schlat- 
ter 1985; Tennekes 1988), and an understanding of 
the capabilities and limitations of both is critical to 
making that partnership effective. Although computer 
models and algorithms help aggregate weather infor- 
mation for operational forecasters, the human fore- 
caster remains the primary information processor. 
While a great deal of effort has been devoted to the 
development of advanced weather forecasting work- 
stations, there has been little study of how forecasters 
aggregate the information provided by the worksta- 
tions. The human information processing system is the 
least understood, yet probably the most important, 
component of forecasting accuracy. 

Human information processing has been a major 
topic of study by psychologists and others interested 
in judgment and decision making, and that research 
has produced a substantial body of knowledge, theories, 
and techniques that are relevant to the design and im- 
plementation of person-machine weather forecasting 
systems. Three major conclusions drawn from judg- 
ment and decision research may have particular rele- 
vance for weather forecasting: 1 ) the results of system- 
atic studies of human information processing yield in- 
sights into this process that often contradict people’s 
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introspective observations; 2 )  human information 
processing is limited and subject to systematic errors 
and biases; and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 )  cognitive assistance can overcome 
some of the limitations of the judgment process and 
improve the quality of judgment. For reviews of the 
research, see Einhorn and Hogarth ( 198 1 ), Hammond 
et al. (1980), Hogarth (1980), Sjoberg (1982), Slovic 
and Lichtenstein (1973), and Slovic et al. (1977). 

In this paper we describe an experiment which il- 
lustrates how research techniques that have been used 
by psychologists for over 30 yr can be used to study 
information processing by weather forecasters. The 
next section explains how this experiment fits into an 
overall strategy for investigating the cognitive processes 
of weather forecasters. Then we describe the experi- 
ment, present the results, and discuss the implications. 

2. Overview of research strategy 

The cognitive processes used in weather forecasting 
can be divided into three categories: information ac- 
quisition, information integration, and output (see 
Hogarth 1980). Information acquisition is the process 
of obtaining the information about past and current 
weather. Each feature of past and current weather (e.g., 
radar signatures such as reflectivity, rotation, tilt) is a 
“cue” for the forecast of future weather. Information 
integration is the activity of assimilating and organizing 
the cues into a judgment, or set of judgments, about 
future weather. Output is the process of formulating 
the forecast into its final form to be issued to the public. 

In cognitive psychology, as in most other areas of 
research, it is necessary to simplify a phenomenon in 
order to study it. In the present study, we chose to 
simplify by excluding the perceptual processes involved zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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in information acquisition and limiting the forecasters’ 
cognitive activity to information integration and out- 
put. As a result, this study concerns only the integration 
of information to form a forecast, not the perceptual 
processes involved in acquiring information. Our 
method (described below) assured that all forecasters 
in the study used exactly the same information. Con- 
sequently, some aspects of forecast skill were necessarily 
excluded from the study, and a somewhat unrealistic 
forecasting situation was created because the meteo- 
rologists were not able to acquire information as they 
would in an operational setting. 

In the study of complex cognitive processes, there is 
an inherent trade-off between realism and control that 
gives rise to a difficult dilemma. We can study cognitive 
processes in highly realistic situations (e.g., operational 
forecasters making actual forecasts) where we have very 
little control, and are therefore not able to draw strong 
conclusions about the results, or we can conduct con- 
trolled studies by introducing constraints (as we did in 
the present study) so that we can be clear about the 
results of the experiment, at the expense of introducing 
doubt about the generality of the results. 

The resolution of this dilemma is to include studies 
representing various points on the realism/control 
continuum in a research program. When the results of 
controlled studies are consistent with what is observed 
in natural settings, we can be confident in our findings. 
The study to be reported here falls near the low realism/ 
high control end of the continuum. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result, we can 
expect to draw relatively clear conclusions about how 
forecasters integrate information in the experiment 
(“internal validity”) but we must be cautious in gen- 
eralizing to the cognitive activity of forecasters in op- 
erational settings (“external validity”). Despite their 
limitations, such simplified studies of judgment and 
decision making have provided important insights into 
the nature of human cognition (Brown 1972; Kinvan 
et al. 1983; Dawes 1986). When they are combined 
with results of more realistic studies (which we have 
currently planned) the generality of the results can be 
systematically investigated. Furthermore, when the re- 
sults of a limited study are consistent with a larger body 
of theory and research, confidence in generalizations 
increases. Thus, this study should be viewed as an initial 
step in the systematic study of human information 
processing in weather forecasting. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.  Method 

Information derived from Doppler radar volume 
scans of 75 storms was presented to seven meteorol- 
ogists who then made probability forecasts of hail and 
severe hail. Two different models, representing alter- 
native ways of describing the meteorologists’ subjective 
judgment processes, were compared with the forecasts. 
The radar volume scan data, the procedure for obtain- 
ing forecasts, and the models are described below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a. Data 

