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&e research and development of autonomous vehicle (AV) technology have been gaining ground globally. However, a few studies
have performed an in-depth exploration of the contributing factors of crashes involving AVs. &is study aims to predict the
severity of crashes involving AVs and analyze the effects of the different factors on crash severity. Crash data were obtained from
the AV-related crash reports presented to the California Department of Motor Vehicles in 2019 and included 75 uninjured and 18
injured accident cases. &e points-of-interest (POI) data were collected from Google Map Application Programming Interface
(API). Descriptive statistics analysis was applied to examine the features of crashes involving AVs in terms of collision type, crash
severity, vehicle movement preceding the collision, and degree of vehicle damage. To compare the classification performance of
different classifiers, we use two different classification models: eXtreme Gradient Boosting (XGBoost) and Classification and
Regression Tree (CART). &e result shows that the XGBoost model performs better in identifying the injured crashes involving
AVs. Compared with the original XGBoost model, the recall and G-mean of the XGBoost model combining POI data improved by
100% and 11.1%, respectively. &e main features that contribute to the severity of crashes include weather, degree of vehicle
damage, accident location, and collision type. &e results indicate that crash severity significantly increases if the AVs collided at
an intersection under extreme weather conditions (e.g., fog and snow). Moreover, an accident resulting in injuries also had a
higher probability of occurring in areas where land-use patterns are highly diverse.&e knowledge gained from this research could
ultimately contribute to assessing and improving the safety performance of the current AVs.

1. Introduction

&e autonomous vehicle (AV) technique has the potential
to reduce crashes significantly. More than 30 thousand
people die from traffic accidents every year in the US, with
2.2 million accidents resulting in injuries [1]. Traffic
crashes cost the economy $277 billion a year, twice as
much as congestion [2]. Over 40% of fatal accidents
involved alcohol, distraction, drug addiction, and fatigue.
Drivers’ error is the leading cause of 90% of the accidents.
Even crashes caused mainly by vehicles, roadways, and
environmental conditions are accompanied by some
human factors (e.g., inattention, distraction, or speed-
ing). With the popularization of AV technology, drivers’
errors may disappear, indicating the possibility of re-
ducing the fatal accident rate by at least 40% [3].

&erefore, clarifying how different influencing factors
affect the severity of AV crashes is of considerable sig-
nificance in comprehensively improving the safety of
AVs.

Safety is the primary factor driving the development of
AV technology. Previous literature has concentrated on
the various advanced driver assistance systems (e.g.,
forward collision warning, vehicle collision warning
system, and lane departure warning systems), traffic signal
control (e.g., actuated signal control and cooperative
adaptive cruise control), and accident responsibility
[4–6]. However, designing a system that can operate safely
in any unexpected circumstances remains a daunting
challenge. &e existing AV technology still has certain
limitations in terms of technical indicators and driving
environment requirements:
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(1) Robustness of environmental perception and visual
recognition needs to be improved [7].

(2) Multistrategy decision-making algorithms in AV
technology lack measures against abnormal behavior
[8].

(3) Although AV technology can assist the driver in
completing the driving task to a certain extent, it may
also affect the driver. Hence, further studies on driver
behavior are necessary [9].

Road safety is a complicated issue and is influenced by a
series of risk factors, such as driver, environment, and ve-
hicle factors. AVs will play an essential role in future
transportation safety. Given the uncertainty in the safety of
AVs, this study applies the publicly available Traffic Collision
Reports of AV crashes in California to predict the severity of
crashes involving AVs and analyze the effects of the different
factors on crash severity. &e knowledge gained from this
research could contribute to the assessment and improve-
ment of the safety performance of current AVs.

&e rest of the paper is organized as follows: Section 2 is
the literature review related to our study; Section 3 describes
the dataset and correlated variables; Section 4 introduces the
main content of the proposed methodology in detail; Section
5 discusses the model results; and, finally, the conclusion and
limitations are shown in Section 6.

