
Citation: Mohammadfam, I.;

Khajevandi, A.A.; Dehghani, H.;

Babamiri, M.; Farhadian, M. Analysis

of Factors Affecting Human

Reliability in the Mining Process

Design Using Fuzzy Delphi and

DEMATEL Methods. Sustainability

2022, 14, 8168. https://doi.org/

10.3390/su14138168

Academic Editor: Edmundas

Kazimieras Zavadskas

Received: 14 May 2022

Accepted: 1 July 2022

Published: 4 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Article

Analysis of Factors Affecting Human Reliability in the Mining
Process Design Using Fuzzy Delphi and DEMATEL Methods
Iraj Mohammadfam 1 , Ali Asghar Khajevandi 1,*, Hesam Dehghani 2, Mohammad Babamiri 1

and Maryam Farhadian 1

1 Occupational Health and Safety Department, Hamadan University of Medical Sciences, Hamedan 65155, Iran;
mohammadfam@umsha.ac.ir (I.M.); mohammad.babamiri@gmail.com (M.B.);
m.farhadian@umsha.ac.ir (M.F.)

2 Department of Mine Engineering, Hamedan University of Technology, Hamedan 65155, Iran;
dehghani@hut.ac.ir

* Correspondence: khajevandi.asghar2008@gmail.com; Tel.: +98-910-180-1024

Abstract: Design errors have always been recognized as one of the main factors affecting safety and
health management and sustainable development in surface mines. Unfortunately, scant attention is
paid to design errors and the factors causing them. Therefore, based on expert opinions, this study
aimed to identify, rank, and investigate cause-and-effect relationships among variables influencing
human error in surface mine design in Iran. The study variables were identified by reviewing
previous literature on “latent human errors” and “design errors.” After specifying effective variables,
two rounds of the Fuzzy Delphi study were carried out to reach a consensus among experts. Nineteen
variables with an influencing score of 0.7 and higher were screened and given to the experts to be
analyzed for cause-and-effect relationships by the fuzzy DEMATEL method. The results of the study
revealed that the following variables were the major factors affecting human error as root causes: poor
organizational management (0.62), resource allocation (0.30), training level (0.27), and experience
(0.25). Moreover, self-confidence (−0.29), fatigue (−0.28), depression (−0.25), and motive (−0.23)
were found to be effect (dependent) variables. Our findings can help organizations, particularly
surface mines, to opt for effective strategies to control factors affecting design errors and consequently
reduce workers’ errors, providing a good basis for achieving sustainable development.

Keywords: design errors; sustainable development; accident; multi-criteria decision-making

1. Introduction

The mining industry is classified as one of the most dangerous and harsh work
environments [1–3]. The consequences of mining accidents include occupational deaths
and injuries, equipment damage [4], and environmental problems [5]. Besides, accidents
and incidents in such a harsh work environment are very high (about 7–10 times) compared
to other industries [1,6]. Identifying and eliminating the roots of mining accidents have
always been one of the most important priorities of organizations and governments [7].
The analysis of mining accidents has shown that human error is the direct cause of 85%
of these accidents. In recent years, many studies have been conducted to identify the
factors affecting human error in mines. In most cases, the root cause of accidents resulting
from human errors is a design error (DE), and thus the operator is just a victim of a poor
design [8,9]. Liao asserts that despite efforts to reduce instances of human error by raising
workers’ awareness, not much progress has been achieved thus far. He regards DE as the
main reason behind such a failure and states that it is one of the main causes of unsafe
behaviors on workers’ part in operational sectors [10]. DE is almost inevitable and can
influence the safety of projects and their costs and timing [11]. More than 80% of the failures
in buildings, bridges, hospitals, and civil engineering structures are caused by DE [12].
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DE are important in various industries such as aviation [13], nuclear energy [14],
process [15], and mining [16]. The diversity of mines, extensive operational space, and
the extent of its consequences (occupational and public health, environmental, safety,
social, and economic) have highlighted the role of design errors in this sector [17,18].
Unfortunately, the focus of human error studies for most of the 20th century has been on
operational errors, which have been ignored [9]. The study by Thompson on road accidents
in surface mines showed that design errors are the main causes of such accidents [19].

Flyrock is important in increasing the death rate and destroying mine equipment and
structures. One of the main reasons for Flyrock production in blasting is DE in the blasting
pattern [20]. Reason introduced this important construct as the latent human errors in
1998 because their consequences are not immediately known, and their identification takes
longer. In other words, their identification needs a systematic approach [21]. Cho defines
DE “as the result of a designer’s actions and decisions in product development that lead to
failure in the planned or intended outcome” [22].

Likewise, Mechlers believes that these latent human errors are cognitive processing
errors, arguing that even the simplest forms of designs require cognitive functions [23].
From a cognitive psychological point of view, human error results from one or more deficits
in human cognitive processes. Accidents happen due to perception, recognition, avoidance
ability, and decision-making failures. Thus, failure in cognitive processes can lead to human
errors and damage the system [24]. Studies show that design errors happen as a result of
cognitive failure (CF) [25] influenced by individual, environmental, organizational, and
task factors [26].

2. Review of Previous Research

In recent years, some studies have been conducted to find the effective factors behind
human error in design. The results of the study by Kerli et al. [22] on DE showed that process
(lack of design reviews), material (learning not shared amongst everyone), measurements
(incomplete project tracking), tools (poor document traceability), people (loss of information
and lack of making ability knowledge), and organization (scattered resources) are the main
causes of such errors. Lopez et al. [12] reported that personal factors (loss of biorhythm and
adverse behavior), organizational factors (training, experience, competitive professional
fees, poor quality assurance), and project (time limitations and poor coordination) have a
significant influence on DE in the construction sector. Some studies point out that errors
result from individuals’ tendency toward error or the conditions that induce error [27].
Also, some studies have classified the variables affecting DE into three groups: workplace,
information flow, and organizational factors [28]. The study by Robert [29] revealed that
designer knowledge, lack of standards, safety awareness, novel system, management of
change, procedure, and lack of qualified staff were the most effective factors in design
error. Zhaorong et al. [30] stated that defective workmanship, communication, lack of
skill, contract issues, and external factors could lead to latent error and design error.
Several studies have shown that these errors are influenced by individual, managerial, and
social factors related to work, workplace, work methods and processes, task demands,
workload, and physical work conditions [31]. However, DE has been considered as the
major causes of accidents in many organizations [32]. There are many variables that directly
or indirectly affect DE and are indeed the root causes of accidents. When a set of variables
with complex relationships impact on a target variable, determining the most important
variables requires extensive field studies, it is time-consuming and costly; and, moreover,
the simultaneous controlling of all variables is not logical in system safety management
and system safety engineering [33]. Therefore, using expert opinions to determine the most
important variables based on scientific methods is a suitable strategy [34].

Multi-Criteria Decision-Making (MCDM) techniques are often adopted to solve com-
plex problems based on experts’ judgment. Previous studies have shown that MCDM
methods, combined with a fuzzy set theory or other methods [35,36], can result in more re-
liable results. Several studies have used this approach in the areas of health [37], safety [38]
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and environment [39], and economy [40] for identifying and classifying relationships
among variables. According to Fam et al. [41], the combination of fuzzy Delphi and DE-
MATEL is the best risk control strategy because DEMATEL can provide a cause-and-effect
model. Similarly, in another study, Kumar et al. [42] reported that AHP and DEMATEL
cannot determine the importance of the criteria. Therefore, the fuzzy Delphi method is very
suitable to fill this gap. Renissa et al. [43] used the Delphi method and Fuzzy DEMATEL to
identify the barriers to university technology transfer. Singh and Sardar [44] also used the
Delphi method to determine the factors affecting sustainable product development and the
Fuzzy DEMATEL method to illustrate the interrelationships among key factors by drawing
a causal diagram in the automotive industry. The combination of these two methods can
provide a deep understanding of a phenomenon.

Given the advantages of using fuzzy Delphi and DEMATEL methods and the lack of
ample studies extensively surveying and prioritizing the factors affecting design error in
Iranian surface mines, this study aimed to identify, rank, and investigate cause-and-effect
relationships among variables influencing DE based on expert opinions.

