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Purpose: Design and optimization of medical imaging systems benefit from accurate theoretical

modeling that identifies the physical factors governing image quality, particularly in the early stages

of system development. This work extends Fourier metrics of imaging performance and detectabil-

ity index �d�� to tomosynthesis and cone-beam CT �CBCT� and investigates the extent to which d�

is a valid descriptor of task-based imaging performance as assessed by human observers.

Methods: The detectability index for tasks presented in 2D slices �dslice� � was derived from 3D

cascaded systems analysis of tomosynthesis and CBCT. Anatomical background noise measured in

a physical phantom presenting power-law spectral density was incorporated in the “generalized”

noise-equivalent quanta. Theoretical calculations of dslice� were performed as a function of total

angular extent ��tot� of source-detector orbit ranging 10°–360° under two acquisition schemes: �i�

Constant angular separation between projections �constant-���, giving variable number of projec-

tions �Nproj� and dose vs �tot and �ii� constant number of projections �constant-Nproj�, giving constant

dose �but variable angular sampling� with �tot. Five simple observer models were investigated:

Prewhitening �PW�, prewhitening with eye filter and internal noise �PWEi�, nonprewhitening

�NPW�, nonprewhitening with eye filter �NPWE�, and nonprewhitening with eye filter and internal

noise �NPWEi�. Human observer performance was measured in 9AFC tests for five simple imaging

tasks presented within uniform and power-law clutter backgrounds. Measurements �from 9AFC

tests� and theoretical calculations �from cascaded systems analysis of dslice� � were compared in terms

of area under the ROC curve �Az�

Results: Reasonable correspondence between theoretical calculations and human observer perfor-

mance was achieved for all imaging tasks over the broad range of experimental conditions and

acquisition schemes. The PW and PWEi observer models tended to overestimate detectability,

while the various NPW models predicted observer performance fairly well, with NPWEi giving the

best overall agreement. Detectability was shown to increase with �tot due to the reduction of

out-of-plane clutter, reaching a plateau after a particular �tot that depended on the imaging task.

Depending on the acquisition scheme, however �i.e., constant-Nproj or ���, detectability was seen in

some cases to decline at higher �tot due to tradeoffs among quantum noise, background clutter, and

view sampling.

Conclusions: Generalized detectability index derived from a 3D cascaded systems model shows

reasonable correspondence with human observer performance over a fairly broad range of imaging

tasks and conditions, although discrepancies were observed in cases relating to orbits intermediate

to 180° and 360°. The basic correspondence of theoretical and measured performance supports the
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application of such a theoretical framework for system design and optimization of tomosynthesis

and CBCT. © 2011 American Association of Physicists in Medicine. �DOI: 10.1118/1.3560428�
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I. INTRODUCTION

Tomosynthesis and cone-beam CT �CBCT� using flat-panel

detectors �FPDs� offer the potential for improved lesion con-

spicuity and localization in a wide range of diagnostic and

image-guided procedures, including breast imaging,
1–4

chest

imaging,
5,6

and surgical interventions.
7,8

The development of

new tomosynthesis and CBCT systems for such applications

stands to benefit significantly from an understanding of the

factors that govern image quality and a theoretical frame-

work for the assessment and optimization of imaging

performance.
9

Image quality assessment commonly involves human

observer-based measurements �e.g., receiver operating char-

acteristic �ROC� or alternative forced-choice �AFC� tests� or

observer-independent modeling or measurement �e.g., modu-

lation transfer function �MTF�, noise-power spectrum �NPS�,
detective quantum efficiency �DQE�, and noise-equivalent

quanta �NEQ��. The former, although time-consuming and

requiring careful attention to experimental design to mini-

mize bias, has been applied to evaluate 3D imaging

systems.
10

However, due to the broad parameter space asso-

ciated with system design, acquisition techniques, and recon-

struction methods, human observer studies may be impracti-

cal as a rigorous approach for designing and optimizing

medical imaging systems. Alternative approaches with math-

ematical observer models have been an active area of

research.
11–13

The latter have been commonly used in char-

acterization of radiographic imaging systems,
14–19

with re-

cent research extending the approach to include dual-energy

radiography,
20

tomosynthesis,
21–24

cone-beam CT,
25–27

and

the incorporation of anatomical background noise.
28

Despite

the widespread use of both these broad approaches, there is

comparatively little rigorous understanding of the connection

between the two for real imaging systems, e.g., how im-

provement in DQE might �or might not� relate to improve-

ment in ROC, underscored primarily by the fact that these

prevalent Fourier metrics do not, in themselves, account for

how observers interpret the image data or, more specifically,

how detector performance relates to a given imaging task.