2. Literature Review

Most previous studies on AV technology safety rely mainly
on evaluating drivers’ performance and behavior in a
simulated environment and developing the performance of
autonomous driving systems in a closed field environment.
Some research focuses on the driving trajectory of AVs to
avoid potential collisions. Hegedus et al. proposed a local
trajectory optimization algorithm based on nonlinear op-
timization, which can provide a dynamic, feasible, com-
fortable, and customizable trajectory for highly automated
vehicles [10]. Omidvar [11] developed an algorithm for
trajectory optimization of AVs in the signalized intersections
at a closed-course. &is algorithm optimizes signal control
and provides the best trajectory for AVs. As for the simu-
lation studies regarding AV safety, many researchers use
driving simulators as experimental tools. &ey focused on
the driver’s physiological and psychological responses in an
autonomous driving environment. Winter et al. [12] found
that drivers can divert their attention to secondary tasks in a
highly automated driving environment without affecting the
driving performance of the vehicle.

&e California Department of Motor Vehicles (DMV)
release massive crash data involving AVs, and many ma-
chine learning models (e.g., logistic regression models [13],
Classification and Regression Tree (CART) [14], neural
network [15], and random forest [16, 17]) have been utilized
to identify the factors that contribute to the severity of
crashes involving AVs. To investigate the factors contrib-
uting to the severity of AV involved crashes, Wang [18]
developed CART models by harnessing California’s Report
from 2014 to 2018.&e highway is recognized as the location

where severe injuries are likely to happen. Crash severity
significantly increases if the AV is responsible for the crash.
Xu et al. [19] conducted a study based on the binary logistic
regression model using California data. &e driving mode of
AVs, collision location, roadside parking, rear-end collision,
and one-way road are the main factors that contributed to
the severity level of AVs involved crashes. Boggs et al. [20]
investigated factors contributing to AV involved crashes
using the hierarchical Bayesian heterogeneity-based ap-
proach. According to this study, clear weather could reduce
the likelihood of injury crashes involving AVs.

Agarwal et al. [21] proposed a relatively novel technology
in 2016: eXtreme Gradient Boosting (XGBoost). It has high
precision and fast processing speed as well as lower cost and
complexity. Two studies [22, 23] have shown that XGBoost is
more accurate than other machine learning techniques
(logistic regression, SVM, deep neural network, etc.) in
predicting the likelihood of an accident. Meng et al. [24] use
XGBoost to combine multiple data sources to predict the
occurrence and duration of accidents, including geometric
road design, historical accident data, and weather data. Fan
et al. [25] also used artificial neural networks to integrate
multiple XGBoost models to predict the duration of the
accident. Finally, as an integrated algorithm, it is not affected
by the multicollinearity of data.

However, the lack of reliable data and insufficient data
sources have limited studies on accident analysis, especially
for the accident mechanisms of AVs. Fortunately, reliable
points-of-interest (POI) data can be collected from any-
where globally, providing a broad space for detailed accident
detection [26]. Although these POI data may not be the
typical factors used in traditional traffic accident analysis,
they are specific data on land-use factors with precise lo-
cation information [27]. Additionally, they are expected to
be highly correlated with traffic accidents in the macro- and
microaspects. &e current study employs POI data to de-
scribe the built environment to replace traditional land-use
data. It specifies the city’s infrastructure distribution and has
much better statistical granularity [28]. Simpson’s diversity
index is selected as the POI diversity evaluation index to
quantify the diversity of land-use patterns in the buffer zone.

&e primary purpose of this study is to use the XGBoost
model incorporating POI data to predict the severity of
crashes involving AVs and investigate the effects of the
different factors on crash severity. &is study employed 94
crash reports involving AV in California received in 2019.
Synthetic Minority Oversampling Technique (SMOTE) was
applied to address the imbalanced data. Ultimately, the
knowledge gained from this study could contribute to the
assessment and improvement of the safety performance of
the current AVs.

3. Data Preparation

3.1. Data Sources. With the implementation of California
Senate Bill 1298, the Department of Motor Vehicles (DMV)
demanded that crash reports involving AV be provided
within ten business days of the crash occurrence [19]. &is
study employed 94 crash reports involving AVs in California
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received in 2019. Information was manually extracted from
crash reports submitted by various manufacturers for a
comprehensive understanding of AV-related information
(e.g., type of collision, manufacturer’s name, crash severity,
vehicle information, and weather). A vast number of reports
did not count vehicle speed before the crash.&us, it was not
adopted for model development.

&is paper analyzes the diversity of land-use patterns based
on POI data because of the lack of traffic volume and land-use
data. &e integration of traffic accident data and POI data can
enable a more accurate identification of land-use intensity on
traffic safety [29]. &e POI data were obtained from Google
Map Application Programming Interface (API). &e buffer
analysis and cross summary toolbox in ArcGIS was used to
match the POI data according to the latitude and longitude of
the accident site. Different types of POI may have different
effects on traffic status, but some types have similar functions.
&erefore, the POIs are divided into four major categories, as
shown in Table 1.

