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1. INTRODUCTION

Focused laser differential interferometry is a promising tech-
nique for measuring density disturbances in supersonic and
hypersonic flows, particularly in measuring boundary-layer in-
stabilities. Focused laser differential interferometry is a subset of
laser differential interferometry, a field with many examples in
the literature, e.g., [1–3] and others. Texts that describe the
general principles of interferometry and describe several types
of interferometers are abundant, e.g., [4]. The focused laser dif-
ferential interferometer (FLDI) was first described by Smeets
[5] where it was used to measure density fluctuations in wind
tunnel flows and turbulent jets in a desktop-type experiment.
The technique was limited in its usefulness at that time because
of limitations on photodetectors and data acquisition systems as
well as the availability of suitable lasers. Parziale revitalized the
technique in 2013 [6–8] to measure instabilities in a hyperve-
locity boundary layer on a slender body in the T5 hypervelocity
tunnel at Caltech and to make measurements of the free stream
environment in T5 [9]. This paper will develop some general
results for the FLDI but will concentrate on the application of
measuring second-mode (Mack) waves in hypersonic boundary
layers [10].

The FLDI is a very attractive instrument for making such
measurements for several reasons. It has high frequency re-
sponse of greater than 10 MHz, spatial resolution of the order
of hundreds of microns in the streamwise direction, and a high
signal-to-noise ratio. Additionally, because of the focusing abil-
ity of the FLDI, it rejects much of the unwanted signal away
from the flow feature of interest near the instrument’s best

focus. A key advantage then is that for many flows the FLDI
is largely immune to large-amplitude density disturbances cre-
ated by the shear layers of a wind tunnel with a free jet inside
the test section. Preliminary qualitative evidence of this prop-
erty of the FLDI has been observed in experiments involving
translating a small turbulent jet, e.g., Section 3.2.3 of [11]. The
effect was examined in detail by Fulghum in Section 3.10.2 of
[12] and is also studied in this paper.

As more researchers use the technique, it is critical to better
understand how the FLDI signal is produced and how to prop-
erly analyze experimental results to extract meaningful quanti-
tative information about the fluctuating density field in the
flow. Fulghum presents a very thorough description of the
FLDI technique from an aero-optical point of view and derives
system transfer functions for the instrument for a few simple
flow geometries [12]. This paper presents a computational
method for simulating the response of the FLDI to arbitrary
density fields in order to determine the sensitivity of the instru-
ment to more complicated flows with a special emphasis on
measurements in hypersonic boundary layers.

2. FLDI THEORY

The essential operating principles of the FLDI are presented
here; for a more complete explanation, the reader is referred
to Section 3.6 of the Ph.D. thesis by Fulghum [12]. The FLDI
is a nonimaging shearing interferometer. A sketch of the instru-
ment layout is shown in Fig. 1. The linearly polarized laser
beam is expanded and sheared by a prism by a small angle σ
which is placed at the focal point of a converging lens. This fixes
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the shear distance between the beams to Δx. The two beams
have mutually orthogonal polarization. Wollaston prisms are
the most common choice of prism in the literature, but
Fulghum demonstrates great success with Sanderson prisms
[13], where the divergence angle can be adjusted and the
aperture can be larger so as not to truncate the expanded beam.
Sanderson prisms are also generally less expensive than
Wollaston prisms with small divergence angles. The choice of
prism does not change the fundamental characteristics of the
interferometer [14] or impact the analysis presented here.
An illustration of the operation of a prism is shown in Fig. 2.

After the prism, the focusing lens brings the beams to a sharp
focus. The system is symmetric about the focus so that the beams
can be recombined by means of a second polarizer and the in-
terference signal is measured by a change in intensity on a photo-
detector. Inhomogeneities are spatially filtered by the beams,
with a much stronger filtering effect where the beam diameter
is large, which makes the instrument most sensitive near the
point of best focus and least sensitive close to the
focusing lenses on either side of the focus, which in a free-jet
wind tunnel would be close to the turbulent shear layers at
the edges of the test flow. This spatial filtering effect allows
the FLDI to “see through” the strong turbulence at the edges
of a wind tunnel flow and measure density fluctuations of much
lower intensity in the region of interest in the core of the tunnel.

As an interferometer, the FLDI is sensitive to phase
differences between the two beams of the instrument.
Equations describing the interference of two superimposed
waves are derived in Section 7.2 of [15]. The equations in this

section follow directly by considering a set of rays that are in-
tegrated over a detector. A phase difference is created by a
change in the index of refraction of a transparent medium along
the paths of two rays according to

Δϕ � 2π

λ

�Z
D�ξ;η�

s1

n�x1�ds1 −
Z

D�ξ;η�

s2

n�x2�ds2
�
: (1)

Here, n is the index of refraction field through which the rays
pass, the vector xi represents the ray path parametrized by si,
i.e., xi � �x�si�; y�si�; z�si��, D�ξ; η� is the point on the detec-
tor where beams 1 and 2 terminate, and λ is the wavelength of
the laser used. ξ and η are the coordinates on the detector face.
Note that both rays terminate at the same point on the detector.
Corresponding rays are separated in the test region byΔx in the
x-direction, x1 � x2 � Δxx̂. If the rays are interfered in an
infinite fringe configuration, as they are in the FLDI, the in-
tensity of the interfered ray at point �ξ; η� on the photodetector
is given by

I�ξ; η� � I 1�ξ; η� � I 2�ξ; η�

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I 1�ξ; η�I 2�ξ; η�

p
cos�Δϕ�ξ; η��: (2)

If we assume that the two rays have the same initial intensity,
I 1 � I 2 � I0

2
, then Eq. (2) simplifies to

I�ξ; η�
I 0�ξ; η�

� 1� cos�Δϕ�ξ; η��; (3)

where I 0�ξ; η� is the normalized intensity profile of the beam.
In practice, we adjust the instrument to the middle of an in-
terference fringe such that there is a constant phase shift of
−π∕2 between the two beams so that Eq. (3) can be linearized
for Δϕ ≪ 1 as

I�ξ; η�
I0�ξ; η�

� 1� sin�Δϕ�ξ; η�� ≈ 1� Δϕ�ξ; η�: (4)

The signal output by the detector ΔΦ is proportional to the
integral of Eq. (4) over the detector face D which gives the total
weighted average phase change ΔΦ as

ΔΦ �
Z Z

D

�I�ξ; η� − I0�ξ; η��dξdη

�
Z Z

D

I 0�ξ; η�Δϕ�ξ; η�dξdη: (5)

Or, substituting Eq. (1),

ΔΦ �
Z Z

D

�I�ξ; η� − I 0�ξ; η��dξdη

� 2π

λ

Z Z

D
I 0�ξ; η�

�Z
D�ξ;η�

s1

n�x1�ds1

−

Z
D�ξ;η�

s2

n�x2�ds2
�
dξdη: (6)

Finally, the index of refraction n in a gas is related to the density
of the gas by the Gladstone–Dale relation:

n � K ρ� 1: (7)

This allows the output of the FLDI to be related to the density
field of the gas being probed.