A connection between prevalent, practical metrics such as

NEQ and human or model observer performance metrics

such as ROC offers significant value in system development,

e.g., in identifying low-dose performance limits and guiding

design improvements �e.g., x-ray converter efficiency, elec-

tronics noise, etc.�. As generally acknowledged, imaging per-

formance is best defined with respect to an intended task and

quantitative frameworks based on statistical decision theory

have been proposed to incorporate task in the assessment of

image quality.
9,29–33

For example, the detectability index pro-

posed by Green and Swets
34

has been adapted in the context

of medical imaging
35,36

in terms of the NEQ and a spatial-

frequency-dependent template �task function� corresponding

to an ideal observer. Such ideal observer models have proven

useful to system optimization in some contexts.
31,37

Other

observer models that aim to better describe human observer

performance under various imaging conditions �e.g., statisti-

cal backgrounds� have been an active area of research.
29,38–44

The work described below extends a theoretical cascaded

systems model
25,26,45

for the 3D NEQ of FPD based tomo-

synthesis and CBCT to include: �i� Spatial-frequency-

dependent task descriptors to yield the detectability index for

a variety of idealized imaging tasks and observer models; �ii�
background power-law noise, shown to be a major factor in

affecting detectability over the continuum of angular extent

from low-angle tomosynthesis to CBCT; and �iii� compari-

son of theoretical calculations of detectability with the per-

formance measured for human observers in real image data.

The first is a straightforward interpretation of task-based de-

tectability index �d�� outlined in ICRU Report 54 �Ref. 9� in

the context of 3D imaging. The second yields so-called “gen-

eralized” Fourier metrics �viz., generalized NEQ �GNEQ�
and generalized d��, where the term “general” refers specifi-

cally to the incorporation of background noise in the NEQ,

as described by Barrett et al.
38 �distinct from what might be

termed “system” NEQ factors such as focal spot size, x-ray

scatter, etc., which may also be included
46�. The third di-

rectly compares theoretical calculations of model observer

performance �based on GNEQ and task function� to the per-

formance measured using human observers, thereby investi-

gating the extent to which task-based detectability index pro-

vides a meaningful figure of merit for observer performance

and, ultimately, system optimization.

Note that the intent of this work is not to advance the

extent to which observer models in themselves are descrip-

tive of human observer performance; rather, the work utilizes

a variety of well known observer models and investigates the

extent to which a theoretical framework for 3D NPS and

NEQ gives correspondence with human observers. The sig-

nificance of the work lies in the potential to predict imaging

performance in a manner that corresponds to that of human

observers, e.g., as a function of angular extent, number of

projections, and total dose in tomosynthesis and CBCT, from

first principles of signal and noise propagation in a 3D cas-

caded systems model of the imaging system.

II. METHODS

II.A. Generalized detectability index

II.A.1. Cascaded systems analysis

Cascaded systems analysis has been widely used in mod-

eling detector performance in 2D radiography
14,15,19

and
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more recently extended to describe 3D imaging performance

in tomosynthesis and CBCT.
24–26

Details of the 3D cascaded

systems analysis model have been described in previous

works,
26,27

with a summary of the model illustrated in Fig. 1.