The raw data for the study consisted of 644 Doppler 
radar volume scans of I56 storms. The data were col- 
lected in the summer of 1985 during a forecasting ex- 
ercise (Haugen 1986) conducted by NOAA’s Program 
for Regional Observing and Forecasting Services 
(PROFS). The radar was operated by the National 
Center for Atmospheric Research (NCAR). This radar 
(CP-2) produced volume scans of reflectivity, Doppler 
velocity, and differential reflectivity every 5 min, but 
scans included in the dataset were separated by 10-min 
intervals. The cues used were determined as part of an 
earlier project to develop an expert system for hailstorm 
diagnosis (Merrem and Brady 1988). For that study, 
a meteorologist (RHB) played back the radar data, and 
then visually estimated seven cues. The cues were 
maximum reflectivity at 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA) low, and 2) middle levels 
of the storm, 3) maximum echo gradient within the 
storm, 4 )  rotation or convergence within the storm, 
and 5 ) tilt of the storm between low and middle levels. 
The optional cues, which were available for only some 
of the radar data, were 6 )  hail signature based on dif- 
ferential reflectivity (ZDR) and 7 )  upper-level diver- 
gence. The severity of each storm was determined from 
the logs of PROFS chase teams who observed the 
storms in situ, or from public reports telephoned to 
the local National Weather Service office. It was nec- 
essary to modify the original dataset because data were 
missing in many volume scans, and only volume scans 
with complete data could be used in this study. There- 
fore, upper-level divergence information was not used 
because it was missing in 67% of the volume scans. In 
addition, 19 1 volume scans were dropped because the 
ZDR signature was not available. The dataset used in 
this study consisted of six cue variables for the re- 
maining 453 volume scans. Examination of these cases 
showed they were similar to the original set. The cues 
and the scoring criteria are listed below. 

1 ) Reflectivity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof core at low level. From the low- 
level (0.7 deg) reflectivity PPI scan, estimate the average 
reflectivity of the storm’s core, assuming it consists of 
at least seven-ten pixels. (Note: In the summer of 1985, 
a pixel of data displayed on the monitors of the PROFS 
workstation corresponded to a 500 m X 500 m square.) 

2 )  RejIectivify of core at middle /eve/. From the 
middle-level (6.4 km AGL) reflectivity CAPPI (con- 
stant altitude) scan, estimate the average reflectivity of 
the storm’s core, assuming it also consists of at least 
seven-ten pixels. 

3 )  Strong echo gradient. Is there an area of echo ( i )  
at low or middle-levels, ( i i )  a few kilometers or more 
in length, and ( i i i )  situated on the SE, S, SW, or ad- 
vancing flank of the storm where the reflectivity gra- 
dient exceeds 8 dBZ km-’? 

4 )  Tilt. Comparing the middle-level CAPPI and 
low-level PPI scans, ( i )  Is the middle-level high reflec- 
tivity core situated over the strong low-level reflectivity 
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gradient? or ( i i )  does a horizontal distance of approx- 
imately 4 km or more separate the centers of the two 
cores? zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 )  Rotntron I n  terms of velocity difference, what is 
the magnitude of the strongest (cyclonic or anticy- 
clonic) shear or convergence signal observed within 
the echo at either low or middle levels? 

6 )  Favorable ZDR signature. Do the low-level (0.2 
deg) differential reflectivity data show a coherent (sev- 
eral pixels) hail signal with this cell? 

Verification. In the set of 453 volume scans, either 
significant (diameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA>, 0.25 in. or small hail zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1 in. 
deep) or severe (diameter >, 3/4 in.) hail was verified 
within 30 min after 16.1% of the observations, and 
severe hail was verified after 6.6% of the observations. 
The problems associated with the verification of severe 
weather events have been discussed by Hales ( 1987). 
Severe storms which track across densely populated 
urban areas are more likely to be verified as such than 
are severe storms which remain over sparsely populated 
rural areas. Although potentially severe storms occur- 
ring over rural areas generally had a PROFS chase team 
assigned to them, it is likely that some of the significant 
or severe hail events accompanying these storms were 
not observed by chase teams. In addition, all hail re- 
ports were strictly interpreted; i.e., a storm reported as 
producing hail at 1539 LST was not assumed to be a 
hail producer at 1540 LST unless it was reported as 
hailing at the later time. Even though the majority of 
potential hail-producing storms were observed by chase 
teams, a few storms were undoubtedly missed. Al- 
though we consider our verification dataset to be one 
of the most complete ever assembled during a real- 
time forecast experiment, these inherent problems re- 
main. 

b. The forecasts 

Seven meteorologists made 30-min probabilistic hail 
forecasts for a sample of 75 volume scans drawn from 
the original 453. The participants were all research me- 
teorologists who had participated in one or more real- 
time forecasting experiments using the PROFS work- 
station. A stratified random sampling procedure was 
used to select the 75 volume scans to ensure that the 
base rate (proportion of volume scans for which hail 
was verified) in the sample matched that in the pop- 
ulation of 453 volume scans. Because an error was dis- 
covered in the Verification data after the study was run, 
the base rate in the sample turned out to be 14.7% for 
significant or severe hail and 5.3% for severe hail only. 