The photodetector converts the total intensity to a voltage.
Large phase changes (ΔΦ > π∕2) cause phase ambiguity to

Fig. 1. Schematic of an FLDI setup. The two beams are shown as
blue and green. Regions where the beams overlap are shown as striped.
The coordinate system shown will be the one used throughout this
paper.

Fig. 2. Illustration of a prism (here, a Wollaston prism). The inci-
dent beam of arbitrary polarization is split into two beams by an angle
σ, and the two beams at the exit have mutually orthogonal polariza-
tion. The ordinary ray is linearly polarized in the direction of beam
separation and the extraordinary ray is polarized 90° from the direction
of separation.
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occur, as the interference wraps over several periods of light
waves. Therefore, it is best to keep the phase change small
enough such that the sine function can be linearized. For
the FLDI, it is most useful to interpret the output not as a phase
change ΔΦ between the two closely spaced beams but rather as
a finite-difference approximation to the first derivative of the
phase change, ΔΦ∕Δx. For small values of Δx, this approxi-
mates the first derivative of phase change in the direction of
beam separation. Smaller values of Δx result in more accurate
approximations of the derivative and therefore increased fre-
quency response, but smaller beam separations result in lower
signal magnitudes overall, which becomes an issue in practice as
the electronic noise floor is approached.

The first prism (Prism 1 in Fig. 1) not only splits the light
beams, but the two beams exit the prism polarized orthogonally
to one another. Therefore, in order to compute the response of
the instrument at the photodetector after the beams have been
recombined, it is necessary to consider the state of polarization
of the light along the beam paths and perform an analysis like
the one in Section 3.6.1 of [12]. However, if the light is po-
larized at 45° relative to the separation angle of the prism before
entering the first prism, the equations governing the polariza-
tion state simplify considerably. This is because each beam leav-
ing the prism will have equal amplitude and the beams can be
recombined and mixed on the detector side without explicitly
using Jones vectors to combine the electric fields as long as the
polarization is not rotated by the optical system. This is the
configuration used by Parziale [11].

3. COMPUTATIONAL METHOD

As analytically determining the response of the FLDI instru-
ment for a given density field is extremely difficult for all
but the simplest flow geometries, a computational model of
the FLDI is developed to numerically evaluate Eq. (6) for a
given arbitrary density field that can vary in space and time
and simulate the FLDI output. The software described in this
section is referred to as the FLDI software throughout this
paper. The software replicates the FLDI configuration used at
Caltech [6] but can be modified to suit the dimensions of any
FLDI setup. Dimensions are given in Table 1. The general pro-
cedure followed by the software is to first compute the region
traversed by the FLDI beams and then to discretize the domain
as described in this section. Finally, the integral in Eq. (6) is
evaluated numerically along the beam paths.

The beams are assumed to have equal Gaussian intensity
distributions I0�ξ; η� and the beams are assumed to propagate
according to Gaussian beam propagation. Assuming Gaussian
propagation means that the angle of paraxial rays and
higher-order terms can be neglected from the full electromag-
netic wave propagation equations. This is a good approxima-
tion as long as all the rays form a sufficiently small angle with

the primary beam axis such that the small-angle approximation
can be invoked. The validity of this assumption is examined
later in this section. For a more detailed discussion of the
approximations involved in assuming Gaussian beam propaga-
tion, see Chapter 4 of Born and Wolf [15].

The beam separation Δx is calculated by simple trigonom-
etry to be

Δx � 2f tan
σ

2
� 174.5 μm: (8)

This calculation is confirmed to be accurate by photographing
the beams of the physical FLDI setup at Caltech near the best
focus with a CCD camera and neutral density filters to prevent
saturation.

Equations (9)–(11) can be found in Section 14.5 of [16].
The beam waist radius at the best focus w0 is computed for
Gaussian beams using Eq. (9), which is found by substitution
for the divergence angle of a Gaussian beam as

w0 ≈
λ

πθd
≈

2λd

πD4σ

: (9)

For a diffraction-limited beam, this corresponds to a spot size of
about 7 μm. The 1∕e2 radius of the beam as a function of z, the
coordinate along the beam path, is given by

w�z� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
0

�
1�

�
λz

πw2
0

�
2
�s
; (10)

where z � 0 at the beam waist.
Figure 3 shows computed beam widths near the best focus

of the FLDI. For simplicity when calculating the beam profile,
polar-cylindrical coordinates are used with r̂ and θ̂ orthogonal
to ẑ and r2 � x2 � y2. The normalized beam intensity cross
section at a point in z is then

I0�r� �
2

w2�z�π exp

�
−2r2

w2�z�

�
: (11)

The computational domain encompassing the beams be-
tween the focusing lenses is discretized into a uniform grid
of 10,300 points along the beam paths, corresponding to a
dimensional step size of 100 μm which is found to be sufficient
enough that the computation is not affected by the step size.
Convergence is shown below in Section 4.A. The beam cross

Table 1. Optical Parameters for Simulated FLDI

Divergence angle of prisms (σ) 2 arc min
1∕e2 beam diameter at focusing lens (D4σ) 48 mm
Focal length of focusing lenses (f ) 300 mm
Distance from focusing lens to focus (d ) 515 mm
λ 532 nm

z [mm]
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x
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m
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-1.5
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1.5

Fig. 3. Computed beam widths (out to 1∕e2) within 30 mm of the
best focus. One beam is outlined in red and the other in blue. The
width of the beams at the waist is too small to see on this scale.
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section is divided into a polar grid with r nondimensionalized
by w�z�, the local 1∕e2 beam radius. Therefore, each point
�r0; θ0� on the polar grid at a point z1 is on the same ray as
the point �r0; θ0� at any other location in z. In this way the
software can be considered to be performing geometric ray trac-
ing, except the eikonal equation is not used to evaluate ray de-
flections due to the density field. Density perturbations are
approximated as small enough (in magnitude and in extent
along the ray path) that they only cause a change to the phase
of each individual ray but do not cause the rays to refract sig-
nificantly. The beam profiles and rays are calculated assuming a
zero-disturbance field first, and then the total change in phase
of the beams is calculated using an input density field.
Alternatively, the method can be thought of as computing a
pixelwise phase change for each beam on the face of the detec-
tor, where each grid point at a cross section in z is a pixel. Such a
method is shown to produce accurate results compared to the
parabolic beam method developed by White and the Rayleigh–
Sommerfeld equation as long as the beam is not analyzed close
to an aperture [17]. Because the polar grid is normalized by the
local beam radius, integration occurs along each individual ray
path instead of along the z-axis.