Further, this study contributes to the literature in several ways:

(1) To our knowledge, this is one of the first studies investigating factors predicting DEs
and their interactions. Thus, this study can contribute theoretically to the existing
literature and fill the existing gaps in safety studies that addresses the role of latent
errors in accidents;

(2) The proposed methodology of the present study provides a visual cause-and-effect
model, which helps analyze DE. Mining managers and safety experts can update their
goals and plan based on the results of the study;

(3) As a practical contribution, the study suggests strategic measures that may reduce
DEs to avoid accidents; the study also presents evidence that helps improve health
and safety at mines.

This study is organized as follows: Section 2 has the theoretical fundaments on DE,
related literature gaps and the contribution of the study; in Section 3, the most impor-
tant variables of DE in the mining design process are presented, followed by introduc-
ing Fuzzy Delphi and DEMATEL methods. The results and discussion are described in
Sections 4 and 5; Section 6 specifies the conclusion and suggests future lines of research.

3. Materials and Methods

The methodology of this study comprised three phases: the identification of variables,
the determination of effective variables via the Fuzzy Delphi method, and the analysis of
cause-and-effect relationships among such variables via the Fuzzy DEMATEL method. The
framework combining the two methods includes the following three phases, as shown
in Figure 1.
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3.1. Searching and Classifying the Variables Affecting DE

The important variables were first identified by a library research and literature review.
Next, a panel of five experts in surface mine design was assigned to screen the most
important variables and categorize them based on environmental, individual, external,
organizational, and task factors for employing the Fuzzy Delphi method (Appendix A).

3.2. Identifying the Variables Affecting DE Using the Fuzzy Delphi Method
3.2.1. The Fuzzy Delphi Method

This method is a powerful tool used to reach a consensus based on expert opinions
in a particular field of study [45]. In its classical form, the Delphi method makes use of
expert opinions stated in the form of definite numbers. In this method, experts do not use
their mental competence to state their opinions, showing a probability of uncertainty in
the decisions made. Thus, to compensate for this drawback, a fuzzy set is used to collect
the data in linguistic terms and interpret vague concepts stated by expert opinions [46,47].
Accordingly, the classical Delphi method was combined with fuzzy set theory to create
the more effective Fuzzy Delphi method [48]. The Fuzzy Delphi method enjoys some
advantages, including the unification of expert opinions to reach a consensus [49], the
reduction of time and cost compared to the classical Delphi method [50], and the reduction
of expert opinion collection rounds [41].

There are different types of fuzzy numbers, and this study used Triangular Fuzzy
Numbers (TFN). In this study, TFN was shown using three real numbers M = (l, m, u),
in which the upper bound is (u), lower bound is (l), infimum is (m), and ‘M’ is the most
probable value of a fuzzy number [51]. TFN reflects the membership by the function, which
can show the information of the experts more simply and accurately regarding a complex
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decision-making problem [52]. TFN has been applied in various domains, including risk,
evaluation, anticipation, and expert systems [53].

3.2.2. Selection of Experts

In the MCDM method, the selection of experts is very important and vital. Powerful
expert groups can ensure the accuracy of research results. Therefore, the expert panel in
the study went through a rigorous selection process. In the first step, a database of experts
active in surface mine design in Iran was collected. The inclusion criteria included being
inclined to participate, having comprehensive knowledge, ample operational experience,
and time adequacy. Due to the diversity of minerals, the difference in the size of the mines,
the geography of the design environment, and the variety of techniques and tools used
in the design, attempts were made to select decision-makers whose experience covered
the listed items. Finally, out of 150 Iranian Open Mines Designers Association members,
25 were purposefully selected. The number of experts in the panel varies in various valid
studies, and several studies have been conducted with fewer than 10 experts to higher
numbers [54–56]. Among the experts, there were people with academic bachelor’s degrees.
These people are among the most famous mining designers in Iran who have a lot of
experience in the field of exploration and extraction in surface mines. The demographic
characteristics of the experts are shown in Table 1.

Table 1. Demographic characteristics of the experts.

Delphi Study DEMATEL Study

Demographic Variables Total Percentage Total Percentage

Gender
Male 16 84.21% 9 90.00%

Female 3 15.79% 1 10.00%
Educational

Bachler 3 15.79% - -
Master 7 36.84% 2 20.00%

Doctoral 9 47.37% 8 80.00%
Experience in mine design

<5 years 2 10.53% - -
5–15 years 6 31.58% 3 30.00%
>15 years 11 57.89% 7 70.00%

In line with previous literature using the Fuzzy Delphi method, a questionnaire with
Likert-scale items was developed to be used in the study [50]. The expert panel was asked
to review the developed semi-closed questionnaire and revise it by adding any important
variables missing in the questionnaire.

3.2.3. First and Second Rounds Inquiry

Afterwards, the questionnaire was sent to three experts to be reviewed for face and
content validities. Eventually, the finalized questionnaire was sent to 25 experts with a
response rate of 76% (19 experts) in the first phase. In this phase, three new variables were
suggested to be added to the questionnaire. After collecting expert opinions, the linguistic
variables were changed into fuzzy numbers based on Table 2.

Table 2. Triangular fuzzy numbers corresponding to linguistic terms [54].

Linguistic Expressions Triangular Fuzzy Numbers

No effect (0, 0, 0.25)
Extremely weak effect (0, 0.25, 0.5)

Weak effect (0.25, 0.5, 0.75)
Strong effect (0.5, 0.75, 1)

Extremely strong effect (0.75, 1, 1)
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The triangular fuzzy numbers set was measured for each expert’s opinion based on
Equation (1) [55]:

Ã
(i)

=
(

a(i)1 ·a
(i)
2 ·a

(i)
3

)
i = 1, 2, 3, . . . , n. (1)

Next, the mean of fuzzy numbers set (Ã
(i)
m ) out of all sets (Ã

(i)
) was measured based

on Equation (2):

Ãm = (am1·am2·am3) =

(
1
n ∑n

i=1ai
1·

1
n ∑n

i=1ai
2·

1
n ∑n

i=1ai
3

)
. (2)

Then, the difference was calculated from the mean for each expert’s opinion. After
revisions and suggested variables were added, the questionnaire was re-sent to the experts
to review and revise if needed. After collecting expert opinions in the second round based
on Equations (1) and (2), expert opinions were aggregated, and their disagreements between
the two rounds reached the minimum level of 0.2 [51]. At the end of the second round, the
experts suggested that no new variable with disagreements reached the minimum level of
0.2. Accordingly, the Fuzzy Delphi study was stopped in this step [56].

3.2.4. Determination of the Most Important Variables

To defuzzy the numbers, the simple center of gravity method was used based on
Equation (3):

Sj =
lj + mj + uj

3
. (3)

The ranking and determination of the most important variables were based on de-
fuzzied scores: the higher the defuzzied score of a variable, the stronger the effect it exerted
on human error, and hence more important. In this study, the screening process was
conducted based on the 30–70 law, in which the threshold level for criterion acceptance
was 7 [57]. Thus, if the amount of the defuzzied triangular number was found to be 0.7 or
higher based on expert opinions, it was accepted as a criterion. Otherwise, it was removed
from the study.

3.3. Determining Cause-and-Effect Relationships between the Variables
3.3.1. Fuzzy DEMATEL Method

Gabus et al. introduced a method called decision-making trial and evaluation labo-
ratory (DEMATEL) in 1972 to analyze casual relationships and significant effects among
variables with a strong validity [58]. This method works based on expert opinions expressed
in linguistic terms; in order to avoid ambiguity and reach a unification of opinions, these
linguistic terms need to be turned into fuzzy numbers. In 2008, Lin was the first person who
used the DEMATEL method in a fuzzy environment [59]. The Fuzzy DEMATEL method in-
vestigates the relationships among criteria and sub-criteria and determines effective (cause)
and affected (effect) criteria by the total-relation matrix [60,61]. This method is a multi-index
decision-making technique [62]. One advantage of this method over other methods of
investigation is that the process of decision-making is based on pairwise comparisons and
the acceptance of relationships [63]. The Fuzzy DEMATEL method is frequently used in
different fields of inquiry such as human resource management, risk assessment, and safety
management system [24,64,65]. In this study, the following steps were taken to apply the
Fuzzy DEMATEL method [66].

3.3.2. Setting up the Expert Panel

The first step aimed to identify experts qualified to participate in the inquiry process of
the DEMATEL method. The respondent had to be a person who had adequate knowledge
or experience related to the research problem. In this study, 15 experts with prominent
experience and research history about mine design were selected, and the questionnaire
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was sent to them via email. Eventually, 10 experts collaborated in the study, performed the
evaluation, and submitted the evaluation forms later.