On the basis of the six cue variables for each volume 
scan, the meteorologists estimated probabilities both 
for any hail (significant or severe) and for severe hail 
only. Figure 1 illustrates how the volume scans were 
presented to the meteorologists. For reasons described 
in section 2, the levels of the cues for each volume scan 
were specified; i.e., meteorologists did not perceive 
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them directly from the radar display as they would in 
operational forecasting. 

The meteorologists expressed concern about the 
limited information they were given. They said that to 
forecast hail they would need additional information, 
for example, about the evolution of the storm, the 
storm’s relation to the surrounding environment, and 
its location relative to the radar. We explained that the 
information provided was determined by the avail- 
ability of data and that we recognized that forecasting 
skill exhibited in this study could be substantially dif- 
ferent from the skill of forecasters in the field. 

The 75 volume scans were presented in random or- 
der. After judging the first 50 volume scans, participants 
took a brief break and then judged the remaining 25 
volume scans plus an additional 25 volume scans con- 
sisting of the even-numbered volume scans from the 
first set of 50, presented in random order. Repetition 
of 25 volume scans makes it possible to assess the con- 
sistency of the forecasts. No meteorologist reported 
noticing the repeated volume scans. All meteorologists 
evaluated 100 volume scans and filled out a question- 
naire about their forecasting strategy in less than 2 h. 

c. The models 

Cognitive processes can be studied in the same way 
that other natural processes are studied, i.e., by devel- 
oping alternative models and evaluating those models. 
Two information processing models were used in this 
study, and they were evaluated with regard to two cn- 
teria: 1 ) How well does the model reproduce the judg- 
ments of the meteorologists? and 2 )  How well does the 
model capture forecasting skill? i.e., How accurately 
does it forecast hail probability? Each model is de- 
scribed below. 

1 ) MULTIPLE REGRESSION 

A technique called “judgment analysis,” which uses 
multiple regression analysis to model the judgments of 
experts, has been used extensively in psychology 
(Hammond et al. 1975; Stewart 1988). The effective- 
ness of this technique is based on a pervasive finding 
in research on judgment and decision making: in many 
domains of expertise, simple algebraic models can be 
used to reproduce the judgments of experts (Slovic and 
Lichtenstein 1973). Often a simple linear model works 
as well as or better than more complex models (Dawes 
and Corrigan 1974). 

Using judgment analysis, models of the following 
form were statistically fit to the forecasts made by each 
meteorologist: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Yjj = C, + bj,X,I + b;(X; l )2 + bjzX,, 
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LEVEL I I I I I I I I I J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(0.7 deg) dbz 2 b  2 5  30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35 4 0  4 5  50 55 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 0  6 5  

2 .  REFLECTIVITY OF 
CORE AT MID 
LEVEL I I I I I I I I I I 
(6.4 km agl) dbz 20 2 5  30 35 4 0  45 50 55 6 0  65 

rQ 

3. STRONG ECHO 
GRADIENT 

YES 

to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 4 .  T I L T  

YES 

5 .  ROTATION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
tQ 

6 .  FAVORABLE ZDR 
SIGNATURE 

YES 

probablllty of hall (2114" or small hall zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 1" deep) 

wlthln 30 minutes = 

probability of severe hall (2 314") 

wlthln 30 minutes = 

FIG. I .  Sample of a representation O f  a volume scan. 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y,, the forecast made by meteorologist , j  based on 

volume scan i 
cJ a constant for meteorologist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 
bJ, the weight for cue k 
b$ the weight for the square of cue k 
XI I the low-level reflectivity for volume scan i 
X12 the middle-level reflectivity for volume scan i 
Xi3 the strong echo gradient for volume scan i (0  

= no, I = yes) 

X,, the tilt for volume scan i (0  = no, 1 = yes) 
X I ,  the rotation for volume scan i 
XI,  the ZDR for volume scan i (0 = no, I = yes) and 
el, the residual for meteorologist j on volume scan i 

The parameters (c,, b jk 's  and b$'s) of the model 
were determined so that the sum of the squared dif- 
ferences between the predictions of the model and the 
actual forecasts were a minimum; that is, for meteo- 
rologist j ,  the sum of the (el l )*  over all of the cases is 
minimized. 
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The squares of low- and midlevel reflectivity and 
rotation were included in the model because plots of 
the meteorologists’ judgments vs these cues suggested 
that most meteorologists used them in a nonlinear 
fashion, particularly when they judged the probability 
of severe hail. The plots indicated that, in many cases, 
the slope of the curve relating probability forecasts to 
cue values increases as the cue increases, as if the me- 
teorologists were using the cues exponentially. This oc- 
curred much more frequently for the low- and middle- 
level reflectivity cues than for rotation. This may reflect 
meteorologists’ awareness that dBZ, the measure of 
reflectivity, is a logarithmic scale. The quadratic ap- 
proximation to the exponential was used because, in 
an additive model, the use of exponential transfor- 
mations of the cues results in a statistically intractable 
model. 