The polar cross-section grid extends to r∕w � r̄ � 2, which
contains 99.99% of the beam energy. We can now consider if
assuming Gaussian beam propagation is accurate. The maxi-
mum angle formed by a beam in the domain will be the angle
formed by a beam at the outer edge of the grid. Using Eqs. (9)
and (10) and Table 1, the maximum ray angle is calculated to
be 5.32° or 92.9 mrad. The small-angle approximation for this
angle gives an error of 0.14%, hence assuming Gaussian beam
propagation is clearly justified. The grid has 300 equally spaced
points in the θ̂-direction, and grid points are chosen in the
r̂-direction such that each cell has an aspect ratio as close to
1 as possible. Points are computed starting at r̃ � 2 inward
to a specified limiting radius r̃0, which is chosen to be
0.001, resulting in 363 points in r̂. Each point is computed
using the previous point according to

r̄k � r̄k−1

�
2 − δθ

2� δθ

�
; (12)

where δθ is the step size in the θ̂-direction. The grid also con-
tains one point in the center at r̃ � 0, bringing the total num-
ber of points at each cross-sectional grid to 108,901. The grid is
shown in Fig. 4. The resolution was determined by limiting the
error of numerically integrating a Gaussian using the trapezoi-
dal rule on the grid to less than 1%.

The simulated FLDI response to an input density field
ρ�x; y; z� is computed by numerically evaluating Eq. (6).
The integral in z is calculated using Simpson’s rule and the
two-dimensional integral over the face of the beam is calculated
using trapezoidal integration.

4. SOFTWARE VERIFICATION

A. System Transfer Functions

It is possible to analytically derive an overall system transfer
function H as a function of wavenumber for simple density
disturbance fields. This is performed in detail in [12], the es-
sence of which is summarized in this paper. Here, H is defined
as the ratio of the output of the instrument to the actual first
derivative of the phase field as

H ≡

�
ΔΦ
Δx

�
meas:

dΦ
dx

: (13)

H for the FLDI is the convolution of two filters: one resulting
from the finite beam separation approximating a derivative, and
the other resulting from the Gaussian intensity distribution of
the beams. In wavenumber (k) domain, these filters are simply
multiplied together to give the overall H �k� for the system.
Here, k is the wavenumber of the density disturbance field
and not the wavenumber of the laser. In general, H �k� will
be different for every density field geometry in �x; y; z�-space.
One simple field geometry that can be analyzed analytically is a
sinusoidal disturbance in x that is uniform in y and infinitesi-
mally thin in z at z � 0, i.e., n 0 � A sin�kx�δ�z�, where A is
some arbitrary disturbance amplitude and δ is the Dirac delta
function. The transfer function from the Gaussian intensity
distribution of the beam Hw�k� can be derived from
Eqs. (6), (11), and (13). We consider a detector over all space
with the detector coordinates ξ and η aligned with Cartesian
coordinates x and y and take the limit as the beam separation
Δx approaches zero:

Hw�k�

� 1
d
dx �sin�kx��x�0

lim
Δx→0

�
1

Δx

Z
∞

Z

−∞

I 0�x; y�

×

�Z
D�x;y�

s1

sin�kx�δ�z�ds1 −
Z

D�x;y�

s2

sin�kx�δ�z�ds2
�
dxdy

�

� 1
d
dx �sin�kx��x�0

Z
∞

Z

−∞

I 0�x; y�
d

dx
�sin�kx��dxdy

� 1

k

Z
∞

Z

−∞

2

w2π
exp

�
−2�x2 � y2�

w2

�
k cos�kx�dxdy

� exp

�
−

w2k2

8

�
: (14)

At z � 0, this is simply

x/w
-2 -1 0 1 2

y
/w
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1.5

2

Fig. 4. Polar grid cross section nondimensionalized by the local
beam waist size.
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Hw;0�k� � exp

�
−

w2
0k

2

8

�
: (15)

Equation (14) reveals how the FLDI rejects an unwanted signal
away from the best focus. The FLDI rapidly attenuates disturb-
ances with wavelengths sufficiently smaller than the local beam
diameter where the product of w and k is large. w is approx-
imately linear in z away from the best focus, so a disturbance
with a given wavenumber is attenuated with Gaussian decay as
it moves away from the focus.

The FLDI software can compute the response for a single
beam probing k cos�kx� at a beam cross section at z � 0 over
relevant wavenumbers for disturbances in supersonic and
hypersonic flows, and this is compared with the analytical result
of Eq. (15) in Fig. 5. The computed response curve is nearly
identical to the analytical result. The response curve is flat with
a value of 1 for low wavenumbers (long wavelength) with a
sharp exponential roll-off beginning at about k � 100∕mm,
which is a disturbance wavelength of 63 μm, much smaller than
most relevant waves in supersonic flows. From Eq. (14) it is
apparent that the roll-off point occurs at lower wavenumbers
for larger beam diameters, i.e., further from the best focus. This
is what makes the FLDI immune to density disturbances away
from the focus, such as the turbulent shear layers at the edges of
a free-jet supersonic wind tunnel.

Note, however, that since the FLDI is actually measuring a
finite difference approximation to the first derivative of density
along the direction of beam separation, the magnitude of the
raw signal will be smallest where that derivative is smallest, i.e.,
at low wavenumbers. Therefore, the effect of the electronic
noise floor will become significant for low wavenumber dis-
turbances. The issue of the noise floor will be discussed later
in this section.

Hw�k� can also be computed analytically for a disturbance
field that is uniform in z but has a finite width 2L, i.e.,
n 0 � A sin�kx��U �z � L� − U �z − L��, where U is the
Heaviside step function. This is a more physically meaningful
transfer function than Eq. (15). Hw�k� is simply the integral of
Eq. (14) from −L to L in z divided by 2L:

Hw�k� �
1

2L

Z
L

−L
exp

�
−

w2
0k

2

8

�
1�

�
λz

πw2
0

�
2
��

dz

� πw0

ffiffiffiffiffi
2π

p

kLλ
exp

�
−

w2
0k

2

8

�
erf

�
kLλ

2
ffiffiffi
2

p
πw0

�
: (16)

Equation (16) is plotted for various values of L, the density
disturbance half-width in z, in Fig. 6. As L increases, roll-off
begins at lower values of k because the instrument is integrating
over portions of the beam where the diameter is larger, thus
filtering high wavenumber disturbances according to Eq. (14).
The error function in Eq. (16) introduces a k−1 roll-off that
extends until the Gaussian decay cuts in at a wavenumber
of about 103∕mm.