Briefly, stages 1–7 model the propagation of signal and noise

in the formation of the 2D projection image and stages 8–13

model the 3D reconstruction. Specifically, stage 8 describes

the log transform of projections, stage 9 the application of

the ramp filter, stage 10 the smooth apodization filter, stage

11 the interpolation of projection data for voxel-driven re-

construction, stage 12 the backprojection according to the

central slice theorem, and stage 13 the sampling of data in

the 3D reconstruction domain. The accuracy and utility of

this approach has been demonstrated with measurements of

NPS and NEQ in CBCT and tomosynthesis,
23,26,27

providing

a general framework for modeling imaging performance for

a wide range of system parameters, acquisition techniques,

and reconstruction settings. More recently, the model was

extended to include background power-law noise �“anatomi-

cal noise”� in the generalized NEQ.
47

The detectability index provides a task-based performance

metric that combines the NEQ with a task function describ-

ing the spatial frequencies of interest
9

d3D�
2 =� � � �T · WTask�

2

SQ + SE

dfxdfydfz, �1�

where T is the MTF and SQ and SE are the quantum NPS and

electronic NPS, respectively. The MTF and NPS are derived

directly from cascaded systems analysis as described in pre-

vious works.
14,15,26

The term WTask is a task function given

by the difference of the Fourier transforms of the spatial

representations �spatial domain object functions� of the two

hypotheses, e.g., for a detection task, a signal-present hy-

pothesis represented by a volume-of-interest �VOI� contain-

ing the signal and a signal-absent hypothesis represented by

a background only VOI. Linearity of the Fourier transform

suggests this is equivalent to the Fourier transform of the

difference of the object functions.
9

Spatial-frequency-

dependence �fx , fy , fz� is implicit in T, WTask, SQ, and SE cor-

responding to a 3D detectability index denoted as d3D� .

To include the effect of anatomical background on task

performance, the detectability index can be generalized to

include anatomical noise as an additional noise source as

follows:

d3D�
2 =� � � �T · WTask�

2

T2SB + SQ + SE

dfxdfydfz, �2�

where SB is the anatomical background power spectrum, of-

ten modeled according to a power-law characteristic
40

SB�f� =
�

�af�� , �3�

where � denotes the magnitude of background variations and

� the degree of correlation. The term a is a scale factor

�taken as 1� with units inverse to frequency �e.g., a=1 mm

for f in units of mm−1�, effectively making the denominator

dimensionless despite different values of �. Generalized in

this way, detectability index provides a theoretical frame-

work for understanding the tradeoffs among quantum noise,

electronic noise, and anatomical background as a function of

acquisition parameters �e.g., angular range, number of pro-

jections, and dose� and reconstruction methods �e.g., recon-

struction filter, sampling, etc.�.

II.A.2. Model observers

The detectability index in Eq. �2� corresponds to a pre-

whitening �PW� matched filter observer that is able to deco-

rrelate image noise. The model can be extended to the non-

prewhitening �NPW� matched filter observer
48

that does not

estimate the background, but instead applies a detection tem-

plate in the form of the signal

d3D�
2 =

�����T · WTask�
2dfxdfydfz�

2

����T2SB + SQ + SE� · �T · WTask�
2dfxdfydfz

. �4�

These two models can be extended to include an eye filter

E�f� and internal noise Ni to account for response character-

istics of the human visual system.
49,50

The PW model ex-

tended in this way is denoted PWEi �PW model with eye

filter and internal noise� and written as

d3D�
2 =� � � E2�T · WTask�

2

E2�T2SB + SQ + SE� + Ni

dfxdfydfz. �5�

Similarly, the NPW model with the eye filter is denoted

NPWE and written as

FIG. 1. Cascaded systems analysis consisting of the 2D projection formation �stages 1–7� and 3D reconstruction cascade �stages 8–13�.
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d3D�
2 =

����E2�T · WTask�
2dfydfxdfz�

2

���E4�T2SB + SQ + SE� · �T · WTask�
2dfydfxdfz

�6�

and can be extended further to include internal noise, de-

noted NPWEi, and written as

d3D�
2

=
����E2�T · WTask�

2dfxdfydfz�
2

����E4�T2SB + SQ + SE� · �T · WTask�
2 + Ni�dfxdfydfz

.

�7�

The equations above for the 3D detectability index are drawn

from a previous work
26

and could, in principle, be related to

task performance in 3D images. However, there are currently

no established 3D eye filter models, there are no models

shown to correspond to a human observer scrolling slices or

viewing a slice montage, and there is little established ex-

perimental methodology for reliable human observer perfor-

mance assessment in fully 3D images. The exact form of eye

filters and internal noise appropriate to fully 3D data �e.g.,

slice scrolling, multislice montage presentation, or volumet-

ric viewing� are subjects of ongoing and future works in

modeling of image perception and are therefore not invoked

in this work. For these reasons, we derived a 2D “slice”

detectability index �denoted as dslice� � from the fully volumet-

ric detectabilty index �denoted as d3D� � to correspond to a

slice image extracted from the 3D image. As shown in Sec.