The correspondence between the statistical model 
and the actual forecasts is given by the multiple cor- 
relation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(R), which can range from 0 to 1, with 1 in- 
dicating perfect fit. The squared multiple correlation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR 2 )  indicates the proportion of variance of the fore- 
casts that is accounted for by the model. 

2) EXPERT SYSTEM 

The goal of research on expert systems has been the 
development of computer programs that can emulate 
the behavior of experts. Expert systems contain a 
knowledge base that can be thought of as a model of 
how the expert aggregates information. Thus, an expert 
system is a model of human information processing. 
For reviews of expert systems research, see Waterman 
( 1986) or Winston (1984). The relation between re- 
search on expert systems and judgment and decision 
research has been discussed by Hammond ( 1987a), 
Stewart and McMillan ( 1987), and Carroll (1987). 

An expert system called HAIL, developed by Mer- 
rem and Brady ( 1988), was used in this study. HAIL 
consists of 250 rules based on the seven cue variables 
described in section 3a. Input to the system is provided 
by an experienced meteorologist. Output consists of 
statements ordered from I to 5 (see Table 1 ). In ad- 
dition to diagnosing the presence of hail, the system 
provides information about the possibility of tornadoes 
and strong winds. As is typical of expert systems, the 
250 rules were derived by discussion with only one 
person. The rules were designed to represent as closely 
as possible the thinking process used by the chosen 
expert meteorologist as he diagnoses storm severity. 
Since development of an expert system is extremely 
time consuming, it was not possible to develop one for 
the other meteorologists in the experiment. 

Since the meteorologists made 30-min probability 
forecasts whereas HAIL was designed to provide cat- 
egorical diagnoses of hailstorms, it was necessary to 
transform the output of HAIL so that it could be com- 
pared with the probability forecasts. This transforma- 

F O R E C A S T I N G  VOL.UME 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
TABLE I .  Calibration of the HAIL expert system. 

Number of 
occurrences of Probability of 

Diagnosis Number of hail within hail, given 
category* times given 30 min diagnosis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHail 

I 25 I 10 ,040 
2 60 14 ,233 
3 15 26 ,347 
4 34 12 ,353 
5 33 I 1  ,333 

Severe Hail 

1 25 1 4 .O I6 
2 60 8 ,133 
3 75 I .093 
4 34 3 .088 
5 33 8 ,242 

* Description of diagnosis categories: I )  This storm is not significant 
and not severe. Hail of any size and/or gusty winds are very unlikely. 
2) There is a very low probability that this cell may be producing 
small hail (<3/4 in.) and/or moderately strong wind gusts (35-49 kt). 
3) This storm is a significant weather producer with small hail zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(<Y4 

in.) and/or gusty (35-49 kt) winds. 4) This storm is a significant 
weather producer wth small hail zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( < 3 h  in.) and/or gust (35-49 kt) 
winds. There is the possibility that it may also be severe with large 
(>% in.) hail and/or strong zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a50 kt) winds. 5) This storm is severe 
with large hail (a3/4 in.) and/or strong (a50 kt) winds. 

tion was accomplished by computing the relative fre- 
quency, in the original 453 volume scans, of hail or 
severe hail within 30 min, given each categorical output 
(Table 1). These relative frequencies, which are esti- 
mates of the conditional probability of hail given the 
diagnosis, were substituted for the categorical diag- 
noses. In other words, the output of HAIL was cali- 
brated with respect to the 453 volume scans in the 
original dataset, and thus was converted from categor- 
ical diagnoses into probability forecasts. This procedure 
makes it possible to validate HAIL’S forecasts as prob- 
ability forecasts (Murphy 1986). 

4. Results 

Three types of results are discussed here. First, we 
describe characteristics of the meteorologists’ forecasts. 
How well do they agree, how consistent are they, and 
how accurate are they? Then we report on the corre- 
spondence between the regression models and the ex- 
pert-system model and the meteorologists’ forecasts. 
Finally, we compare the accuracy of the meteorologists 
and the models in order to determine how much of 
the meteorologists’ skill is captured in the models. 

a. The meteorologists ’forecasts 

1 )  AGREEMENT 

Correlations among the seven meteorologists’ fore- 
casts (A-G) are presented in Table 2. (Correlations 
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TABLE 2. Agreement among meteorologists. 