Figures 7 and 8 compare the output of the FLDI software
with the analytical result from Eq. (16) for two values of L: 10
and 30 mm. Excellent agreement is again observed between
the analytical and computed transfer functions, except at high
wavenumbers where numerical errors manifest away from the
best focus where the beam is larger and the cross-sectional grid
is therefore coarser with respect to the high wavenumber
disturbances.

In addition to the filtering effect due to the changing beam
size, there is a second filter due to the beams being separated by
a finite distance. H s�k�, the transfer function based on beam
separation, is calculated by computing the response of the
FLDI by approximating the FLDI as two point-detectors
separated by Δx, again compared to the ideal case of the true
derivative of the disturbance:

H s�k� �
2 sin�kΔx2

	

Δx d
dx �sin�kx��x�0

�
2 sin



kΔx
2

	

kΔx
: (17)

This is a sinc function, which has zeros for k � 2nπ
Δx for integers

n. This will only be true for strictly two-dimensional disturb-
ances, which is not physical. Fulghum [12] has shown by
Monte Carlo simulation that for randomly oriented disturb-
ances the transfer function is not oscillatory and does not con-
tain zeros. The precise form of the transfer function can in
theory be determined by similar means using the FLDI soft-
ware presented here, but the process is very time-consuming
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Fig. 5. Transfer functionHw�k� for a single beam for 1D sinusoidal
disturbances in x in an infinitesimally thin plane at z � 0.
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Fig. 6. Transfer function of Eq. (16) plotted for various values of L.
As L increases or as more signal away from the best focus is considered,
the error function in Eq. (16) contributes a k−1 roll-off beginning at
lower values of k. This leads to attenuation of high-wavenumber dis-
turbances away from the best focus.
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and it has been observed that the effect from Hw�k� is much
more significant.

Hw�k� and H s�k� are combined for strictly two-
dimensional disturbances here for verification purposes because
an overall transfer function can be derived analytically. Because
the transfer functions are written in wavenumber space, the
overall transfer function H �k� is simply the product of Hw�k�
and H s�k�. For instance, for density disturbances in the infini-
tesimal plane at the best focus, the overall transfer function is

H �k� � 2

kΔx
sin

�
kΔx

2

�
exp

�
−

w2
0k

2

8

�
: (18)

Three overall transfer functions for L � 0 mm (infinitesi-
mal plane at the best focus), L � 10 mm and L � 30 mm,
respectively, are shown in Figs. 9–11. Excellent agreement is
observed between the FLDI software (points in Figs. 9–11)
and the analytical functions (lines in Figs. 9–11), affirming
the accuracy of the computational method. The apparent os-
cillations in the transfer functions result from the sinc filter
because of the strictly two-dimensional nature of the disturb-
ance field simulated. It is also worth noting here that there is no
filtering effect resulting from the overlap of the beams away
from the best focus as can be seen in Fig. 3. In other words,

the FLDI does not reject signals by “common-mode” rejection
because the beams overlap away from the best focus, but be-
cause the beam diameter is large compared to the wavelengths
of the disturbances being measured. The fact that the beams
overlap in space is irrelevant to signal rejection.
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Fig. 7. Transfer function Hw�k� for a single beam for uniform 2D
sinusoidal disturbances in x between z � �10 mm centered at z � 0.
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Fig. 8. Transfer function Hw�k� for a single beam for uniform 2D
sinusoidal disturbances in x between z � �30 mm centered at z � 0.
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Fig. 9. Transfer function H �k� for the two-beam FLDI for 1D
sinusoidal disturbances in x in an infinitesimally thin plane at z � 0.
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Fig. 10. Transfer function H �k� for the two-beam FLDI for uni-
form 2D sinusoidal disturbances in x between z � �10 mm centered
at z � 0.
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Fig. 11. Transfer function H �k� for the two-beam FLDI for uni-
form 2D sinusoidal disturbances in x between z � �30 mm centered
at z � 0.
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A convergence study was performed by computing the total
sum-of-squares error for the transfer function shown in Fig. 11
as a function of the resolution in z, the direction of mean beam
propagation. This is shown in Fig. 12 with the red square in-
dicating the chosen resolution. Absolute error is chosen over
relative error because the small absolute errors at small values
of the transfer function at high wavenumbers are not important
to the output of the software, but these dominate the relative
error. The grid is converged with approximately 4000 points in
z, corresponding to a step size of 257.5 μm. The chosen step
size of 100 μm is therefore sufficiently small.

The issue of the electronic noise floor can best be seen here.
Figure 13 shows the absolute response of the instrument for a
disturbance propagating between �10 mm on either side of
the focus in terms of intensity due to a difference in phase
change, which is converted to voltage by the photodetector.
The density field is the same as that used to compute the trans-
fer function of Fig. 10. Although the FLDI can accurately mea-
sure the derivative of a density field at wavenumbers below the
roll-off, the magnitude of the output signal decreases on either
side of the roll-off point. Evaluating the magnitude of density
disturbances from an FLDI signal necessarily involves integra-
tion to counteract the differentiation performed by the instru-
ment. This resolves the issue of the output signal being

lower for low wavenumbers, but one must be aware of this
issue in order to avoid the electronic noise floor of the physical
FLDI system.

B. Comparison with Experiment

An experiment with a controlled density gradient was devised
to compare the FLDI software against experimental data. A
gravitationally stabilized argon jet with a high aspect ratio, rec-
tangular cross section is probed with the beams of the FLDI
experimentally, and a model of the resulting density field is in-
put into the FLDI software so that the results can be compared.
The experimental apparatus is shown in Fig. 14. The primary
component is a rectangular cavity of length 165 mm, width
10 mm, and depth 152 mm. Argon is fed through the hole
at the bottom of the chamber at a specified pressure using a
needle valve. The chamber is filled with 20–40 mesh size (ap-
proximately 400–800 μm diameter) corn cob abrasive media to
ensure the flow at the exit of the chamber is laminar and uni-
form across the exit plane. The top of the chamber is covered
with a woven-wire steel cloth with 230-by-230 μm openings to
contain the abrasive media.