II A 3, the slice detectability is not derived simply from 2D

analysis; rather, one must derive the fully 3D detectability

index and then integrate �in the Fourier domain� over the

direction corresponding to slice extraction. Just as the 3D

image NPS is not correctly analyzed from 2D analysis of a

slice from the 3D image �rather, 3D Fourier analysis is re-

quired to account for noise correlation in all three

dimensions�,51
analysis of slice detectability from a 2D NPS

and NEQ is fraught with error and fully 3D analysis �fol-

lowed by integration along a given direction in the Fourier

domain� corresponds appropriately to performing a task

within a slice extracted from the 3D image.

II.A.3. Slice detectability vs “3D” detectability

The detectability index in Eqs. �2�–�7� is written in a form

in which the observer is assumed to fully perceive the volu-

metric image information. Although 3D detectability can be

derived from the cascaded systems analysis model as in Eq.

�1�, the human observer tests described below involved read-

ing of coronal slices extracted from the 3D image for pur-

poses of simplicity. To enable comparison with human ob-

server performance, detectability index was derived in a

form pertaining to a single 2D slice extracted from the vol-

ume. Slice extraction corresponds to integration across the

direction orthogonal to the slice �taken as fy�.
51

For the pur-

pose of this work, axial images correspond to the x-y plane,

with y corresponding to the depth direction. Coronal slices

�i.e., images in the x-z plane� were used in the observer

study, corresponding to the usual tomosynthesis view. There-

fore, 2D slice metrics can be obtained by integrating 3D

metrics in Sec. II A 2 over the fy direction. It is important to

acknowledge that the slice detectability, chosen here simply

for comparison to human observer tests, is not a complete

metric for optimization of a 3D imaging system. While the

fully 3D detectability index may be a suitable optimization

metric, the rationale for analyzing slice detectability below

was simply for purposes of measuring correspondence to hu-

man observer performance and not as a basis for system

optimization. The slice detectability corresponding to the 3D

observer models above are therefore

PW

dslice�
2 =� � ��T · WTaskdfy�

2

��T2SB + SQ + SE�dfy

dfxdfz. �8�

PWEi

dslice�
2 =� � E2��T · WTaskdfy�

2

E2��T2SB + SQ + SE�dfy + Ni

dfxdfz. �9�

NPW

dslice�
2 =

�����T · WTaskdfy�
2dfxdfz�

2

����T2SB + SQ + SE�dfy · ��T · WTaskdfy�
2dfxdfz

.

�10�

NPWE

dslice�
2 =

���E2��T · WTaskdfy�
2dfxdfz�

2

���E4��T2SB + SQ + SE�dfy� · ��T · WTaskdfy�
2dfxdfz

.

�11�

NPWEi

dslice�
2 =

���E2��T · WTaskdfy�
2dfxdfz�

2

����E4��T2SB + SQ + SE�dfy� · ��T · WTaskdfy�
2 + Ni�dfxdfz

.

�12�

The eye filter employed in this study was a simple

approximation of Barten’s
52

contrast sensitivity curve of the

human eye consistent with that used in the study by

Burgess
39

E�f� = f exp�− cf� , �13�

where f is the spatial radial frequency. The eye filter was

implemented such that its maximum response occurred at 4

cycles/deg. For a typical viewing distance of 50 cm, c equals

2.2. The internal noise was implemented as uncorrelated

white noise dependent on the magnitude of variation in back-

ground power spectra
53

Ni = 0.001	 D

100

2

NPSeq�0,0� , �14�

where D is the viewing distance estimated as 50 cm for this

study and NPSeq is the white NPS equivalent in total power

to the image noise �sum of SB, SQ, and SE�. The scale factor

0.001 was fixed following variation as a free parameter as in

Burgess
39

to give coarse overall agreement to measurements.
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The slice detectability index in Eqs. �8�–�12� formed the

basis for theoretical calculations performed in comparison to

human observer performance for a variety of imaging tasks

described below. Although slice detectability describes imag-

ing performance on a 2D slice, the derivation of such is only

achieved via the fully volumetric analysis of the 3D NPS,

NEQ, and d3D� . The 2D slice detectability index is derived

simply to evaluate correspondence to measurements in the

observer study and is not intended as an objective function

for system optimization.

II.B. Imaging tasks and physical imaging phantoms

The sections below describe physical experimentation

conducted to allow direct comparison of theoretical dslice� �de-

rived above� with the performance measured in human ob-

servers. A variety of imaging tasks were implemented in real

phantoms in a manner that imparted a range of conspicuity

�from imperceptible to obvious� over a broad range of ex-

perimental conditions �number of projections, dose, and

source-detector orbital extent�.