Simpson’s diversity index was selected as the POI di-
versity evaluation index to quantify land-use development
intensity in the buffer zone, as shown in the following
equation:

POI D � 1 −n
i�1

Ni

N
 2, (1)

where Ni and N represent the number of POIs of a specific
type and the total amount of POIs, respectively. &e larger
the value of D, the higher the diversity of POIs.

3.2. Statistical Analysis. Figure 1 illustrates the distribution
of collision type. Rear-end collisions are the primary type of
crashes, accounting for 64%. &e road environment’s per-
ceptual system might cause the AVs emergency brakes,
although the report does not provide clear instructions.
According to the statistical data, most crashes are conven-
tional vehicles hitting the rear of AVs [30]. Furthermore,
rear-end collisions usually occur at intersections because the
trajectory of intersections is more complicated than that of
the road segment [31].&e other common collision types are
siding swipe (15%), broadside (12%), and head-on (9%).
Crashes involving AVs are caused primarily by the com-
plicated interaction between AVs and conventional vehicles
[32]. &erefore, specific attention should be given to the
adverse effects of mixed traffic flow composed of AVs and
conventional vehicles on the autonomous driving system
during the low penetration rate of AVs [33]. AVs–pedestrian
collisions or hit objects are not reported, which indicates the
benefit of road environment perception and motion control
systems for AVs.

Figure 2 describes the proportion of crashes for each
company. Cruise has the most crash reports in 2019, ac-
counting for 58%, followed by Waymo (25%). Cruise is a
representative company because it has launched many test
vehicles in congested San Francisco. By contrast, Waymo’s
test site is in Arizona. &e traffic environment in San
Francisco is much more complicated than Arizona’s, with its
lots of intersections, steep hills roads, and aggressive driving.

&erefore, the probability of an emergency occurring is
higher. Moreover, because of the insufficient sample size,
which company’s test vehicles are more prone to accidents
cannot be proved.

Figure 3 indicates the vehicle movement preceding the
collision. &e most common states of AVs and conventional
vehicles before collision are stopped and proceeding straight,
respectively. Unexpected situations in front (e.g., a pedes-
trian crossing the road) may cause the AVs to emergency
brake, while a conventional vehicle behind cannot evade in
time, resulting in a rear-end collision. Consistent with
previous studies [30], most crashes are conventional vehicles
hitting the rear of AVs. &e second-largest percentage of
AVs and conventional vehicle movements are proceeding
straight and changing lanes. Taking effective emergency
avoidance measures immediately when a conventional ve-
hicle makes unsafe lane changes is challenging for the au-
tomatic driving system. Ultimately, researchers have pointed
out that AV technology still needs to overcome many
barriers to respond accurately in complex traffic
environments.

Figure 4 shows that most collisions involving AVs are
significantly less severe than regular accidents, especially for
severe injuries and fatal collisions. Specifically, 81% of
crashes are property-damage-only (PDO) crashes, and 19%
have minor injuries. Similarly, 72% of AVs are only minor
damage, thereby suggesting that collisions occurred at low-
speed conditions. Speed and speed variations have been
frequently regarded as critical factors closely connected with
the injured crash [34, 35]. AVs would not fall prey to
personal faults. Drivers’ error is the leading cause of 90% of
accidents. AV technology reduces crash severity by over-
coming driver error (e.g., speeding, aggressive driving, in-
experience, slow reaction times, inattention, and various
other driver shortcomings).

&e specific location of the collision can be collected
from the crash report, while the approximate latitude and
longitude of each accident can be obtained through
OpenStreetMap. We use ArcGIS software to draw the heat
map of AV crashes (shown in Figure 5). It provides the
visualization and distribution of accident locations among
counties. &e accidents mainly occurred in San Francisco
and Palo Alto because they were the main test sites for AVs.
In the future, the use of AVs will be extended to any corner
of any city in the United States, making it necessary to
analyze further the effects of land-use intensity around the
accident site on the crash.