Forecast A B C D E F G  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Any  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHail 

A (.93)* 

C .86 .83 (.89) 
D .85 .88 .87 (.95) 
E .90 .88 .91 .84 (.93) 
F 3 4  .88 .75 .79 .77 (.92) 
G .88 3 9  .82 .85 .86 .84 (.95) 

B .91 (.95) 

Range .75-.9 1 Median .86 

Severe Hail 

A (.97) 
B .93 (.96) 
C .87 .88 (.92) 
D .84 .90 .95 (.95) 
E .86 .86 .SO .78 (.69) 
F .88 .92 .82 .86 .78 (.94) 
G .87 .90 .84 .85 .92 .85 (.93) 

Range .78-.95 Median .86 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* Numbers in parentheses are estimates of consistencies based on 

25 repeated trials. 

can range from - 1 .O to + 1 .O. ) Agreement among me- 
teorologists was moderate to high for both hail and 
severe hail forecasts. For forecasts of any type of hail, 
meteorologist F has the lowest level of agreement with 
other forecasters, but this is not the case for forecasts 
of severe hail. 

2) CONSISTENCY 

The numbers in parentheses in the diagonal of Table 
2 are estimates of the consistency of each meteorolo- 
gist’s forecasts. A meteorologist who made exactly the 
same forecasts on repeated presentations of the same 
information would have a consistency of 1 .O. Consis- 
tency is estimated by correlating the two sets of judg- 
ments of 25 repeated volume scans. The forecasters are 
not perfectly consistent, but their consistency is gen- 
erally high except for meteorologist E’s forecasts of se- 
vere hail. His low consistency is due to a few pairs of 
repeated volume scans for which he gave two quite 
different probabilities. In one volume scan, his first 
forecast was 10% and his second was 50%. If this vol- 
ume scan were eliminated, his consistency would 
be 0.82. 

3 ) PERFORMANCE 

Skill scores, squared correlation coefficients, con- 
ditional biases, and unconditional biases for each forc- 
caster are presented in Table 3 .  These indices are de- 
scribed in Murphy ( 1988). The skill score reported in 
Table 3 is 

where MSE(f, x) IS the mean square error for the fore- 
cast zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(f) relative to the observed event (x) and 
MSE( (x), x) is the mean square error for a constant 
forecast of (x) which is the climatological probability 
of hail in the sample. This measure reflects the accuracy 
of the forecasts relative to a reference forecast. The 
maximum skill score is 1.0, and if the MSE for the 
forecast is equal to the MSE for the climatological fore- 
cast, skill is 0.0. 

Squared correlations between forecast probabilities 
and dichotomous variables representing the occurrence 
of hail and severe hail (0 = no hail, 1 = hail) are also 
reported in Table 3 .  The correlation between a prob- 
ability forecast and a dichotomous verification variable 
is a point biserial correlation [see Edwards ( 1976) for 
a discussion of the properties of this correlation coef- 
ficient] and can range from -1.0 to 1.0. This corre- 
lation measures the extent to which forecast probabil- 
ities are consistently higher when hail occurs than when 
it does not. The correlation would be 1 .OO if 1 ) the 
forecast probability were always pl when hail occurred, 
2) the forecast probability were always p2 when hail 
did not occur, and 3 )  pI > p 2 ,  regardless of the values 
ofp,  and p 2 .  The correlation will be small when vari- 
ation in the forecasts, given occurrence or nonoccur- 
rence of hail, is large relative to the total variation in 
forecasts. It is not sensitive to the actual probabilities 
or to their range; i.e., a forecaster who always gave 
probabilities between 0.10 and 0.20 could have the 
same correlation as another forecaster whose proba- 
bilities ranged from 0.50 to 1 .00. The correlation mea- 
sures the ability of the forecast to discriminate consis- 
tently between occurrence and nonoccurrence of hail. 
It does not measure “bias,” i.e., the extent to which 
the magnitudes of the forecast probabilities are appro- 
priate for the weather events being forecast. Two kinds 

TABLE 3. Skill scores, correlation, and bias. 

Skill Squared Conditional Unconditional 
Forecaster score correlation bias bias 

A 
B 
C 
D 
E 
F 
G 

A 
B 
C 
D 
E 
F 
G 

Forecasts oJAny Hail 

,046 .233 ,079 
-.340 .I81 . I  14 
.064 .I77 ,034 

-.881 ,206 ,048 
.080 .219 ,074 

-1.018 ,125 ,331 
-.704 ,154 ,264 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Forcm.s/.s of S e i w c ~  H u  11 

,087 .21 I .098 
p.245 .I62 .259 
-.I55 .074 ,205 
-.586 ,091 .466 
p.015 ,092 ,094 
-.730 . I28 .6 I8 
p.849 .I19 .624 

,108 
,408 
,079 

I .039 
,065 
.81 I 
.594 

,025 
,149 
.024 
.21 I 
.o I3 
,240 
.344 
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of bias identified by Murphy (1988) are reported in 
Table 3. “Conditional bias” is related to the slope of 
the regression line relating observed events to forecasts. 
Conditional bias is zero only when the slope is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1.0. 
“Unconditional bias” is related to the difference be- 
tween the mean forecast and the mean event. It is zero 
only when these two means are equal. Murphy showed 
that the skill score is equal to the squared correlation 
coefficient minus the sum of the two bias terms. He 
pointed out that since the bias terms cannot be negative, 
the correlation coefficient might be considered a mea- 
sure of the “potential skill” that might be attained if 
all conditional and unconditional biases were elimi- 
nated. 