3.3.3. Preparing Fuzzy DEMATEL Questionnaire

The Fuzzy DEMATEL questionnaire comprised a 20 × 20 matrix, which is not a
symmetric matrix. The factors in these tables were assessed as a pairwise matrix. The
experts used a 5-point Likert scale (Table 2) to express their opinions about the relationship
among variables.

3.3.4. Analyzing the Data

(a) Based on experts’ responses, the initial direct-relation fuzzy matrix was calculated

Z̃k
ij =

 0 · · · X̃k
1n

...
. . .

...
X̃k

n1 · · · 0

. K = 1, 2, 3, . . . , P. (4)

In this equation, P is the number of experts (10).
Then, using Equations (5)–(7) the aggregated mean of expert opinions was measured.

Z̃ij =
X̃1 + X̃2 + X̃3 + X̃4 + . . . + X̃P

P
. (5)

X̃1, X̃2, X̃3, and X̃P are the pairwise comparison matrixes of the experts (expert 1, 2, 3,
and P, respectively).

Z̃ij =

 0 · · · X̃1n
...

. . .
...

X̃n1 · · · 0

, (6)

Z̃ij =
(
lij + mij + uij

)
. (7)

(b) Normalizing the direct-relation fuzzy matrix using Equations (8) and (9)

r = max
n

∑
j=1

u′ij, (8)

H̃ij =
z̃ij

r
=

(
l′ij
r

.
m′ij
r

.
u′ij
r

)
=
(

l′′ij .m
′′
ij.u

′′
ij

)
. (9)

(c) Determining the total-relation matrix.

The total-relation fuzzy matrix (T) was measured by the following Equations (12)–(14):

T = limk→∞

(
H̃1 + H̃2 + H̃3

)
, (10)

t̃ij =
(

lt
ij.m

t
ij.u

t
ij

)
, (11)[

lt
ij

]
= Hl × (I − Hl)

−1, (12)[
mt

ij

]
= Hm × (I − Hm)

−1, (13)[
ut

ij

]
= Hu × (I − Hu)

−1. (14)
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(d) Defuzzying the total-relation fuzzy matrix base on Equation (15)

tij =
lt
ij + 2mt

ij + ut
ij

4
. (15)

(e) Measuring the D-value and R-value based on extracted variables from the total-
relation defuzzied matrix base on Equations (16) and (17):

D = ∑n
J=1tij.(j = 1, 2, 3, . . . , n), (16)

R = ∑n
i=1tij.(i = 1, 2, 3, . . . , n). (17)

To do so, the elements of each row (Di) and each column (Ri) were totaled out of the
total-relation defuzzied matrix. The total number of elements in each row (D) for each
factor shows the degree to which that factor affects other factors in the system. On the
contrary, the total number of elements in each column (R) for each factor shows the degree
to which that factor is affected by other factors in the system.

(f) In the end, D and R values were used to measure D + R and D − R values.

The D + R values show how much one factor affects and is affected by other factors.
In other words, the higher the D + R value, the more interaction between the factor and
other factors in a system. On the other hand, D − R values show how strongly one factor
affects other factors in a system. In general, if D − R is positive, the variable is considered
a cause variable, and if it is negative, it is considered an effect variable. After defuzzying
numbers, a Cartesian coordinate system is drawn in which the x-axis shows D + R values,
and the y-axis shows D − R values.

4. Results

First, the relevant literature on DE and human error variables was reviewed, and
important variables were identified and extracted. These variables were then screened
by experts and categorized into five factors: organizational, external, environmental, task,
and individual.

4.1. Ranking Variables Affecting DE Based on the Fuzzy Delphi Method

After specifying effective variables, the two phases of the Fuzzy Delphi study were
carried out to reach a consensus among experts. Accordingly, the semi-closed questionnaire
with Likert-scale items was developed and given to the experts. After collecting the
questionnaires, the mean triangular fuzzy value and defuzzied value were measured for
each of the phases based on Equations (1)–(3). Table 3 shows the absolute mean of experts’
agreement corresponding to the importance of each factor. The results revealed that the
following variables strongly affected human error in mine design: technical knowledge
(designing and safety), poor organizational management, resource allocation (hardware
and software), and experience. Environmental factors, noise, indoor air quality in the
workplace, and lighting exerted the strongest effects on DE.

As for task factors, mental workload, multitasking in designing projects, and an
unclear work process strongly influenced DE. Finally, technical knowledge, experience, and
depression were the most effective individual factors. Poor organizational management,
resource allocation (hardware and software), and a safe design culture were the most
effective organizational factors.
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Table 3. Selected variables of the Fuzzy Delphi study for cause-and-effect analysis.

Subgroup Identification Code Variable Defuzzied Number

Individual variable

Va1 Technical knowledge (safety
and designing) 0.81

Va2 Experience 0.78
Va3 Depression 0.74
Va4 Motive 0.72
Va5 Self-confidence 0.72
Va6 Financial satisfaction 0.72
Va7 Stress 0.71
Va8 Intelligence coefficient 0.71
Va9 Fatigue 0.70

Task variables
Va10 Unclear work process 0.76
Va11 Multitasking 0.70
Va12 Workload 0.70

Environmental variables
Va13 Noise 0.73
Va14 Poor indoor air quality 0.72
Va15 Inappropriate lighting 0.71

Organizational variables

Va16 Poor management 0.81
Va17 Resource allocation 0.79
Va18 Safe designing culture 0.73
Va19 Training 0.71

4.2. Determining Cause-and-Effect Relationships among Variables Affecting DE (CF)

In this phase, variables with an influencing score of 0.7 and higher were screened
from each variable group (individual, organizational, external, task, and environmental)
and given to the experts in the form of a pairwise-matrix questionnaire analyzed for
cause-and-effect relationships. Table A1 demonstrates the list of variables selected for the
Fuzzy DEMATEL study. After collecting expert opinions regarding the effects of variables
on each other, the mean of opinions was acquired by forming the direct-relation fuzzy
matrix. Next, the normalized direct-relation matrix was formed, followed by the total-
relation matrix (Appendix B). The variables in each row were added to measure the D value
(Figure 2), and the variables in each column were added to measure the R-value (Figure 3);
eventually, using D and R values, the interaction of variables (D + R) or dominance matrix
(Figure 4) and the relationship among variables or the influence of variables and their pure
influenceability (D − R) or relationship matrix (Figure 5) were determined. Factors with a
positive D − R relationship were considered effective (causes) and those with a negative
D − R relationship were considered affected (effects).

Based on D + R values, unclear work process, CF, multitasking, and fatigue had the
highest level of interaction with other variables; on the contrary, poor indoor air quality,
inappropriate lighting, and noise had the lowest level of interaction with other variables.
According to D− R values, poor organizational management, resource allocation (hardware
and software), training level, and experience were the most effective variables respectively,
less influenced by other variables. In other words, these variables had a strong guiding
power with minor dependence on other variables. Thus, if these variables are fortified,
failures in cognitive function are reduced, leading to a significant decrease in design errors.
On the other hand, CF, self-confidence, depression, and motive were the most affected
variables (effects) respectively, more affected by other cause variables.
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According to the results of the cause-and-effect relationships presented in Figure 6,
the variables of the study can be divided into four groups located in four different zones.
The first group of cause (influencing) variables included poor organizational management,
resource allocation (hardware and software), training, experience, technical knowledge
(safety and designing), safe designing culture, and unclear work process. The second cause
variables included noise, poor indoor air quality, and lighting. The third and fourth groups
of variables were under the D + R axis including effect (influenced) variables. Financial
satisfaction was the only variables present in this zone.
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This variable was affected by the variables of Zone 1 and Zone 2 but influenced
variables of the fourth group. The fourth zone, however, as the most important group
of effect variables, included CF, self-confidence, fatigue, depression, motive, workload,
stress, and multitasking. Generally, to improve CF and reduce design errors, it is better
to implement measures that consider Zone 1 variables followed by Zone 2 variables. If
problems persist, the variable of Zone 3 needs to be considered. Zone 4 variables are the
variables that are under the influence of variables present in previous zones, and thus
no direct corrective action is performed for them. The study results demonstrate that
environmental variables as one type of cause variables were the weakest variables in terms
of affecting and being affected by other variables. In contrast, organizational variables were
the strongest variables in terms of affecting other variables, showing that they are the most
important variables affecting DE.