The jet was imaged using schlieren visualization and is
found to achieve the stable configuration shown in Fig. 15. The
argon is moving vertically upward at the chamber exit with an
average velocity of 0.22 m/s, computed from the measured flow
rate delivered by a King Instruments rotameter, but stops
and reverses direction due to gravity. The maximum height
achieved at y � 0 is determined by the flow rate and is typically
about 15 mm. A two-dimensional planar computation was per-
formed using OpenFOAM with the rhoReactingFoam solver
[18]. Figure 16 shows the steady-state result of the computa-
tion, with velocity vectors on the left and streamlines on the
right with both superimposed on a contour plot of argon mass
fraction. Numerical schlieren from the computation exhibits
qualitative agreement with the schlieren image in Fig. 15.

The flow is observed to be uniform along the length of the
chamber in the z-direction, stable in time, and laminar. The
chamber is placed in the test section of the Caltech Ludwieg
Tube and made parallel to the z-axis of the FLDI beams by
using a level suspended between two parallel circular cavities.
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Fig. 12. Convergence study for the transfer function shown in
Fig. 11. The red square indicates the chosen resolution.
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Fig. 13. Normalized FLDI output signal for sinusoidal disturbances
within�10 mm of the focus in z, corresponding to the transfer func-
tion plotted in Fig. 10.

Fig. 14. Solid model of the chamber for the argon jet with dimen-
sions given in mm. The coordinate system shown corresponds to the
orientation of the coordinate system of the FLDI beams.

Research Article Vol. 54, No. 28 / October 1 2015 / Applied Optics 8465



The FLDI beams are separated in the x-direction and
located at the interface of the argon and air, such that they
measure the density change across the interface as shown in
Fig. 15(a). The resulting phase change is less than π∕2,
so the small-angle approximation can be invoked as in
Section 2. Portions of the jet can be covered with tape such
that only sections of the jet are active. Fluctuations in the am-
bient air are negligible compared to the density difference
across the interface. The optical index field can therefore be
approximated for computational purposes as varying in x
and being uniform in y and z over the portion(s) where the
chamber exit is not covered and uniform everywhere else,
i.e., n 0 � njet�x��U �z0 � L∕2� − U �z0 − L∕2��. This allows
for comparison between the FLDI software and experiment for
a number of different configurations. At each condition, the
flow rate of the argon is adjusted to produce the maximum
FLDI signal, meaning that the beams are centered on the
maximum of the density gradient. Test cases performed are
presented in Table 2 by total length of the jet in z (Ljet)
and the center of the jet in z (z0) (units in mm).

The variation in index of refraction in the x-direction across
the argon–air interface is shown in Fig. 17. Cubic spline inter-
polation is used in the FLDI software when evaluating the in-
dex of refraction on the computational grid. The index of
refraction for a mixture of gases is calculated from Eq. (19),

which is derived from Eq. (B29) in [19] by substituting the
definition of mass fraction �Y �:

n 0 � Y Ar�ρAr � ρair��K Ar −K air��K air�ρAr � ρair − ρairjx→∞�:
(19)

The computational and experimental FLDI phase change
outputs for each case in Table 2 are plotted versus one another
in Fig. 18. Uncertainty in the experiment is difficult to
quantify, but errors are believed to be largely due to three-
dimensional effects at the ends of the jet. The error bars in
Fig. 18 are a bound on the error from calculating the response
with an additional 5 mm of jet length on either side of the jet
for each configuration. Three-dimensional effects have a larger
influence on shorter jet lengths, which explains the scatter in
the data at the low-response end of the figure. A linear regres-
sion analysis was carried out to test the correlation of experi-
mental data and numerical results. The regression line has a
slope of 0.99 and an intercept of 0.00, compared to the ideal
values of 1 and 0 for slope and intercept, respectively, and all
but one of the individual points lie on the regression line within
the computed uncertainty. The FLDI software can therefore be
considered verified versus analytical calculations and validated
against experimental data with a high degree of confidence.

Fig. 15. (a) Schlieren image of the argon jet in the x–y plane. The
top of the jet is about 15 mm from the chamber exit and is observed to
be uniform across the jet cross section, temporally stable, and laminar.
(b) Pseudo-schlieren image of the argon jet showing the vertical gra-
dient in density for comparison with the experiment.

Fig. 16. Steady-state result of the OpenFOAM computation of the
flow out of the argon jet. Velocity vectors are shown on the left
and streamlines on the right. Both are superimposed on a contour plot
of argon mass fraction. Ljet is the length out of the page (in the
z-direction) that the cross section shown here extends.

Table 2. Argon Jet Configurations Tested

Configuration Ljet z0

A 165 0
B 130 0
C 110 0
D 90 0
E 70 0
F 50 0
G 30 0
H 20 0
I 10 0
J 82.5 41.25
K 20 10
L 20 20
M 20 30
N 32.5 66.25
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Fig. 17. Index of refraction field from the OpenFOAM computa-
tion with spline interpolation.
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5. SIMULATED MEASUREMENTS

A. Description

One of the more promising applications of the FLDI is meas-
uring instability waves in hypervelocity boundary layers where
other more conventional techniques such as surface-mounted
pressure transducers or hot-wire anemometry are not suitable.
The FLDI is capable of making such measurements because of
its high temporal resolution and ability to reject signals away
from the best focus. This was done by Parziale at Caltech in his
Ph.D. thesis [11]. These instability waves are Mack-mode
waves and propagate two-dimensionally in the mean flow
direction. Because the waves are two-dimensional, one can as-
sume that waves only propagate along the x-axis of the FLDI.
As such, the FLDI is quite capable of measuring their fre-
quency, but because of the path-integrated nature of FLDI
measurements it is impossible to determine their amplitude
from the FLDI output alone. This point is possibly made clear-
est by Smeets himself [20]: “From the signals received [from a
2D shear layer], primarily qualitative information could be
achieved, e.g., on the frequency spectra of the turbulent fluc-
tuations near the focal point. The deduction of quantitative
data on the level of local density fluctuations is only possible
by means of assumptions and approximations. The accuracy of
the results is, therefore, only moderate.”