Most skill scores in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 are negative and the 
maximum improvement over climatology is only 8.7%. 
The correlation coefficients, however, indicate that 
forecasters were able to distinguish between hail- and 
nonhail-producing storms to some degree. All corre- 
lations were positive and significantly different from 
0.0 at the 0.0 1 level of significance. The low skill scores 
are due to high levels of conditional and unconditional 
bias. Thus, Table 3 suggests that meteorologists can zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
potentially improve over climatology by more than 
20%, but they do not achieve that level of improvement 
because of biases in the forecast. 

b. Models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the meteorologists ’forecasts 

1 ) REGRESSION ANALYSIS 

Table 4 presents squared multiple correlations that 
have been adjusted to correct for overfitting of the 
regression model due to the number of predictors rel- 
ative to the number of volume scans. They indicate 
that the regression models account for 80%-92% ofthe 
variance in the meteorologists’ forecasts. In other 
words, these simple weighted-sum models can repro- 
duce the forecasts with a high degree of accuracy and 
account for nearly all the consistent variation in fore- 
casts. (See Table 2 for proportion of variance that is 
consistent for each forecaster.) 

This result may seem-puzzling because the meteo- 
rologists invariably reported that their judgment pro- 
cesses involved nonadditive, synergistic aggregation of 
information. The ability of the regression model to de- 

1 
j 

! 
I scribe meteorologists’ information aggregation pro- 

4 

TABLE 4. Adjusted squared multiple correlations for 
regression models of forecasts. 

Forecaster Any hail Severe hail zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .90 .84 
R .92 .9 1 
C .86 .8 I 
D .89 .86 
E .89 .80 
F .83 .90 
G .XI .9 I 
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TABLE 5.  Relative weights of cues. 

Cue’ 

Forecaster LDBZ MDBZ GRAD TILT ROT ZDR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A n v  Hail 

A .2 I * .24’ .I3* .03 .17* .22* 
B .22’ .27’ .09* .os .19* .17* 
C .17* .36* .I7’ .08 .I28 . lo* 
D .28* .30* .I0 .14* .09 .09’ 
E .I8* .47* .07 .04 .I0 .14* 
F .30* . I4 .04 .02 .34* .17* 

.I9’ .42’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.oo .07 .15* .17* G 

Severe Hail 

A . I 2  .36* .2 I * .OO .25* .06 
B .30* .30* .08 .01 .22* .08* 
C . I  1 .40* .23* .09 .07 .I0 
D .28* .28* .17* .lo* .13* .05 
E .I4 .68* .I2 .OO .05 .OO 
F .26’ .17* .I3* .oo .33* .12* 
G .16’ .s9* .oo .04 .15* .06 

* Significant at the .01 level. 
’ LDBZ reflectivity ofcore at low level; MDBZ reflectivity ofcore at midlevel; 

GRAD strong echo gradient (yes, no); TILT tilt (yes, no); ROT rotation or 
convergence (m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs C ’ ) ;  ZDR favorable ZDR signature (yes, no). 

cesses is consistent, however, with the research on hu- 
man judgment cited in section 3.  

Regression models can be used to infer how the me- 
teorologists weigh information when they make fore- 
casts. Relative weights of the cues, derived from the 
regression models, are presented in Table 5 (see the 
Appendix for derivation of weights). These weights are 
useful because they can explain, in part, why different 
meteorologists arrive at different forecasts. In this study, 
the cues were moderately intercorrelated (Table 6),  
and, as a result, the weights must be interpreted with 
caution. The weights that are significantly different 
from zero (at the 0.01 level of significance) are indi- 
cated in the table. 

Although the weights differ among meteorologists, 
they indicate that low- and midlevel reflectivity are 
generally the most important cues. The notable excep- 
tion is meteorologist F. For both hail and severe hail, 
rotation is F’s most important cue. 

Actual agreement among meteorologists (Table 2)  
is greater than would be expected based on the differ- 

TABLE 6. Cue intercorrelations. 