5. Discussion

In accordance with our findings, previous research also shows that organizational
factors are one of the most important causes of DE [12,22]. Dedy et al. [67] named lack of
training/education (training about design), poor resourcing, poor strategy and leadership,
poor management, and lack of professionalism as the organizational factors affecting DE
in construction projects. The results of Hafezi’s study showed that organizational factors
such as lack of training program for designers and poor use of technology had the highest
priority in issues related to related to DE [68]. The results of Cho’s study also revealed that
poor management and lack of standard processes were the main organizational factors of
DE [69]. Moreover, many studies focusing on human error have emphasized organizational
factors, particularly management obligation [70–72], resource allocation [73], and safety
culture [74].

The results of this study demonstrated that technical knowledge and experience were
located in Zone 1; thus, these individual variables are the root cause of DE in surface mines.
Similarly, the results of the study by Philemon et al. [75] showed that the lack of knowledge
and experience of the design team was the most effective personal factor leading to DE
and omission in construction projects in Tanzania. Lopez et al. also believe that employ-
ing inexperienced designers with low technical knowledge and engaging underqualified
designers in important design projects are the main causes of DE in organizations [12].
Technical knowledge of designing, quality and quantity of training, and experience [76]
are personal variables that can strongly affect cognitive function, especially in the early
stages of detecting, noticing, understanding, and sense-making processes [77]. These two
criteria are the most significant factors influencing cognitive function [78]. Continuous and
adequate training and using experienced instructors are highly effective for preventing
and controlling human errors on the one hand and reducing the risk of accidents on the
other [79].

Environmental parameters such as noise, lighting, and indoor air quality were cate-
gorized into Zone 2 in this study, belonging to independent (cause) variables that could
influence Zone 3 and Zone 4. To the researchers’ knowledge, this important factor has
been overlooked in DE studies. These factors can negatively influence the physiological
balance of the human body; cognitive performance can cause stress, fatigue, depression,
and workload, which in turn can result in the loss of focus and more human error [80,81].
Noise exposure can act as a stressor and increase mental workload, eventually impairing
the mental performance required for one’s responsibilities [82,83]. Noise can also lead
to fatigue [84], significantly affecting one’s performance while performing complex tasks
requiring mental processing [85,86]. Appropriate lighting improves awareness and cogni-
tive performance [87]. On the other hand, inappropriate lighting can result in depression,
mental boredom, and sleep quality [88]. Research shows that indoor air quality in the work-
place influences cognitive performance as chemical pollutants in the air, such as particles,
and high levels of carbon dioxide in the air detrimentally affect cognitive performance [89].
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Another dependent (effect) variable is financial satisfaction (Zone 3), which can affect a
lot of variables in group 4, particularly cognitive function. For example, Tilley and McFallen
conducted a study on Australian designers. They reported that most designers believed
their payment was low despite their challenging job, which could eventually influence the
quality of their designing performance [90]. Based on the study by Vaiana et al. [91], the
contractor’s lack of payment and inadequate cash flow was an important factor in increasing
DE and accidents in Design and Build Projects in Malaysia. Financial dissatisfaction can
demotivate designers, and low payments suggested by organizations can pave the way for
inexperienced designers to take responsibility for important projects, increasing the risk of
errors [12]. As for the fourth group of variables, the most important dependent (Zone 4)
variables were located in this group, with the designer’s cognitive function as the variable
highly influenced by others. Other variables in this group, such as fatigue and depression,
can also affect DE. From a cognitive point of view, chronic fatigue can lead to a decrease in
the information processing capabilities of workers and designers and thus result in delayed
reaction time, reduction in the field of vision, carelessness, unawareness, and lack of
focus. Therefore, fatigue resulting from physical tiredness or insomnia negatively impacts
cognitive resources and awareness [92]. Research shows that cognitive dissonance and well-
being were the most important man factor of DE in the oil and gas industry [67]. Another
variable belonging to Zone 4 was the workload. The increased workload can reduce
mental health and stress, leading to cognitive overload, failures in cognitive performance,
and increased human error [93,94]. Failures in cognitive function forge an important
link between factors affecting performance and human error [26,95]. Thus, individual,
environmental, task and organizational factors exert direct and indirect effects (fatigue,
stress, demotivation, etc.) on the designer’s cognitive function and lead to DEs eventually.

The comparison of the results of the abovementioned studies with the current study
highlights some conflicting issues:

• Previous DE studies have focused on consequences such as rework, safety, and cost.
Still, in mines, due to the diversity and wide operating spaces of the mines and the
type and volume of equipment used, these consequences can be very significant. It can
also have environmental, social, cultural, political, security and public health effects.
Therefore, the role of design errors in this section is much more prominent than in
other sections;

• Past studies focus only on identifying and categorizing the factors affecting design er-
ror. Still, in the present study, in addition to identifying and categorizing these factors,
their relationships are also defined within a cause-and-effect model. This model aids
decision-makers in focusing on the most important risks in mine design projects.

Based on the presented results, DE is one of the most important threats to sustainable
development in mines. Therefore, identifying and prioritizing the factors affecting such
errors is vital due to the financial and time constraints of organizations in eliminating and
controlling them. This research proposes a comprehensive approach to managing design
error in mines that, in addition to covering the existing theoretical gaps such as the lack of
a comprehensive study in the field of design error and its factors affecting mines, provides
important practical recommendations at all levels of the organization, especially for top
management and mine safety experts. Concerning the findings of this study, inherently safe
design culture, hardware and software resources, and individual factors such as insufficient
experience and knowledge are the root causes of errors in mine design. Meanwhile, the role
of top management is very important in developing, leading, and promoting an inherently
safe design culture in the organization. The top management should be allocating the
resources needed (hardware and software) to control errors in the design process, ensuring
that engineers and designers are competent based on appropriate education, training,
or experience, providing a safe and comfortable work environment based on ergonomic
standards, and trying to improve the level of job satisfaction and motivation of the design
team. In addition, based on the results, mining safety experts should pay special attention
to design errors and predict the required resources in establishing objectives and planning
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to achieve them. They can reduce variables such as job stress, depression, and fatigue, and
improve the designer’s cognitive functions by conducting safe design training courses,
implementing risk management and ergonomic programs, and monitoring physical factors
in the workplace such as lighting and noise thermal comfort parameters. Moreover, the
study can help legal organizations in mining safety to understand the nature of accidents
and formulate strategic policies to implement safe design rules in the mining sector.

6. Conclusions and Future Research

Design error (DE), a latent human error, is a key factor behind many occupational
accidents. Limited research, however, has been carried out investigating the relationship
between the causes of human error and relevant negative consequences. This phenomenon
is important, especially for the Iranian mining sector, which holds 7% of the mineral
recourses in the world. Therefore, this study aimed to identify the most significant variables
influencing surface mine designers’ performance and investigate their cause-and-effect
relationships. For this purpose, common effective factors were taken from the literature
review and screened by the experts. One MCDM methodology, Fuzzy DEMATEL, was
applied to investigate the relationships among variables and develop a cause-and-effect
model. The results revealed that environmental variables (noise, lighting, and indoor air
quality) had the weakest effects on other variables and were least affected by other ones;
based on the cause-and-effect relationships model, it can be concluded that ‘organizational
factors’ are vital for the DE control plan within the mining industry due to their effect on
other factors.

Nevertheless, it should be noted that individual variables like training, experience,
and technical knowledge were also found to influence DE. Similar to other studies, this
study faced some limitations; therefore, this work can be extended in future studies. The
most noticeable limitation is that the study is one of the first to study the most significant
variables affecting DE in surface mines with the abovementioned methods. Hence it is not
easy to generalize the findings to other industries. However, future studies may extend the
research to different industries. In this study, the empirical analysis of the cause-and-effect
relationship among variables was not conducted. For future research, empirical studies can
be carried out to confirm the structural relationships found in the model. This study only
investigated 19 variables, which are not exhaustive. More research should be conducted
to determine the relationship between variables. Therefore, it is proposed that further
studies should be done, focusing more on MCDM and new tools and approaches such as
intuitionistic fuzzy set [96], type-2 fuzzy variable [97], and Rough interval [98], considering
the challenges and control strategies for reaching a consensus via a group decision-making
process [99,100]. In conclusion, the findings of this study can improve the status of health
and environmental indicators and help achieve sustainable development goals in surface
mines by identifying and prioritizing factors influencing DE and recommending practical
solutions to eliminate and control such errors.
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Appendix A

Table A1. The Results of the Fuzzy Delphi Study Regarding the Rank of Variables Affecting DEs.