From Eq. (6) we see that the change in phase between the
two FLDI beams, which is converted to a voltage by the photo-
detector, is an integrated function of the density fluctuations
along the beam paths as

ΔΦ�t�
Δx

� 2πK

λΔx

Z Z

D
I0�ξ; η�

×

�Z
D�ξ;η�

s1

ρ 0�x1; t�ds1 −
Z

D�ξ;η�

s2

ρ 0�x2; t�ds2
�
dξdη;

(20)

where ρ 0 represents the local density fluctuations. We seek the
amplitude of ρ 0, the density fluctuation. If Δx is sufficiently
small and recalling that x1 � x2 � Δxx̂, we can write this
equation in terms of derivatives in x instead of finite differences

and approximate the two beam paths in Eq. (20) as being
common:

s1 ≈ s2 ≈ s; (21)

ρ�x1� ≈ ρ�x2� �
∂ρ

∂x
Δx; (22)

dΦ�t�
dx

≈
2πK

λ

Z Z

D
I 0�ξ; η�

Z

s

∂ρ 0�x; t�
∂x

dsdξdη: (23)

Since the output of the FLDI is a function of time, not space, it
is much more useful to take derivatives with respect to time.
This conversion can be done using Taylor’s hypothesis
x � cr t for a constant phase speed cr . We then have

dΦ�t�
dt

≈
2πK

λ

Z Z

D

I 0�ξ; η�
Z

s

∂ρ 0�x; t�
∂t

dsdξdη: (24)

We can then apply the mean value theorem for integrals to the
right-hand side to obtain

dΦ

dt
� 2πK

λ
Z
∂ρ 0

∂t
: (25)

Here, ∂ρ
0

∂t represents the averaged value of the time derivative of
ρ 0 over the spatial integral. Z is an unknown parameter with
units of length that makes ρ 0 equal to the actual ρ 0 fluctuation
in the boundary layer. It is approximately equal to the length of
the region where the FLDI is probing the boundary layer, but it
cannot be determined a priori from experimental data alone.
However, Z is primarily a function of the flow geometry
and can be calculated with knowledge from the FLDI software
for a given geometry and used with experimental data for the
same flow. It is sensitive to the spatial filtering of the FLDI as
indicated in Eq. (16), so care must be taken to ensure that the
wavelengths being measured are not significantly attenuated.

We can then integrate the FLDI output in time to obtain
the density fluctuations as a function of time,

cr
Δx

Z
t

0
ΔΦ�τ�dτ � 2πK

λ
Zρ 0�t�; (26)

or, solving for eρ 0,

ρ 0�t� � crλ

2πΔxZK

Z
t

0

ΔΦ�τ�dτ: (27)

The integral can be evaluated using standard numerical integra-
tion methods, e.g., Simpson’s rule. Alternatively, since instabil-
ity waves are often analyzed in frequency space, we can write
the Fourier transform in time of Eq. (27) as

F �ρ 0� � crλ

2πΔxZK

1

iω
F �ΔΦ�: (28)

The FLDI software can be used to make simulated measure-
ments of a Mack-mode wave packet in a boundary layer, and
the result of that simulation can be used to calculate a value for
Z that can be used in experiments to determine the magnitude
of the fluctuations. The wave packet is calculated for T5
shot number 2789. The boundary-layer edge conditions are
as follows.

The FLDI measurement location is 710 mm from the tip of
a 5° half-angle cone model as shown in Fig. 19. Wave packet

Fig. 18. Experimental versus numerical data for the argon jet ex-
periments detailed in Table 2. The letters marking each data point
correspond to the configurations in Table 2. The line is the ideal line
y � x.
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characteristics are calculated using the method described in [21]
and [22].

The density field in a hypersonic boundary layer contains a
propagating disturbance that can be approximated as

ρ�x; y; t� � ρ̄�x; y� � ρ 0�x; y; t�; (29)

with a mean spatial density field ρ̃�x; y� and a fluctuating
component ρ 0 representing a wave packet containing high-
frequency waves representative of Mack (second-mode) insta-
bilities, where

ρ 0 � ρSFE�x; t�ρ 0	: (30)

Here, ρSF is a dimensional scale factor that determines the am-
plitude of the density fluctuation. It is chosen such that the
maximum density fluctuation is 0.1% of the freestream value.
E�x; t� is an envelope describing the extent of the wave packet
in x, and ρ 0	 is a nondimensional fluctuation of the form

ρ 0	 � Re�g�y� exp�i�αx − ωt���; (31)

where g is a complex eigenfunction in y, α is a complex wave-
number containing information on both the spatial wavenum-
ber (αr � k) and the spatial growth rate (αi), and ω is the
temporal frequency of the wave. Written in terms of real
and imaginary parts, ρ 0	 is given by

ρ 0	 � exp�−αix��g r�y� cos�αrx − ωt� − g i�y� sin�αrx − ωt��:
(32)

The eigenfunctions and eigenvalues were computed by Bitter
[21] using parallel flow linear stability theory for a boundary
layer on a cone with flow conditions given in Table 3. The real
and imaginary eigenfunctions are plotted versus height above
the cone surface in Fig. 20 along with the boundary layer.

From Fig. 20(c) and examination of the cone geometry it is
determined that the FLDI beams are inside the boundary layer
within about 10 mm on either side of the best focus. The
envelope is chosen to be a Gaussian that contains about 15
wavelengths inside the region where its value is greater than
1%. Functionally, this has the form

E�x; t� � exp

�
−A�x − cr t − x0�2

l2

�
; (33)

for envelope length l and spatial starting location x0.
Equation (30) has the final form of

ρ 0 � ρSF exp

�
−A�x − cr t − X 0�2

l2
− αix

�
�g r�y� cos�αrx − ωt�

− g i�y� sin�αrx − ωt��: (34)

The parameters in Eq. (34) have the values given in Table 4. It
is important to recognize that we should not expect significant
spatial filtering for αr � 2.116∕mm based on Fig. 10. Note
that Fig. 10 does not represent the transfer function for this
cone boundary-layer flow but is the transfer function for
two-dimensional disturbances propagating in x and uniform
in z from −10 < z < 10 mm, so the exact magnitude of the
transfer function at a given wavenumber is not directly appli-
cable here. Still, Fig. 10 does predict whether or not a particular
wavenumber will be appreciably attenuated.

The FLDI beams are positioned in the simulation at the
local maximum of the density eigenfunction at y � 0.81 mm.
The density fluctuations are converted to refractive index
fluctuations by the Gladstone–Dale relation [Eq. (7)] with
K � 0.227 × 10−3 m3∕kg. The wave packet is assumed to
be axisymmetric with respect to the cone axis. The local density

Fig. 19. Cone model used in the T5 studies.

Table 3. Boundary-Layer Edge Conditions for the T5

Shot 2789

M e 4.55
T e 2105 K
U e 4191 m/s
pe 47.1 kPa
Re/m 4.76 × 106∕m
ρe 0.0777 kg∕m3
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Fig. 20. (a) Real eigenfunction. (b) Imaginary eigenfunction.
(c) Mean density profile ρ̄�y�.