LDBZ MDBZ GRAD TILT R O T  ZDR 

.28 .41 .32 LDBZ 1.00 .60 .62 
MDBZ .60 1.00 .49 .33 .49 .28 

.21 .50 .21 GRAD .62 .49 I .oo 
1.00 .20 .06 TILT .28 .33 .2 1 
.20 1.00 . I9  ROT .4 I .49 S O  
.06 . I9  1.00 ZDR .32 .28 .21 
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ences between the weights. This occurs because the cue 
intercorrelations (Table 6 )  are all positive. When cues 
are intercorrelated, different weighting strategies can 
produce similar forecasts because the cues provide par- 
tially redundant information. In this circumstance, 
agreement among forecasts may be considered “false 
agreement” (Hammond et al. 1975) because it does 
not reflect agreement in the underlying forecasting 
strategy; i.e., there is agreement in fact but not in prin- 
ciple. In the relatively infrequent volume scans when 
cues diverge, i.e., when some cues indicate hail while 
other cues indicate, no hail, disagreements among me- 
teorologists will emerge. Thus, meteorologists can be 
expected to disagree most when forecasting is most dif- 
ficult. 

2 )  THE EXPERT SYSTEM 

Correlations between the HAIL expert system and 
the meteorologists’ ranged from 0.70 to 0.85 for fore- 
casts of any hail and from 0.63 to 0.79 for forecasts of 
severe hail. For all meteorologists, the weighted-sum 
judgment analysis models reproduced meteorologists’ 
forecasts better than did the HAIL expert system. This 
includes the forecasts of the meteorologist who devel- 
oped the rule base for HAIL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c. Performance of the models 

1 ) REGRESSION MODELS 

To what extent do the regression models of the me- 
teorologists capture the accuracy in their forecasts? To 
answer this question, the regression models described 
above were applied to the 75 volume scans to produce 

TABLE 7. Performance of forecasts and models 
of forecasts (correlations). 

Original Regression 
Forecaster forecasts models zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

An!, Hail 

.48 

.47 

.45 

.43 

.42 

.39 

.35 

Severe Hail 

.46 

.40 

.36 

.34 

.30 

.30 

.27 

.4 I 

.45 

.43 

.42 

.45 

.43 

.31 

.37 

.31 

.35 

.37 

.35 

.34 

.34 

forecasts. Performance of these models is described in 
Table 7. Only the correlation coefficients which, as de- 
scribed above, indicate the potential skill of an unbiased 
forecast, are reported here. In the case of the regression 
model, unconditional bias of the model is identical to 
that of the forecaster. Changes in conditional bias reflect 
changes in the correlation coefficient and in the vari- 
ance of the forecasts. 

The models capture most of the (potential) skill in 
the forecasts for six of the seven meteorologists. Only 
meteorologist A substantially outperforms the model 
that is based on his judgments. 

The rows of Table 7 have been ordered from highest 
to lowest correlation of the original forecasts to high- 
light a pattern in the data. For the least accurate me- 
teorologists, the model outperforms the original fore- 
casts; but for the most accurate meteorologists, the 
model does worse than the original forecasts. Thus, 
differences in performance among the models are less 
than the differences among the original forecasts. This 
suggests that some (small) component of accuracy (or 
inaccuracy) may not be captured by the regression 
models. Whether that component is simply chance 
(lucky or unlucky forecasts) or a systematic, synergistic 
process remains to be determined in further research. 

The small differences among the correlation coeffi- 
cients for different regression models in Table 7 also 
reflect a “flat maximum” effect (Lovie and Lovie 1986; 
von Winterfeldt and Edwards 1982) due to intercor- 
relations among the cues. When cues are intercorre- 
lated, it may not matter much how the information 
provided is integrated into a forecast as long as it is 
done in a reasonable and consistent fashion. In the hail 
data used in this study, the cues were intercorrelated 
(Table 6) ,  the relations between the cues and the prob- 
ability of hail were all monotonic, and, given the data 
provided, there was a high degree of uncertainty about 
whether a storm would produce hail. These are all con- 
tributing factors to the flat maximum effect. 

For any task with these properties, a weighted-sum 
model will perform about as well as any other model, 
and the magnitudes of the weights do not matter much 
as long as they have the correct sign (Dawes and Cor- 
rigan 1974). Researchers have found that the weighted- 
sum model generally outperforms humans for these 
kinds of tasks because the model is perfectly consistent 
whereas the human is not (Goldberg 1969, 1970; Ca- 
mercr 198 1 ). The model proves superior even though 
it does not include complex interactions among the 
cues, or “synergisms,” which are important to human 
experts. 

2 ) EXPERT SYSTEM 

For forecasts of any hail, the correlation for HAIL 
is 0.38, slightly above the lowest correlation for a me- 
teorologist. For severe hail forecasts, the correlation 
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for HAIL is 0.41, which is near the level of the best 
meteorologist and slightly better than his regression 
model. 

5. Discussion 

This study illustrated how the subjective component 
of forecasting can be systematically studied. The design 
of the experiment made it possible to investigate the 
following characteristics of the forecasts: 

Agreement. Agreement among forecasts was 
moderately high in this study. Lack of agreement (see 
Lusk et al. 1988, for example) may indicate that some 
forecasters are inconsistent or that they are using dif- 
ferent forecasting strategies. 