II.B.1. Detection in uniform background

Detection in a uniform background was investigated as

the simplest case in which the NEQ was governed by quan-

tum and electronic noise only �no background clutter�. A

physical phantom was used that consisted of acrylic spheres

of various sizes embedded in a uniform polyurethane cylin-

der. As described below, the task corresponded to the detec-

tion of a �110 HU� sphere against a uniform �90 HU� back-

ground. For tomosynthesis and CBCT, a sphere of 6.4 mm

diameter was selected as the signal to present strongly vary-

ing conspicuity across a range of source-detector orbital ex-

tent ��tot�.

II.B.2. Detection/discrimination in background

clutter

A previous work
47

described a phantom designed from

principles of fractal self-similarity that contained different

diameter spheres randomly mixed to give power-law spectral

density. Power law parameters � and � can be adjusted ac-

cording to the contrast of the spheres and the proportion of

various diameters, respectively. In this work, an equal vol-

ume of acrylic spheres of five diameters �15.9, 12.7, 9.5, 6.4,

and 3.2 mm� were placed in an acrylic box of dimensions

�20�20�12.5� cm3. As previously reported, � and � were

measured to be �=3.72�10−7 ��2mm3� and �=2.76 and

were taken as empirical parameters in the generalized detect-

ability index. The variation in background power spectrum

�SB� with �tot is accounted through the product of the fully

3D SB�fx , fy , fz� with the tomosynthesis “double-wedge” cor-

responding to the angular range of sampled frequencies in

the Fourier domain.

II.B.3. Imaging tasks

Imaging tasks were conceived that could be physically

implemented in either the uniform or clutter phantoms and

modeled according to a simple binary hypothesis-testing

model. Six identical objects were inserted in the phantom,

giving six statistically independent trials for each imaging

task. “Signal-present” images were taken from the central

coronal slice through each object and ROIs were selected

such that signals were at the center �see Fig. 2�. On the other

hand, “noise-only/signal-absent” images were taken from the

same or neighboring slices without the signal. Five imaging

tasks emphasizing different regions of the frequency domain

�i.e., various spatial-frequency contents� were investigated in

this study. Task functions are plotted in Fig. 2 and described

in the following section.

II.B.3.a. Sphere detection on uniform background. Signal

detection in an otherwise uniform phantom such as the one

described in Sec. II B 1 corresponds to the case in which H1

is simply the signal represented by the object function, de-

noted O�x ,y ,z� �i.e., a sphere in the 3D image and a disk in

a 2D slice�, and H2 is a constant. The task function WTask is

given by the product of the difference in attenuation coeffi-

cient between the signal and background ���� and the Fou-

rier transform of the signal �FT�O��. For the phantom de-

scribed in Sec. II B 2, the task function was computed with

�� taken as the measured signal difference between the

acrylic sphere �110 HU� and polyurethane background �90

HU� in a full 360° CBCT reconstruction and FT�O� com-

puted numerically as the Fourier transform of a 6.4 mm di-

ameter sphere in the 3D image

WTask = �� · FT�O�

= ��Acrylic − �Polyurethane� · FT�O6.4 mm_Sphere� . �15�

Signal values used in calculation of �� were measured as an

average of multiple ROIs at various positions on the central

coronal slice of the reconstruction.

II.B.3.b. Large sphere detection on cluttered background.

Imaging tasks in cluttered background were modeled as sig-

nals �i.e., physical objects� embedded in the clutter phantom

of Sec. II B 2. For tasks presented on cluttered background,

the signal-present images contain the signal at the center of

the ROI, whereas “signal-absent” images present a back-

ground sphere of equivalent size �e.g., 12.7 mm for the large

sphere� at the same location. The signal-present hypothesis

was formulated as

FT�H1� = �1FT�O1� + FT�B� , �16�

where �1 and O1 are the attenuation coefficient and object

function of the signal, respectively, and B corresponds to

background clutter �random collection of acrylic spheres�,
the power spectrum of which obeys the power-law relation-

ship �Eq. �2��. The signal-absent hypothesis is

FT�H2� = �2FT�O2� + FT�B� = �2FT�O1� + FT�B� , �17�

where �2 is the attenuation coefficient of the background

�acrylic� and O2 �equal to O1 in this case� is the object func-

tion corresponding to an �acrylic� sphere of the same size in

place of the signal within the background clutter. Note that

the Fourier transform describes magnitude only �disregard-

ing phase�, so FT�B� in theory may pertain to various inde-
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pendent realizations of the background, provided they have