Table 4. Boundary-Layer Wave Packet Parameters

ρSF 2.276 × 10−20 kg∕m3

A − ln 0.01 � 4.6
L 14π∕αr � 20.8 mm
x0 710 mm − l � 689.2 mm
cr 3633 m/s
αi −0.0488/mm
αr � k 2.116/mm
ω � 2πf � crαr 7.697 × 106 rad∕s
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is transformed from the FLDI coordinate system (subscript f )
to a coordinate system relative to the cone surface normal
(subscript c), so that Eq. (34) can be evaluated by a series
of trigonometric operations for cone half-angle θc . Note that
at zf � 0, �xf ; yf � � �xc ; yc� as expected.

yc � cos θc

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
�xf − yf tan θc� tan θc �

yf

cos θc

�
2

� z2f

s

− tan θc�xf − yf tan θc�
�
; (35)

xc � xf � tan θc�yc − yf �: (36)

The index of refraction change, relative to the index of refrac-
tion outside the boundary layer, at a point �xc ; yc ; t� is

Δn � K �ρ̄�yc� � ρ 0�xc ; yc ; t� − ρe�: (37)

Functions ρ̄, g r , and g i are tabulated on a uniform stencil in yc
with a step size of 0.74 μm, and values are interpolated from the
tabulated functions for each simulated ray in the FLDI soft-
ware. The wave packet is propagated in time and the sample
rate of the simulated FLDI is 20 MHz, which is sufficient to
fully temporally resolve the wave packet.

B. Results

The output of the simulation is shown in Fig. 21 along with the
input density disturbance at the probe location in x, which is
halfway between the two FLDI beams and z � 0, i.e., the best
focus. Note that the output is in phase change, as it would be if
output from a photodetector in a physical FLDI setup, and that
the output is proportional to the time derivative of the input
wave packet as indicated by Eq. (27).

Equation (27) is applied to the simulated FLDI output and
Z is determined by means of iteration until the peak magnitude
of the measured power spectral density of the simulated output
is equal to that of the input. For the flow geometry studied
here, Z is calculated to be 12.6 mm. Figure 22 shows both
the measured and input density fluctuations with respect to
time. Note that the only difference between the two is that

the measured fluctuations are slightly ahead of the input with
respect to time. This is simply a consequence of the conical
geometry of the flow: the wave packet will first be observed
by the FLDI beams away from the focus. Equations (35) and
(36) make the issue clear. For z ≠ 0, yc > yf so xc > xf .

Figure 23 shows the power spectral density (PSD) of the
input and output density fluctuations. The two curves match
each other almost exactly with the appropriate value of Z except
that the simulated measurement has higher noise away from the
peak in frequency. Presumably even more noise would be
present in an experiment, so this slight increase in noise is
inconsequential.

The parameters in Table 4, namely, αr and cr , are changed
to determine the universality of the value of Z for wave packets
of different spatial wavenumber and frequency. The values for
αr and cr are given in Table 5 along with the computed fre-
quency and the error in the peak amplitude of the simulated
measurement relative to the peak magnitude of the input wave
packet.

The error in the peak amplitude of the wave packet is ap-
preciable only in cases 3 and 4. The reason for the large error

Fig. 21. Output of the FLDI simulation compared to the input
boundary-layer wave packet density disturbance. The y-axis on the left
corresponds to the FLDI output and the y-axis on the right corre-
sponds to the input density at the location of the beams at z � 0.

Fig. 22. Output of the FLDI simulation, scaled with Eq. (27), com-
pared to the input boundary-layer wave packet for the optimum value
of Z � 12.6 mm.

Fig. 23. PSD of the FLDI simulation, scaled with Eq. (27) and
optimum Z value, compared to the PSD of the input boundary-layer
wave packet.
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can be deduced by examining the values of αr in these cases and
consulting Fig. 10. Recall again that the transfer functions plot-
ted in Figs. 9–11 are not transfer functions for the conical
boundary layer under examination in this section, but nonethe-
less they lend some insight to when the instrument will begin to
roll off in wavenumber space. Notice that at αr � 7∕mm, the
transfer function has dropped to about −2 dB, which corre-
sponds to about a 35% reduction in signal magnitude, close
to the observed error in Table 5. Similarly, for αr � 30∕mm,
the transfer function is approximately equal to −17 dB, corre-
sponding to a 98% reduction in magnitude, which is again
quite close to the error in Table 5 for case 4. Physically, this
means that the wavelength of the Mack-mode waves is suffi-
ciently small enough that it is comparable in size to the beam
width in the region where the FLDI is probing the boundary
layer. Therefore, the waves are being heavily spatially filtered by
the beams.

It is interesting to examine further the output from the
FLDI software for case 4 where αr � 30∕mm. The density
change as a function of time and the power spectral density
of the disturbance are shown in Fig. 24. As Table 5 indicates,
the measured signal magnitude is significantly reduced com-
pared to the input disturbance using the same value of Z cal-
culated for case 1 where there is very little spatial filtering by the
instrument. Interestingly, though, the FLDI is able to measure
the frequency of the signal correctly. This is a somewhat sur-
prising result because if one were to approximate the FLDI as
two point measurements separated by the beam separation Δx,
one would predict spatial aliasing if the wavenumber of the dis-
turbance is greater than π

Δx, which would be 18 mm here. This
spatial aliasing would become temporal aliasing when Taylor’s

hypothesis is applied. Figure 24(b) clearly does not display this
behavior, so the finite beam diameter seems to prevent spatial
aliasing based on wavenumber. An FLDI will only suffer from
aliasing if the sampling frequency is not sufficiently high com-
pared to the frequency of the disturbance being measured. The
only effect of high wavenumbers is the attenuation of the signal
due to spatial filtering, which will lead to a limitation from the
electronic noise floor of the system.

Based on this analysis we conclude that the value of Z in
Eq. (27) is only a function of the geometry of the density field
being probed and the attenuation of the signal due to spatial
filtering based on wavenumber. If the attenuation is sufficiently
small for all wavenumbers of interest in the experiment then
only a single value of Z needs to be calculated to accurately com-
pute the density change quantitatively. Even if the wavenumbers
of interest are high enough to be filtered by the FLDI, new values
of Z can be calculated for given wavenumbers without much
difficulty. The measurement will still be a point measurement
at the focus of the FLDI and the phase speed of the disturbance
must be known a priori, but for the specific application of
measuring Mack-mode waves on a slender-body boundary layer
these restrictions are not problematic. The phase speed can
either be calculated from stability theory as is done here or it
can be measured as in [23]. One also needs some knowledge
regarding the shape of the density eigenfunctions.