Consistency. If the forecasting process is consistent, 
then identical conditions produce identical forecasts. 
If the forecasting process is not consistent, then there 
is a degree of arbitrariness about the forecasts that will 
reduce their accuracy. In this simple experiment, the 
forecasts were highly consistent. In general, as the 
amount of information and the complexity of a task 
increases, consistency decreases. This fact suggesti that 
forecasts in the field may be less consistent than those 
in this experiment. 

Descriptive model. Statistical regression models 
provided good descriptions of the forecasts. Further- 
more, the regression models were generally as accurate 
as the original forecasts. In comparison with a complex 
expert-system model, the regression models provided 
better approximations to the meteorologists’ forecasts 
and were just as accurate. 

Parameters ofjudgment models. It is useful to de- 
scribe judgment processes in terms of weight, function 
form, and organizing principle (Hammond et al. 
I975 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA). Weights reflect the relative importance of dif- 
ferent items of information. The weights estimated in 
this study (Table 5 ) indicated that different meteorol- 
ogists attached different importance to the cues. Func- 
tion forms describe the relation between each cue and 
the forecast. In this study, the-reflectivity cues and ro- 
tation were related to the forecasts by an exponential 
function form. The organizing principle governs the 
way that the various cues are organized into an overall 
forecast. The organizing principle implicit in the 
regression models is additive. The expert system em- 
ploys a nonadditive, synergistic organizing principle. 
In this study, the additive organizing principle provided 
the best approximation to the meteorologists’ forecasts. 

Further research is needed to determine the gener- 
ality of the results found in this study. In particular, 
studies involving more realistic forecasting situations 
are necessary. It must be stressed, however, that our 
results are consistent with a large body of research and 
theory in judgment and decision making. It is likely, 
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therefore, that they can be applied to some situations 
that arise in operational forecasting. 

6. Conclusion 

The importance of studying the subjective judg- 
ment processes involved in weather forecasting is sup- 
ported by the work of Allen ( 1982), Allen et al. ( 1986), 
and Allan Murphy and his colleagues (e.g., Murphy 
and Winkler 1971; Murphy and Brown 1984). Our 
study has shown that research methods used by psy- 
chologists to study human judgment processes can be 
applied to weather forecasting. The experiment suggests 
that the intuitive processes that weather forecasters use 
to aggregate information into a forecast can be analyzed 
and described in quantitative terms. 

A number of interesting and important forecasting 
questions can be addressed using systematic methods 
borrowed from judgment and decision research. For 
example, how do novice and experienced forecasters 
differ with regard to consistency, relative weights, 
function forms, and organizing principle? What is the 
effect of advanced workstations on the forecaster’s 
judgment processes? Does additional information re- 
duce the consistency of forecasts, and, if so, how can 
consistency be increased? Can feedback about judg- 
ment parameters be used to improve forecasting skill 
(Hammond et al. 1975; Hammond 1987b)? How 
much of the skill of expert forecasters can be captured 
by computers? 

Continued research on cognitive processes in 
weather forecasting is likely to prove useful in the design 
of “person-machine” systems for weather forecasting. 
Design of such systems must be based on realistic views 
of both machine and human capabilities. Through re- 
search in computer science and artificial intelligence, 
machine capabilities are being expanded. Through the 
study of human information processing in weather 
forecasting, we are gaining an understanding of the 
human judgment process. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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APPENDIX zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Calculation of Relative Weights 

Regression weights do not indicate the relative im- 
portance of the cues because ( a )  the cues are expressed 
in different units and ( b )  there are two weights for each 
of the continuous cues because the squared terms were 
included in the regression analysis. The following pro- 
cedure was used to calculate the relative weights listed 
in Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  

1 )  For each forecast, regression weights for the 
model described in section 3c were computed. 

2 )  For forecastj, the continuous cues (low-level re- 
flectivity, midlevel reflectivity, and rotation) were 
transformed as follows: 

This transformation combines the two terms for the 
continuous cues into a single term. 

3)  A second regression analysis was computed using 
the three transformed cue variables and the three binary 
cues to predict the forecast. The regression equation 
was 

This form of the regression equation has only one 
weight for each cue. It is a simple algebraic transfor- 
mation ofthe original regression equation, and the R2s 
were identical to those obtained in the original analysis. 

4)  The regression weights for the standardized form 
of the regression equation (the beta weights) were 
summed, and each beta weight was divided by that 
sum. (The standardized form of the regression equation 
compensates for differences in units by transforming 
each variablc so that its mean is 0.0 and its variance is 
1.0 in the sample.) This calculation gave the relative 
weights presented in Table 5.  

Several methods have been proposed for computing 
relative weights in judgment analysis. Alternative 
methods are discussed in Darlington ( 1968) and Stew- 
af l (19SS).  
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