Subgroup Variable

Individual factors

Technical knowledge (safety and designing)(0.81), Experience (0.78),
Depression (0.73), Self-confidence (0.72), Financial satisfaction (0.72), Stress
level (0.71), Intelligence coefficient (0.71), Work adaptation (0.69), Designing
style (0.67), Fear of failure (0.65), Risk-taking (0.64), Understanding roles and
responsibilities (0.62), Quality and quantity of sleep (0.62), Circadian rhythm

(0.62), Risk Perception (0.61), Nutrition (0.52), Determinism (0.49),
Disappointment (0.49), Personality type (0.35), Age (0.32), Lack of trust in

performance (0.28), Gender (0.28).

Task factors

Workload (0.7), Multitasking (0.7), Time pressure (0.68), Instructions and
procedure (0.67), Quality of human–system interaction (0.67), Lack of job

security (0.65), Task complexity (0.62), Work posture (0.61), Work innovation
(0.56), Freedom at work (0.55), Physical workplace (design) (0.51).

Organizational factors
Poor management (0.81), Resource allocation (0.79), Training (0.71), Employees’

sense of belonging (0.69), Supervision level (0.63), Agreement between
available and required information (0.62), Designers’ sense of belonging (0.61).

Environmental factors
Noise (0.73), Poor indoor air quality (0. 0.72), Inappropriate lighting (0.71), Air

circulation velocity (0.57), Hotness and coldness (0.56), Moisture (0.54),
Radiation exposure (0.21).

External factors Legal pressure (0.68), Conflict between work and family (0.51).

Appendix B

Table A2. Defuzzied Total-Relation Matrix.

CF Va19 Va18 Va17 Va16 Va15 Va14 Va13 Va12 Va11 Va10 Va9 Va8 Va7 Va6 Va5 Va4 Va3 Va2 Va1

0.07 0.05 0.06 0.04 0.02 0.02 0.01 0.01 0.05 0.06 0.03 0.05 0.02 0.05 0.04 0.05 0.05 0.04 0.04 0.02 Va1
0.06 0.05 0.05 0.03 0.01 0.01 0.01 0.01 0.05 0.06 0.03 0.05 0.03 0.05 0.03 0.07 0.04 0.04 0.01 0.05 Va2
0.05 0.02 0.02 0.02 0.02 0.01 0.01 0.01 0.04 0.03 0.02 0.04 0.02 0.03 0.02 0.05 0.05 0.03 0.02 0.03 Va3
0.05 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.05 0.03 0.02 0.05 0.02 0.03 0.03 0.04 0.02 0.02 0.03 0.04 Va4
0.05 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.03 0.04 0.02 0.03 0.03 0.03 0.02 0.01 0.03 0.03 0.02 0.03 Va5
0.06 0.02 0.06 0.04 0.05 0.01 0.01 0.01 0.05 0.06 0.05 0.04 0.03 0.04 0.02 0.05 0.05 0.04 0.05 0.06 Va6
0.06 0.04 0.02 0.01 0.01 0.02 0.01 0.01 0.05 0.06 0.03 0.06 0.03 0.02 0.03 0.04 0.05 0.05 0.02 0.03 Va7
0.04 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.03 0.02 0.03 0.01 0.02 0.03 0.04 0.03 0.03 0.03 0.03 Va8
0.06 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.04 0.05 0.03 0.02 0.02 0.05 0.03 0.03 0.04 0.05 0.03 0.05 Va9
0.05 0.03 0.05 0.03 0.01 0.01 0.01 0.01 0.04 0.03 0.26 0.06 0.02 0.04 0.02 0.03 0.03 0.03 0.02 0.03 Va10
0.06 0.05 0.03 0.03 0.01 0.01 0.01 0.01 0.06 0.02 0.03 0.06 0.03 0.06 0.04 0.05 0.05 0.05 0.03 0.04 Va11
0.05 0.03 0.03 0.03 0.01 0.01 0.01 0.01 0.02 0.06 0.02 0.04 0.02 0.05 0.02 0.04 0.05 0.05 0.03 0.04 Va12
0.04 0.02 0.01 0.01 0.01 0.01 0.01 0 0.04 0.02 0.01 0.04 0.01 0.04 0.02 0.03 0.04 0.04 0.02 0.02 Va13
0.03 0.01 0.01 0.01 0.01 0.01 0 0.01 0.02 0.01 0.01 0.04 0.01 0.02 0.01 0.01 0.02 0.03 0.01 0.01 Va14
0.04 0.02 0.01 0.01 0.01 0 0.01 0.01 0.03 0.01 0.01 0.04 0.01 0.03 0.02 0.02 0.02 0.03 0.01 0.01 Va15
0.07 0.07 0.06 0.06 0.01 0.02 0.02 0.03 0.05 0.05 0.05 0.06 0.02 0.06 0.04 0.05 0.06 0.06 0.04 0.06 Va16
0.07 0.04 0.06 0.01 0.01 0.02 0.02 0.02 0.05 0.03 0.04 0.05 0.02 0.05 0.03 0.05 0.06 0.06 0.03 0.05 Va17
0.06 0.04 0.02 0.05 0.05 0.02 0.01 0.02 0.03 0.03 0.04 0.04 0.01 0.03 0.03 0.03 0.04 0.04 0.03 0.05 Va18
0.04 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.04 0.03 0.02 0.02 0.02 0.04 0.02 0.04 0.05 0.04 0.02 0.02 V19
0.02 0.03 0.02 0.02 0.01 0.01 0.01 0.01 0.02 0.05 0.02 0.04 0.01 0.04 0.03 0.02 0.02 0.02 0.02 0.02 CF



Sustainability 2022, 14, 8168 16 of 19

References
1. Kumar, P.; Gupta, S.; Agarwal, M.; Singh, U. Categorization and standardization of accidental risk-criticality levels of human

error to develop risk and safety management policy. Saf. Sci. 2016, 85, 88–98. [CrossRef]
2. Aliabadi, M.M.; Mohammadfam, I.; Soltanian, A.R.; Najafi, K. Human Error Probability Determination in Blasting Process of Ore

Mine Using a Hybrid of HEART and Best-Worst Methods. Saf. Health Work 2022, in press.
3. Permana, H. Risk Assessment as a Strategy to Prevent of Mine Accidents in Indonesian Mining. Rev. Min. Min. Rev. 2012, 18,

43–49.
4. Onder, S.; Mutlu, M. Analyses of non-fatal accidents in an opencast mine by logistic regression model–a case study. Int. J. Inj.

Control Saf. Promot. 2017, 24, 328–337. [CrossRef]
5. Mojarradi, G.; Rezaei, R.; Ketabi, A. Negative impacts of mine exploitations on rural regions of Tekab Township. J. Min. Environ.

2016, 7, 57–66.
6. Aliabadi, M.M.; Aghaei, H.; Kalatpour, O.; Soltanian, A.R.; Nikravesh, A. Analysis of human and organizational factors that

influence mining accidents based on Bayesian network. Int. J. Occup. Saf. Ergon. 2020, 26, 670–677. [CrossRef]
7. Floris, L.M.; Carvalho, E.G.; Faustino, B.C.R.; Calegario, C.L.L. Workplace Accidents as a Consequence of Human Error: An

Empirical Study in a Gold Mine/Os Acidentes de Trabalho como Consequência dos Erros Humanos: Um Estudo de Caso em
uma Mina de Ouro no Brasil. Rev. FSA Cent. Univ. St. Agostinho 2021, 18, 74–99.

8. Kim, S.; Wallace, K.M. Identifying Design Errors and Human Errors Using Automatic Classifications. In Proceedings of the ICED
2007, the 16th International Conference on Engineering Design, Paris, France, 28–31 July 2007; pp. 439–440.

9. Salvendy, G.; Karwowski, W. Handbook of Human Factors and Ergonomics; John Wiley & Sons: Hoboken, NJ, USA, 2021.
10. Liao, P.-C.; Luo, X.; Wang, T.; Su, Y. The mechanism of how design failures cause unsafe behavior: The cognitive reliability and

error analysis method (CREAM). Procedia Eng. 2016, 145, 715–722. [CrossRef]
11. Peansupap, V.; Ly, R. Evaluating the impact level of design errors in structural and other building components in building

construction projects in Cambodia. Procedia Eng. 2015, 123, 370–378. [CrossRef]
12. Lopez, R.; Love, P.E.; Edwards, D.J.; Davis, P.R. Design error classification, causation, and prevention in construction engineering.