3.3. Variable Collinearity Analysis. Multicollinearity refers
to the situation in which several explanatory variables in a
regression model are highly linearly related. As an integrated
algorithm, XGBoost is not influenced by the multi-
collinearity of the data; however, introducing excessive
variables may cause overfitting of the model. Moreover, the
interpretability of the model may be significantly affected,
thereby increasing the complexity of the model. Variance
inflation factor (VIF) was calculated using SPSS 26.0, which
is a common indicator of multicollinearity [36–38].
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Generally, independent variables with VIF values higher
than 10 indicate severe collinearity between two variables,
which suggests that one of them should be eliminated [39].
Finally, nine categorical variables were determined. &e
descriptive statistics of the variables are shown in Table 2.

4. Methodology

In the current study, two classification models were used to
train the data. &is section provides the relevant concepts of
these models. We applied the Scikit-learn (sklearn) library in
Python 3.6. Overall, the proposedmodels consist of these steps:

Step 1. We employed the SMOTE algorithm to deal with
imbalanced datasets.

Step 2. We randomly selected 70% of the data as the training
set, and the remaining 30% were employed to test the model.

Step 3. We inputted the divided training set into the
XGBoost and CARTmodels, respectively, and used the grid
search to determine the best combination of parameters to
prevent the model from overfitting. &e cross-validation
method was used to measure the stability of the model.

Step 4. By comparing the performance of two models,
choosing the well-performing model to predict the severity
of crashes involving AVs and analyze the effects of the
different factors on crash severity.

4.1. XGBoost Model. &e core of XGBoost is an integrated
algorithm based on gradient boosted decision trees. It uti-
lizes a series of decision trees, where every tree studies from
the prior tree and influences the following tree to promote
model performance [40]. In this section, we explain the
formulas and evaluation indicators behind XGBoost. In-
terested readers can refer to the study published by Chen
[21] for further detailed information. Chen and Guestrin
made some improvements based on the Gradient Boosting
[41] and presented the XGBoost in 2016. One of the un-
precedented progress is the regularization of the loss
function. &e regularized objective Lk for the k

th iteration
can be expressed, as shown in the following equation:

Lk �n
i�1

l y(i), y
∧(i)
k  + k

j�1
Ω fj , (2)

where n is the number of samples, yk(i) is the prediction
value of the sample i at iteration k, and l is the original loss
function. Ω represents the regularization term, as shown in
the following equation:

Ω(f) � ΥT + 1
2
λT
j�1

ω2J . (3)

Here, T is the number of leaf nodes and c and λ are two
constants employed to constrain the degree of
regularization.

Another development of XGBoost is the application of
an additive learning approach [42] that combines the most
reliable tree model fk(x

i) into the current classification
model to provide the mth iteration prediction result [43].
&erefore, equation (3) can be expressed further as follows:

Lk �n
i�1

l y(i), y
∧(i)
k−1 + fk x

(i)   +Ω fk(  + k−1
j�1
Ω fj .

(4)
Additionally, XGBoost utilizes the second-order Taylor

expansion to the objective function and equation (4) can be
expressed further as the following equation:

Lk �n
i�1

l(y(i), y
∧(i)
k−1 + gi ∗fk(x

(i)
) +
1

2
hi ∗fk(x(i) ) 

+Ω(fk ) + C.
(5)

Here, gi � ðyk−1l(yi, yk−1) and hi � δ2yk−1 l(yi, yk−1) are
the first and second derivatives of the loss function, re-
spectively, and C represents the constant.

Finally, as an integrated algorithm, XGBoost is not af-
fected by the multicollinearity of the data. &is advantage
makes XGBoost possibly gain more reliable results even if
the variables have a strong linear correlation.

4.2. Classification and Regression Tree. Classification and
Regression Tree (CART) is a nonparametric decision tree
learning method [15]. It can summarize decision rules from
a series of data with features and labels and present them in a
tree structure to solve classification and regression problems.
&e CART method usually consists of two main steps: tree
growing and pruning. &e tree extends from the root node,
which includes all the data in the dataset. Divide the root
node into two child nodes through a splitter (independent
variable) to improve the purity of the two child nodes. &e
Gini index is used as the splitting criterion in the current
study. If the root node m is divided into two child nodes
(child nodes n1 and n2) by the variable θ, the Gini coef-
ficient of any child node is calculated as follows:

H(n(θ)) � 1 −
k

p
k

n
 2, n ∈ n1, n2( . (6)

Here, H(n(θ)) represents the Gini index of the child
node n , and p(k/n) is the proportion of class k records in
node n. &e impurity at node m is calculated as follows:

G(θ) �
o1
Nm

H n1(θ)(  + o2
Nm

H n2(θ)( . (7)

Here, Nm is the total number of observations at node
mm and o1 and o2 are numbers of observations in child
nodes n1 and n2. &e method tries to divide the root nodem
by selecting the variable θ∗:

θ∗ � argminθ G(θ). (8)
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When CART detects that no further gains can be made
by further growing the tree deeply or when specific pre-
determined criteria that are stopping rules are met, the
segmentation will stop. Given the defined branches and
nodes of the tree, each corresponding variable falls into a
terminal node.