To summarize, the routine to accurately compute the den-
sity change of Mack-mode waves in a hypervelocity boundary
layer from FLDI data is as follows:

1. Compute wave properties and eigenfunctions from
linear stability analysis, e.g., in [21].

2. Input this data into FLDI software such as the one in
the current study.

3. Compute a value for Z in Eq. (27) by matching the
results of step 2 to the specified density change of the input
wave packet.

4. Apply Eq. (27) to the experimental FLDI data using the
value of Z from step 3, taking care to ensure that the wave-
number of the Mack-mode wave is not appreciably spatially
filtered by the FLDI.

The simple procedure used in [11] for computing the den-
sity disturbance magnitude for the T5 shot 2789 can give an
estimate accurate within an order of magnitude if the “integra-
tion length” is estimated based on the length through which the
FLDI beams are inside the cone boundary layer. However, such
a procedure makes significant approximations that limit its
accuracy to within about a factor of 2. The routine outlined
above, on the other hand, requires knowledge of the form
of the disturbances and is limited in accuracy by experimental
uncertainty and any uncertainties associated with the compu-
tations performed in step 1. One could alternatively simply
make an estimate of Z based on the boundary-layer geometry
and skip directly to step 4 above. Estimating Z would likely
give results that are more accurate than the procedure in [11]
because Eq. (27) takes into account the fact that the FLDI is
differentiating the density disturbance in space while the sim-
plified procedure does not. However, the results would be less
accurate than those obtained by following the full routine
outlined above.

Table 5. Wave Packet Properties Tested with Fixed

Value of Z

Case No. αr [1/mm] cr [m/s] f [Hz] % Error

1 2.116 3633 1.22 × 106 0.0
2 0.4 3633 2.31 × 105 4.0
3 7 3633 4.05 × 106 −26
4 30 3633 1.73 × 107 −94
5 2.116 2500 8.42 × 105 0.0
6 2.116 5000 1.68 × 106 0.0

(a) (b)

Fig. 24. (a) Output of the FLDI simulation for case 4 in Table 5
scaled with the same value of Z found in case 1 compared to the actual
density disturbance at the focus. (b) Power spectral density of the
FLDI simulation for case 4 compared to the PSD of the input
boundary-layer wave packet at the focus.
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There is a caveat to these results. The freestream disturb-
ances outside the boundary layer have been neglected in this
analysis, but in an experiment the FLDI beams integrate
through these disturbances and they will contribute to the out-
put signal. Therefore, care must be taken to ensure that the
freestream disturbances do not occupy the same frequency
space as the disturbance of interest at the focus or that the wave-
number of the freestream disturbance at the frequency of the
disturbance of interest is sufficiently high that it is heavily spa-
tially filtered by the FLDI away from the focus. It is important
to recognize that the characteristic velocity of the freestream
disturbances can be different from the characteristic velocity
of the disturbance of interest, as it is for hypervelocity boundary
layers. Based on measurements taken in T5, it appears that the
frequency range over which there is significant FLDI signal in
the freestream is significantly below the 1.2 MHz of a typical
Mack-mode wave packet, so signal contamination from the
freestream is not expected to be problematic when using the
FLDI to measure Mack-mode waves on a cone boundary layer.
The effect of freestream disturbances on the output signal
ought to be evaluated for each facility on a case-by-case basis
for future experiments before attempting to quantify boundary-
layer instability measurements to ensure the measurements are
accurate. This is particularly true for low-enthalpy facilities
where the frequency content of the freestream disturbances
and that of Mack-mode waves are not as far apart as they
are in high-enthalpy flow.

Another word of caution is warranted regarding measuring
Mack-mode waves in hypervelocity boundary layers with an
FLDI. From Fig. 20, it is clear that the magnitude of density
fluctuations varies significantly with height in the boundary
layer, and as such the output of the FLDI is quite sensitive
to the location above the cone surface where the disturbance
is measured. Indeed, if the measurement location is moved only
400 μm from the specified measurement location of y �
0.81 mm to y � 1.2 mm, the error in the measurement using
the value of Z calculated for case 1 in Table 5 is greater than
50%. Therefore, great care must be taken to accurately measure
the height of the beam centers from the model surface in an
experiment.

6. CONCLUSIONS

Focused laser differential interferometry is a promising tech-
nique for measuring localized, high-frequency density disturb-
ances in supersonic and hypersonic flows. In particular, the
FLDI is an attractive instrument for measuring Mack-mode in-
stability waves in hypersonic boundary layers. A computational
tool has been developed here that has been verified against ana-
lytical predictions of the FLDI response as well as experimental
measurements with a physical FLDI setup. Using the FLDI
software, it is possible to calculate the output of an FLDI to
an arbitrary density field. Such a prediction can only be made
analytically for very simple density fields. These computations
allow FLDI experiments to give quantitative measurements of
the density fluctuation amplitude if certain details about the
flow in question are known by applying correction factors to
the computational output such that the FLDI output matches
the input density disturbance of interest. This procedure is

shown to work well for hypersonic boundary-layer disturbances
where the disturbance is localized near the best focus of the
FLDI, is two-dimensional in nature, and the phase speed of
the instabilities can be accurately predicted from theory.

Some general statements can be made concerning using the
FLDI to make measurements in compressible flows. The FLDI
does reject signals away from its best focus, but this signal re-
jection is not related to common-mode rejection associated
with the beams sharing common paths. The rejection is in fact
attenuation due to spatial filtering because of the increasing
beam diameters away from the focus. As such, disturbances
with small enough wavenumbers (long enough wavelengths)
will not be attenuated away from the FLDI focus and will
therefore contribute to the FLDI signal over a significant extent
of the beam paths. As a result, the FLDI can accurately measure
the frequency content of density disturbances in a flow, but it
does not in general yield information as to where along the
beam path the disturbances are located or their amplitude at
any given point along the beam path. In order to extract quan-
titative density information, details regarding the geometry of
the density disturbance field, the preferred direction of the dis-
turbances (if any), and the characteristic velocity of the disturb-
ances must be known. If these are known, then the FLDI
output can be simulated using a procedure such as the one pre-
sented here or, if the flowfield is simple enough, by analytical
methods, and then experimental measurements can be adjusted
as necessary such that the density fluctuation magnitude is cor-
rect. The authors are not aware of any other method to extract
suitably accurate quantitative density fluctuation magnitudes
from FLDI data.
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