J. Perform. Constr. Facil. 2010, 24, 399–408. [CrossRef]
13. Zhefeng, J.; Dayong, D.; Yinbo, Z.; Hua, M. Design and Evaluation Methodology for Cockpit Human Factor of Civil Transport

Aircraft. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, Washton, DC, USA, 24–28
July 2019; pp. 269–275.

14. Stevenson, J.D. An estimate and evaluation of design error effects on nuclear power plant design adequacy. In Structural
Engineering in Nuclear Facilities; Springer: Berlin/Heidelberg, Germany, 1984; Volume 2.

15. Taylor, J.R. Human Error in Process Plant Design and Operations: A Practitioner’s Guide; CRC Press: Boca Raton, FL, USA, 2016.
16. Danko, G. Quality evaluation and error mitigation for mine climate models. Calitatea 2019, 20, 123.
17. Lööw, J.; Johansson, B.; Andersson, E. Designing the Safe and Attractive Mine; Luleå Tekniska Universitet: Luleå, Sweden, 2016.
18. Stacey, T. The importance of engineering design with regard to safety in mining. In Proceedings of the Hard Rock Safe Safety

Conference, Sun City, South Africa, 28 September 2009.
19. Thompson, R. Mine haul road design and management best practices for safe and cost-efficient truck haulage. In Proceedings

of the Society for Mining, Metallurgy and Exploration 2010 Conference Proceedings, Lexington, KY, USA, 26–29 April 2010;
pp. 1–10.

20. Norouzi Masir, R.; Ataei, M.; Mottahedi, A. Risk assessment of Flyrock in Surface Mines using a FFTA-MCDM Combination. J.
Min. Environ. 2021, 12, 191–203.

21. Reason, J. Managing the Risks of Organizational Accidents; Ashgate Publishing: Farnham, UK, 1997.
22. Kustola, K. Mitigating Design Error Root-Causes in Product Development. 2018. Available online: https://publications.lib.

chalmers.se/records/fulltext/255252/255252.pdf (accessed on 29 June 2022).
23. Melchers, R. Human error in structural reliability assessments. Reliab. Eng. 1984, 7, 61–75. [CrossRef]
24. Fang, D.; Jiang, Z.; Zhang, M.; Wang, H. An experimental method to study the effect of fatigue on construction workers’ safety

performance. Saf. Sci. 2015, 73, 80–91. [CrossRef]
25. Smidts, C.; Shen, S.; Mosleh, A. The IDA cognitive model for the analysis of nuclear power plant operator response under

accident conditions. Part I: Problem solving and decision making model. Reliab. Eng. Syst. Saf. 1997, 55, 51–71. [CrossRef]
26. Ekanem, N.J.; Mosleh, A.; Shen, S.-H. Phoenix–a model-based human reliability analysis methodology: Qualitative analysis

procedure. Reliab. Eng. Syst. Saf. 2016, 145, 301–315. [CrossRef]
27. Mohammadfam, I.; Aliabadi, M.M.; Soltanian, A.R.; Mahdinia, M. Modeling the causes-effect relationships among major accident

predictors based on a fuzzy multi-criteria decision-making method. Work 2020, 67, 313–321. [CrossRef]
28. Al Hattab, M.; Hamzeh, F. Using social network theory and simulation to compare traditional versus BIM–lean practice for

design error management. Autom. Constr. 2015, 52, 59–69. [CrossRef]
29. Taylor, J.R. Statistics of design error in the process industries. Saf. Sci. 2007, 45, 61–73. [CrossRef]
30. Zhaorong, W.; Zekavat, P.; Moon, S.; Tang, L.; Sherif, M. Investigating The Root Cause Of Legal Disputes Over Defective Con-

struction In Proceedings of the 43rd AUBEA: Australasian Universities Building Education Association Conference Proceedings,
Noosa, QLD, Australia, 6–8 November 2019; RACV Noosa Resort.

http://doi.org/10.1016/j.ssci.2016.01.007
http://doi.org/10.1080/17457300.2016.1178299
http://doi.org/10.1080/10803548.2018.1455411
http://doi.org/10.1016/j.proeng.2016.04.088
http://doi.org/10.1016/j.proeng.2015.10.049
http://doi.org/10.1061/(ASCE)CF.1943-5509.0000116
https://publications.lib.chalmers.se/records/fulltext/255252/255252.pdf
https://publications.lib.chalmers.se/records/fulltext/255252/255252.pdf
http://doi.org/10.1016/0143-8174(84)90017-9
http://doi.org/10.1016/j.ssci.2014.11.019
http://doi.org/10.1016/S0951-8320(96)00104-4
http://doi.org/10.1016/j.ress.2015.07.009
http://doi.org/10.3233/WOR-203281
http://doi.org/10.1016/j.autcon.2015.02.014
http://doi.org/10.1016/j.ssci.2006.08.013


Sustainability 2022, 14, 8168 17 of 19

31. Islam, R.; Khan, F.; Abbassi, R.; Garaniya, V. Human error assessment during maintenance operations of marine systems–What
are the effective environmental factors? Saf. Sci. 2018, 107, 85–98. [CrossRef]

32. Athar, M.; Shariff, A.A.; Buang, A.; Shaikh, M.S.; Khan, M.I. Review of process industry accidents analysis towards safety system
improvement and sustainable process design. Chem. Eng. Technol. 2019, 42, 524–538. [CrossRef]

33. Wudhikarn, R. Improving the intellectual capital management approach using the hybrid decision method. J. Intellect. Cap. 2018,
19, 670–691. [CrossRef]

34. Ebrahimnezhad, S.; Gitinavard, H.; Sohrabvandi, S. A new extended analytical hierarchy process technique with incomplete
interval-valued information for risk assessment in IT outsourcing. Int. J. Eng. 2017, 30, 739–748.

35. Wudhikarn, R.; Chakpitak, N.; Neubert, G. Improving the strategic benchmarking of intellectual capital management in logistics
service providers. Sustainability 2020, 12, 10174. [CrossRef]

36. Wudhikarn, R.; Chakpitak, N.; Neubert, G. Use of an analytic network process and Monte Carlo analysis in new product formula
selection decisions. Asia-Pac. J. Oper. Res. 2015, 32, 1550007. [CrossRef]

37. Kumar, A.; Kaviani, M.A.; Bottani, E.; Dash, M.K.; Zavadskas, E.K. Investigating the role of social media in polio prevention in
India: A Delphi-DEMATEL approach. Kybernetes 2018, 47, 1053–1072. [CrossRef]

38. Mohandes, S.R.; Sadeghi, H.; Fazeli, A.; Mahdiyar, A.; Hosseini, M.R.; Arashpour, M.; Zayed, T. Causal analysis of accidents on
construction sites: A hybrid fuzzy Delphi and DEMATEL approach. Saf. Sci. 2022, 151, 105730. [CrossRef]

39. Thakur, V.; Mangla, S.K.; Tiwari, B. Managing healthcare waste for sustainable environmental development: A hybrid decision
approach. Bus. Strategy Environ. 2021, 30, 357–373. [CrossRef]

40. Lu, M.; Wudhikarn, R. Using the best-worst method to develop intellectual capital indicators in financial service company. In
Proceedings of the 2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section
Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON), Chiang Rai,
Thailand, 26–28 January 2022; pp. 81–86.

41. Mohammadfam, I.; Aliabadi, M.M.; Soltanian, A.R.; Tabibzadeh, M.; Mahdinia, M. Investigating interactions among vital
variables affecting situation awareness based on Fuzzy DEMATEL method. Int. J. Ind. Ergon. 2019, 74, 102842. [CrossRef]

42. Kumar, A.; Pal, A.; Vohra, A.; Gupta, S.; Manchanda, S.; Dash, M.K. Construction of capital procurement decision making model
to optimize supplier selection using Fuzzy Delphi and AHP-DEMATEL. Benchmarking Int. J. 2018, 25, 1528–1547. [CrossRef]

43. Quiñones, R.S.; Caladcad, J.A.A.; Himang, C.M.; Quiñones, H.G.; Castro, C.J.; Caballes, S.A.A.; Abellana, D.P.M.; Jabilles, E.M.Y.;
Ocampo, L.A. Using Delphi and fuzzy DEMATEL for analyzing the intertwined relationships of the barriers of university
technology transfer: Evidence from a developing economy. Int. J. Innov. Stud. 2020, 4, 85–104. [CrossRef]

44. Singh, P.K.; Sarkar, P. A framework based on fuzzy Delphi and DEMATEL for sustainable product development: A case of Indian
automotive industry. J. Clean. Prod. 2020, 246, 118991. [CrossRef]

45. Häder, M.; Häder, S. Delphi und Kognitionspsychologie: Ein Zugang zur theoretischen Fundierung der Delphi-Methode. ZUMA
Nachr. 1995, 19, 8–34.