4.3. Model Evaluation. &e confusion matrix is a multi-
dimension measurement index system of binary

classification problems that has been used widely in eval-
uating model performance (see Table 3) [44].

&e overall accuracy is calculated as follows:

Accuracy �
TP + TN

TP + TN + FN + FP
. (9)

However, this index could not be suitable for unbalanced
data. Because the number of injury accidents in the current
study is significantly less than the uninjured accidents, even
if all minority instances are misclassified, the overall

Table 1: Categories of POIs.

Categories Types of POIs

Commercial buildings Foods, hotels, shopping areas, living services, beauty services, leisure and entertainments, exercise and fitness
Residential buildings Apartments and houses, dormitories
Office building Governmental agencies, businesses
Transportation facilities Traffic facilities

Head-on

Side swipe

Rear end

Broadside

9%

15%

64%

12%

Figure 1: &e distribution of collision type.
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Figure 2: AVs crashes of different companies.
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accuracy might still be very high. To address the limitations
of the overall classification accuracy, the G-mean (geometric
mean) is considered a reasonable index to evaluate imbal-
anced data. It has a high value by balancing the classifi-
cation accuracy of the minority and majority instances
[45]. &e G-mean is calculated as follows:

G −mean �

�����������������
TP

TP + FN
∗ TN

TN + FP


. (10)

&e recall rate indicates the classification accuracy of
minority instances, as shown in the following equation:

Recall �
TP

TP + FN
. (11)

Finally, G-mean and recall are employed as indexes to
measure model performance.

5. Results and Discussion

5.1.ModelResults. We use the grid search to determine the
best combination of parameters to prevent the model
from overfitting. &e optimal parameter values are shown
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1%

27%

64%

8%

Major

Mod.

Minor

None

(a)

81%

19%

No injury

Possible injury

(b)

Figure 4: Crash severity and vehicle damage. (a) Vehicle damage description. (b) Crash severity.
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in Table 4. &e number of “n_estimators” is the number of
trees that are fitted in the model. &e parameter “gamma”
is the minimum loss reduction required to make a further
partition on a leaf node of the tree. &e learning rate is
used to shrink the weights in an update to prevent
overfitting. &e maximum depth of the tree represents the
maximum number of splits; increasing the maximum
depth can cause overfitting. &e parameters “criterion”
has the function of measuring the quality of a split. &e
parameter “min_samples_leaf” represents the minimum
number of samples required to be at a leaf node.

&e optimal CART and XGBoost models are established
after parameter tuning. &en, the two models are tested on
the same testing data to compare the predicted results.
Table 5 shows the estimation results of the crash severity
model.

&e accuracy, recall, and G-mean results for the two
modes are shown in Table 5, in which we can see that the
XGBoost model performed better than the CART model,
thereby reflecting the stability of XGBoost. Besides, the
XGBoost model’s accuracy is reduced by 26.1% after in-
corporating POI data, but the recall and G-mean have in-
creased by 100% and 11.1%. It indicates that highly mixed
land-use areas have a positive effect on identifying injury
accidents. Additionally, as mentioned in Section 4.3, the G-
mean and recall metrics are appropriate for imbalanced data

because we need to identify injury accidents as much as
possible. &e recall and G-mean results of the calibration
dataset in the XGBoost model are 84.6% and 69.9%, re-
spectively; the recall and G-mean results of the validation
dataset are 80% and 68.8%, respectively. &e results between
the calibration and validation dataset are relatively balanced,
indicating that the model is of good fitting performance and
prediction ability. In summary, the XGBoost model with
POI data performs well in identifying the injured crashes.

5.2. Feature Analysis. Figure 6 illustrates the relationship
between collision severity and potential contributing factors.
Variables include the type of collision, the AVs movement
preceding the crash, vehicle damage, accident location,
driving mode, and weather.

We can observe that the weather is the most critical feature
in the model. Specifically, injured accidents are more likely to
occur in extreme weather conditions (e.g., fog and snow) [46]
because sensors have poor perception performance in extreme
weather. Rain and fog are composed of small water droplets
that block the reflector and produce false alarms during ob-
stacle detection [47]. According to Hasirlioglu et al. [48], in
foggy weather, the relationship between temperature and
visibility is inversely proportional, and visibility represents the
distance that the detector can detect in this case.

Figure 5: Heat map analysis of AV crashes.
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&e next two most crucial features are vehicle damage
and accident location. &e higher degree of vehicle
damage corresponds to the higher severity of the acci-
dent. Crashes have a higher probability of occurring at
intersections regardless of signalized or nonsignalized
intersections [49]. &e traffic environment at intersec-
tions is complex and changeable because vehicles, non-
motor vehicles, and pedestrians are highly mixed [50].
&e crash reports do not cover the number of crossings
under autonomous mode. &erefore, it is necessary to

study the stability and safety of AVs when crossing in-
tersections in autonomous driving mode. Existing AVs
do not take advantage of the convenience brought by
infrastructure-to-vehicle (I2V) communication. &ese
facilities can decrease the spatial and temporal instabil-
ities and promote the safety of drivers, cyclists, and
pedestrians [51].

Table 2: Variables description and distribution.

Variable
Total (N� 94) Uninjured (N� 76) Injured (N� 18)
Distribution (%) Distribution (%) Distribution (%)

Type of collision
Head-on� 0 8.60 10.67 0.00
Side swipe� 1 15.05 16.00 11.11
Rear end� 2 64.52 62.67 72.22
Broadside� 3 11.83 10.67 16.67

AV state (the AV movement preceding the collision)
Stopped� 0 38.71 38.67 38.89
Moving� 1 61.29 61.33 61.11

Other vehicle state (other vehicle movement preceding the collision)
Stopped� 0 1.08 1.33 0.00%
Moving� 1 98.92 98.67 100.00

Vehicle damage (describe vehicle damage)
None� 0 7.52 9.33 0.00
Minor� 1 64.52 74.67 22.22
Mod� 2 26.89 14.675 77.78
Major� 3 1.08 1.33 0.00

Driving mode (driving mode preceding the collision)
Conventional� 0 52.69 54.67 44.44
Autonomous� 1 47.31 45.33 55.56

Accident location
Intersection� 1 47.31 45.33 55.56
Street� 2 35.48 44.00 0.00
Highway� 3 13.98 6.67 44.44
Parking lot� 4 3.23 4.00 0.00

Weather (weather conditions at the time of the accident)
Clear� 1 77.42 90.67 22.22
Cloudy� 2 19.35 5.33 77.78
Raining� 3 2.15 2.67 0.00
Fog/visibility� 4 1.08 1.33 0.00

Lighting (lighting conditions at the time of the accident)
Daylight� 1 64.52 69.33 44.44
Dusk-dawn� 2 2.15 1.33 5.56
Dark-street lights� 3 33.33 29.33 50.00

POI_D (the POI diversity evaluation index)
POI D≤ 0.5 � 0 55.91 50.67 55.56
0.5<POI D≤ 0.7� 1 38.71 33.33 33.33
0.7<POI D � 2 5.38 16.00 11.11

Table 3: Confusion matrix.

Predicted positive Predicted negative

Actual positive True positive (TP) False negative (FN)
Actual negative False positive (FP) True negative (TN)

Table 4: Parameter tuning results.

Optimal parameters XGBoost model CART model

n_estimators 670 /
gamma 0.1 /
learning_rate 0.2 /
max_depth 5 4
criterion / Gini
min_samples_leaf / 1
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Injury crashes are also more likely to occur in areas with
high mixed land-use areas. Chen [52] supposed that areas
with a high degree of mixed land-use have various functions,
which significantly increased the conflict points between
vehicles, bicycles, and pedestrians. Diverse land-use regions
are prone to diversified traffic behaviors and increased re-
gional traffic flow, affecting traffic safety substantially. &is
finding seems intuitive because mixed land-use patterns
typically exhibit diverse land-use types leading to complex
roadway layouts. &e results suggest that areas with mixed
land-use require additional local-level research to develop
effective target-oriented treatments to improve the safety
performance of AVs.