46. Azar, A.; Faraji, H. Fuzzy Management Science; Institute Mehraban book publisher: Tehran, Iran, 2010.
47. Zhou, Q.; Huang, W.; Zhang, Y. Identifying critical success factors in emergency management using a fuzzy DEMATEL method.

Saf. Sci. 2011, 49, 243–252. [CrossRef]
48. Murray, T.J.; Pipino, L.L.; Van Gigch, J.P. A pilot study of fuzzy set modification of Delphi. Hum. Syst. Manag. 1985, 5, 76–80.

[CrossRef]
49. Kuo, Y.-F.; Chen, P.-C. Constructing performance appraisal indicators for mobility of the service industries using Fuzzy Delphi

Method. Expert Syst. Appl. 2008, 35, 1930–1939. [CrossRef]
50. Bavafa, A.; Mahdiyar, A.; Marsono, A.K. Identifying and assessing the critical factors for effective implementation of safety

programs in construction projects. Saf. Sci. 2018, 106, 47–56. [CrossRef]
51. Cheng, C.-H.; Lin, Y. Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. Eur. J.

Oper. Res. 2002, 142, 174–186. [CrossRef]
52. Wang, F. Preference degree of triangular fuzzy numbers and its application to multi-attribute group decision making. Expert Syst.

Appl. 2021, 178, 114982. [CrossRef]
53. Zhang, X.; Ma, W.; Chen, L. New similarity of triangular fuzzy number and its application. Sci. World J. 2014, 2014, 1–7.
54. Li, R.-J. Fuzzy method in group decision making. Comput. Math. Appl. 1999, 38, 91–101. [CrossRef]
55. Hsu, Y.-L.; Lee, C.-H.; Kreng, V.B. The application of Fuzzy Delphi Method and Fuzzy AHP in lubricant regenerative technology

selection. Expert Syst. Appl. 2010, 37, 419–425. [CrossRef]
56. Cafiso, S.; Di Graziano, A.; Pappalardo, G. Using the Delphi method to evaluate opinions of public transport managers on bus

safety. Saf. Sci. 2013, 57, 254–263. [CrossRef]
57. Kosmidou, K. The determinants of banks’ profits in Greece during the period of EU financial integration. Manag. Financ. 2008, 34,

146–159.
58. Saraswathi, A. A fuzzy-trapezoidal DEMATEL approach method for solving decision making problems under uncertainty. In

Proceedings of the AIP Conference Proceedings, Chennai, India, 8–10 April 2019; p. 020076.
59. Wu, W.-W.; Lee, Y.-T. Developing global managers’ competencies using the fuzzy DEMATEL method. Expert Syst. Appl. 2007, 32,

499–507. [CrossRef]

http://doi.org/10.1016/j.ssci.2018.04.011
http://doi.org/10.1002/ceat.201800215
http://doi.org/10.1108/JIC-07-2017-0088
http://doi.org/10.3390/su122310174
http://doi.org/10.1142/S0217595915500074
http://doi.org/10.1108/K-06-2017-0210
http://doi.org/10.1016/j.ssci.2022.105730
http://doi.org/10.1002/bse.2625
http://doi.org/10.1016/j.ergon.2019.102842
http://doi.org/10.1108/BIJ-01-2017-0005
http://doi.org/10.1016/j.ijis.2020.07.002
http://doi.org/10.1016/j.jclepro.2019.118991
http://doi.org/10.1016/j.ssci.2010.08.005
http://doi.org/10.3233/HSM-1985-5111
http://doi.org/10.1016/j.eswa.2007.08.068
http://doi.org/10.1016/j.ssci.2018.02.025
http://doi.org/10.1016/S0377-2217(01)00280-6
http://doi.org/10.1016/j.eswa.2021.114982
http://doi.org/10.1016/S0898-1221(99)00172-8
http://doi.org/10.1016/j.eswa.2009.05.068
http://doi.org/10.1016/j.ssci.2013.03.001
http://doi.org/10.1016/j.eswa.2005.12.005


Sustainability 2022, 14, 8168 18 of 19

60. Li, Y.; Hu, Y.; Zhang, X.; Deng, Y.; Mahadevan, S. An evidential DEMATEL method to identify critical success factors in emergency
management. Appl. Soft Comput. 2014, 22, 504–510. [CrossRef]

61. Yazdi, M.; Nedjati, A.; Zarei, E.; Abbassi, R. A novel extension of DEMATEL approach for probabilistic safety analysis in process
systems. Saf. Sci. 2020, 121, 119–136. [CrossRef]

62. Aghaee, M.; Aghaee, R. Selection of logistics personnel by using and hybrid Fuzzy DEMATEL and Fuzzy ANP. Int. Res. J. Manag.
Sci. 2016, 4, 14–22.

63. Akyuz, E.; Celik, E. A fuzzy DEMATEL method to evaluate critical operational hazards during gas freeing process in crude oil
tankers. J. Loss Prev. Process Ind. 2015, 38, 243–253. [CrossRef]

64. Gholamizadeh, K.; Zarei, E.; Omidvar, M.; Yazdi, M. Fuzzy Sets Theory and Human Reliability: Review, Applications, and
Contributions. Linguist. Methods under Fuzzy Inf. Syst. Saf. Reliab. Anal. 2022, 414, 91–137.

65. Omidvar, M.; Zarei, E.; Ramavandi, B.; Yazdi, M. Fuzzy Bow-Tie Analysis: Concepts, Review, and Application. In Linguistic
Methods under Fuzzy Information in System Safety and Reliability Analysis; Springer: Berlin/Heidelberg, Germany, 2022; pp. 13–51.

66. Lin, R.-J. Using fuzzy DEMATEL to evaluate the green supply chain management practices. J. Clean. Prod. 2013, 40, 32–39.
[CrossRef]

67. Fuadie, D.F.; Rahmawati, Y.; Utomo, C. Factors of Design Errors in Construction Project (A Review). IPTEK J. Proc. Ser. 2017,
3, 3263. [CrossRef]

68. Hafezi, M.; Hsseinalipour, M.; Ghafoori, S.P. Design Errors in Construction Projects: The Meaning, Reasons, Consequences and
Solutions. Soffeh 2019, 29, 21–34. [CrossRef]

69. Chao, L.P.; Ishii, K. Design process error-proofing: Benchmarking gate and phased review life-cycle models. In Proceedings of
the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long
Beach, CA, USA, 24–28 September 2005; pp. 301–310.

70. Franciosi, C.; Di Pasquale, V.; Iannone, R.; Miranda, S. A taxonomy of performance shaping factors for human reliability analysis
in industrial maintenance. J. Ind. Eng. Manag. 2019, 12, 115–132. [CrossRef]

71. Mohammadfam, I.; Ghasemi, F.; Kalatpour, O.; Moghimbeigi, A. Constructing a Bayesian network model for improving safety
behavior of employees at workplaces. Appl. Ergon. 2017, 58, 35–47. [CrossRef] [PubMed]

72. Abbassi, R.; Khan, F.; Garaniya, V.; Chai, S.; Chin, C.; Hossain, K.A. An integrated method for human error probability assessment
during the maintenance of offshore facilities. Process Saf. Environ. Prot. 2015, 94, 172–179. [CrossRef]

73. Nkosi, M.; Gupta, K.; Mashinini, M. Causes and impact of human error in maintenance of mechanical systems. In Proceedings of
the MATEC Web of Conferences, Palu, Indonesia, 25–27 April 2020; p. 05001.

74. Rollenhagen, C. Can focus on safety culture become an excuse for not rethinking design of technology? Saf. Sci. 2010, 48, 268–278.
[CrossRef]

75. Philemon, E.; Msomba, Z.; Samson, M.; Ramadhan, S.M. Identification of Crucial Risks Categories in Construction Projects in
Tanzania. Int. J. Eng. Res. 2018, 7, 62.

76. Delikhoon, M.; Zarei, E.; Banda, O.V.; Faridan, M.; Habibi, E. Systems Thinking Accident Analysis Models: A Systematic Review
for Sustainable Safety Management. Sustainability 2022, 14, 5869. [CrossRef]

77. Dhillon, B. Human error in maintenance: An investigative study for the factories of the future. In Proceedings of the IOP
Conference Series: Materials Science and Engineering, London, UK, 22–24 July 2014; p. 012031.

78. Franciosi, C.; Iung, B.; Miranda, S.; Riemma, S. Maintenance for sustainability in the industry 4.0 context: A scoping literature
review. IFAC-Pap. 2018, 51, 903–908. [CrossRef]

79. Andi, A.; Minato, T. Representing causal mechanism of defective designs: Exploration through case studies. Constr. Manag. Econ.
2004, 22, 183–192. [CrossRef]

80. Amiri, F.; Zamanian, Z.; Mani, A.; Hasanzadeh, J. Effects of combined exposure to noise, heat and lighting on cognitive
performance. Iran Occup. Health 2015, 12, 10–20.

81. Vatanpour, S.; Hrudey, S.E.; Dinu, I. Can public health risk assessment using risk matrices be misleading? Int. J. Environ. Res.
Public Health 2015, 12, 9575–9588. [CrossRef] [PubMed]

82. Szalma, J.L.; Hancock, P.A. Noise effects on human performance: A meta-analytic synthesis. Psychol. Bull. 2011, 137, 682.
[CrossRef] [PubMed]

83. DiGiovanni, J.; Riffle, T.L.; Lynch, E.E.; Nagaraj, N.K. Noise characteristics and their impact on working memory and listening
comprehension performance. Acoust. Soc. Am. 2017, 141, 050007. [CrossRef]

84. Beyan, A.C.; Demiral, Y.; Cimrin, A.H.; Ergor, A. Call centers and noise-induced hearing loss. Noise Health 2016, 18, 113. [CrossRef]
85. Hebb, D.O. Drives and the CNS (conceptual nervous system). Psychol. Rev. 1955, 62, 243. [CrossRef]
86. Jafari, M.J.; Sadeghian, M.; Khavanin, A.; Khodakarim, S.; Jafarpisheh, A.S. Effects of noise on mental performance and annoyance

considering task difficulty level and tone components of noise. J. Environ. Health Sci. Eng. 2019, 17, 353–365. [CrossRef]
87. Asadzadeh, H.; Farokhzadeh, N.; Moghadam, Y.A. The Effect of training materials to help color and light, on the amount of

attention and learning Persian language lessons in elementary school girls in the first grade in Sharoud city. Life Sci. J. 2013, 10,
246–251.

88. Pirmoradi, Z.; Golmohammadi, R.; Motamedzade, M.; Faradmal, J. Assessing lighting and color Temperature in the Office
Workplaces and Relationship to Visual Comfort. Iran Occup. Health J. 2020, 17, 1–10.

http://doi.org/10.1016/j.asoc.2014.03.042
http://doi.org/10.1016/j.ssci.2019.09.006
http://doi.org/10.1016/j.jlp.2015.10.006
http://doi.org/10.1016/j.jclepro.2011.06.010
http://doi.org/10.12962/j23546026.y2017i6.3263
http://doi.org/10.29252/soffeh.29.1.21
http://doi.org/10.3926/jiem.2702
http://doi.org/10.1016/j.apergo.2016.05.006
http://www.ncbi.nlm.nih.gov/pubmed/27633196
http://doi.org/10.1016/j.psep.2015.01.010
http://doi.org/10.1016/j.ssci.2009.07.008
http://doi.org/10.3390/su14105869
http://doi.org/10.1016/j.ifacol.2018.08.459
http://doi.org/10.1080/0144619042000201385
http://doi.org/10.3390/ijerph120809575
http://www.ncbi.nlm.nih.gov/pubmed/26287224
http://doi.org/10.1037/a0023987
http://www.ncbi.nlm.nih.gov/pubmed/21707130
http://doi.org/10.1121/1.4988774
http://doi.org/10.4103/1463-1741.178512
http://doi.org/10.1037/h0041823
http://doi.org/10.1007/s40201-019-00353-2


Sustainability 2022, 14, 8168 19 of 19

89. Künn, S.; Palacios, J.; Pestel, N. Indoor Air Quality and Cognitive Performance. 2019. Available online: https://www.iza.org/
publications/dp/12632/indoor-air-quality-and-cognitive-performance (accessed on 29 June 2022).

90. Efficiency, C.P. Design and Documentation Quality Survey Comparison of Designers’ and Contractors’ Perspectives. 2000. Avail-
able online: https://www.researchgate.net/publication/301655224_Design_and_Documentation_Quality_Survey_-_Designers_
Perspective_BCE_Doc_00-113 (accessed on 29 June 2022).

91. Saaidin, S.; Endut, I.R.; Samah, A.; Akmar, S.; Ridzuan, A.R.M. Risk Factors for Design and Build Projects in Malaysia-Project
Manager’s Perception. Pertanika J. Sci. Technol. 2017, 25, 185–190.

92. Sneddon, A.; Mearns, K.; Flin, R. Stress, fatigue, situation awareness and safety in offshore drilling crews. Saf. Sci. 2013, 56, 80–88.
[CrossRef]

93. Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58,
1–17. [CrossRef] [PubMed]

94. Mohamed, S.; Ali, T.H.; Tam, W. National culture and safe work behaviour of construction workers in Pakistan. Saf. Sci. 2009, 47,
29–35. [CrossRef]

95. Kim, Y.; Park, J. Suggestions of HRA method improvement for the practical assessment of human reliability. J. Ergon. Soc. Korea
2018, 37, 229–241.

96. Vafadarnikjoo, A.; Mobin, M.; Firouzabadi, S. An intuitionistic fuzzy-based DEMATEL to rank risks of construction projects. In
Proceedings of the 2016 International Conference on Industrial Engineering and Operations Management, Detroit, MI, USA,
23–25 September 2016.

97. Seikh, M.; Karmakar, S.; Castillo, O. A novel defuzzification approach of type-2 fuzzy variable to solving matrix games: An
application to plastic ban problem. Iran. J. Fuzzy Syst. 2021, 18, 155–172.

98. Seikh, M.R.; Dutta, S.; Li, D.F. Solution of matrix games with rough interval pay-offs and its application in the telecom market
share problem. Int. J. Intell. Syst. 2021, 36, 6066–6100. [CrossRef]

99. Gao, Y.; Zhang, Z. Consensus reaching with non-cooperative behavior management for personalized individual semantics-based
social network group decision making. J. Oper. Res. Soc. 2021, 72, 1–18. [CrossRef]

100. Zhang, Z.; Li, Z.; Gao, Y. Consensus reaching for group decision making with multi-granular unbalanced linguistic information:
A bounded confidence and minimum adjustment-based approach. Inf. Fusion 2021, 74, 96–110. [CrossRef]

https://www.iza.org/publications/dp/12632/indoor-air-quality-and-cognitive-performance
https://www.iza.org/publications/dp/12632/indoor-air-quality-and-cognitive-performance
https://www.researchgate.net/publication/301655224_Design_and_Documentation_Quality_Survey_-_Designers_Perspective_BCE_Doc_00-113
https://www.researchgate.net/publication/301655224_Design_and_Documentation_Quality_Survey_-_Designers_Perspective_BCE_Doc_00-113
http://doi.org/10.1016/j.ssci.2012.05.027
http://doi.org/10.1080/00140139.2014.956151
http://www.ncbi.nlm.nih.gov/pubmed/25442818
http://doi.org/10.1016/j.ssci.2008.01.003
http://doi.org/10.1002/int.22542
http://doi.org/10.1080/01605682.2021.1997654
http://doi.org/10.1016/j.inffus.2021.04.006

	Introduction 
	Review of Previous Research 
	Materials and Methods 
	Searching and Classifying the Variables Affecting DE 
	Identifying the Variables Affecting DE Using the Fuzzy Delphi Method 
	The Fuzzy Delphi Method 
	Selection of Experts 
	First and Second Rounds Inquiry 
	Determination of the Most Important Variables 

	Determining Cause-and-Effect Relationships between the Variables 
	Fuzzy DEMATEL Method 
	Setting up the Expert Panel 
	Preparing Fuzzy DEMATEL Questionnaire 
	Analyzing the Data 


	Results 
	Ranking Variables Affecting DE Based on the Fuzzy Delphi Method 
	Determining Cause-and-Effect Relationships among Variables Affecting DE (CF) 

	Discussion 
	Conclusions and Future Research 
	Appendix A
	Appendix B
	References