Many rear-end accidents occur in the data set (i.e.,
65%), but AVs are usually not the responsible party.
Conventional vehicles are not accustomed to the AVs’
characteristics, and, thus, crashes are often caused by
conventional vehicles hitting the rear of AVs. Wang et al.
[18] find that crash severity significantly increases if the AV
is responsible for the crash. From the perspective of driving
mode and vehicle movement before the accident, 56% of
AVs’ injury accidents were in autonomous driving mode.
In February 2016, the AV produced by Google had its first
accident when it changed lanes and collided with a bus at a
low speed, causing no casualties. &ree months later, Tesla
in the US suffered a more serious fatal crash while driving
in autonomous mode. It was the first known fatal crash in
the history of AV technology. &ese two crashes were
regarded as important events since the advent of AV, in-
dicating a new type of traffic crash. &e main reason for

these two crashes was that the driver ignored the warning to
take over from the AVs, which meant that the two drivers
did not take over the driving in time to ensure driving
safety. &is also shows that AVs are responsible for these
crashes. In conclusion, severe injuries can happen if the
vehicle is on automated driving mode and is the crash’s
primary responsible party.

6. Summary and Conclusion

In the current study, the XGBoost model incorporating
POIs data is adopted to investigate the factors contrib-
uting to the severity of AV involved crashes using re-
ported crashes from California. &e descriptive statistics
analysis was employed to investigate the characteristics of
AV involved crashes in terms of the crash location,
collision type, crash severity, and vehicle movement
before crash occurrence. A total of 94 accident cases were
employed to train the model that reached the G-mean and
recall of 68.8% and 80%, respectively. &e recall and
G-mean have increased by 100% and 11.1% after incor-
porating POI data. It indicates that highly mixed land-use
areas have a positive effect on identifying injury
accidents.

We find that the degree of vehicle damage, accident
location, and type of collision significantly affect the severity
of the crash, which is consistent with previous research. &e
difference is that this study finds weather conditions to be
the most critical factor. Extreme weather and intersection
accidents have a significant effect on the severity of an

Table 5: Estimation results of the crash severity model.

Calibration Validation

Accuracy (%) Recall (%) G-mean (%) Accuracy (%) Recall (%) G-mean (%)

CART model 81.5 23.1 47.1 82.1 20.0 43.7
XGBoost model 83.3 46.2 65.9 85.2 40.0 61.9
XGBoost model + POI 63.1 84.6 69.9 63.0 80.0 68.8
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Figure 6: Feature importance.
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accident. Regardless of signalized or nonsignalized inter-
sections, intersections are the most likely places for rear-end
collisions. Mainly because a crash occurred when the vehicle
was waiting at the intersection or driving slowly. We rec-
ommend using the vehicle sensor with strong stability and
high sensitivity. Besides, switching to manual driving is also
a solution to avoid severe accidents caused by automatic
driving.

&e results from the model can also provide a basis for
policy decisions. For example, results reveal a significantly
higher likelihood of injured crashes in mixed land-use
settings. Hence, specific recommendations are made to
promote the mixed-use of land and reduce traffic acci-
dents. First, urban planning should focus on developing
small-scale and high-intensity diverse land-use at the
microlevel and constructing a multicenter urban pattern
at the macrolevel to achieve a balanced population and
transportation. &e mixed land-use development needs to
be based on the construction of rapid rail transit facilities,
encourage walking and nonmotorized travel by improving
road traffic conditions, and use public transportation as
the core to reduce traffic accidents caused by the rapid
development of vehicles. Areas with highly mixed land-
use require additional local-level studies to develop ef-
fective treatments to improve the safety performance of
AVs.

As a limiting factor, this study did not collect data on
vehicle speed and driver characteristics before the accident
to evaluate the safety performance of AVs. Despite the
limited sample size, the collision database employed in this
study includes all issued crash reports involving AVs in 2019.
However, to gain a deeper understanding of the mechanism
of AV crash, future research should continue to collect AV
crash data and apply multisource data fusion to enhance
prediction accuracy.

&e model adopted in this study supplies an accepted
method for investigating and understanding AV safety is-
sues. Moreover, because the sample size increases in the
future, this advantage can continue to increase. &e
knowledge gained from this research could contribute to the
assessment and improvement of the safety performance of
the current AVs.
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