the same �e.g., power-law� noise characteristic. Different re-

alizations of the background therefore cancel out in theory,

such that discrimination of the signal �i.e., O1 in clutter� from

a clutter-only image corresponds to

W̄Task = FT�H1� − FT�H2� = ��1 − �2� · FT�O1�

= �� · FT�O1� . �18�

For the large sphere on a cluttered background task, the sig-

FIG. 2. Fourier-domain task functions �left column� and coronal image ROIs �x-z� �images at the right� for varying angular extent under the constant-�� and

constant-Nproj cases: �a� Sphere detection on uniform background; �b� large sphere detection in clutter; �c� small sphere detection in clutter; �d� cube vs sphere

discrimination in clutter; and �e� encapsulated sphere vs solid sphere discrimination in clutter.
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nal was a 12.7 mm diameter polypropylene sphere ��84

HU�, which presented a lower contrast signal in comparison

to an equivalent size acrylic sphere �110 HU� in the back-

ground clutter. The contrast �� was taken as the �absolute

value� difference in attenuation between polypropylene and

acrylic as measured from a full 360° CBCT acquisition. The

task function is thus given by

WTask = ��Acrylic − �Polypropylene� · FT�O12.7 mm_Sphere� . �19�

As illustrated in Fig. 2, this task presented primarily low and

midfrequency components.

II.B.3.c. Small sphere on cluttered background. Similar to

the previous task, detection of a small Teflon sphere �710

HU� in a cluttered background of acrylic spheres �110 HU�
follows Eq. �18�, where �� is the measured contrast of Te-

flon and acrylic and O1 is the object function for a small �3.2

mm diameter� sphere

WTask = ��Teflon − �Acrylic� · FT�O3.2 mm_Sphere� . �20�

As illustrated in Fig. 2, this task presented higher-frequency

components.

II.B.3.d. Cube vs sphere discrimination on cluttered

background. Shape discrimination was similarly modeled as

the Fourier transform of the difference of two hypotheses

FT�H1� = �1FT�O1� + FT�B� , �21�

FT�H2� = �1FT�O2� + FT�B� , �22�

where the attenuation coefficient ��1� is the same for the

signal and background, but object functions of the signals to

be discriminated �O1 and O2� vary. The task function is

therefore

WTask = FT�H1� − FT�H2� = �1 · �FT�O1� − FT�O2�� . �23�

A “cube vs sphere” discrimination task was formulated such

that O1 representing an acrylic cube �of side length 6.4 mm�
is discriminated from O2 representing an acrylic sphere �of

diameter 6.4 mm�, i.e.,

WTask = �Acrylic · �FT�O6.4 mm_Cube� − FT�O6.4 mm_Sphere�� .

�24�

As illustrated in Fig. 2, this task consists of middle and high-

frequency components.

II.B.3.e. Encapsulated vs solid sphere on cluttered

background. A second shape discrimination task involved a

6.4 mm diameter acrylic sphere �110 HU� encapsulated by a

3.2 mm shell of paraffin wax �giving 12.8 mm total diameter,

�50 HU� as the signal, which is discriminated from a solid

acrylic sphere �110 HU� in the noise-only image. The two

hypotheses can be similarly written as Eqs. �21� and �22�,
with O2 representing the paraffin-encapsulated sphere and O1

representing the 12.7 mm diameter acrylic sphere. The task

function can be derived as

WTask = ��Acrylic − �Wax� · �FT�O3.2 mm_Shell�� , �25�

where the difference in object functions yields the 3D encap-

sulating shell �an annulus on a 2D slice�. As shown in Fig. 2,

this task emphasizes higher frequencies compared to tasks in

Secs. II B 3 a, II B 3 b, and II B 3 d. The high-frequency

content is related to the fine detail associated with the encap-

sulating layer.

II.B.4. Imaging bench and acquisition parameters

Images were acquired on an experimental imaging bench

for tomosynthesis and CBCT. As described in previous

works,
26,47

the system includes an x-ray tube �Rad 94 in a

sapphire housing; Varian Medical Systems, Salt Lake City,

UT�, an FPD �RID-1640A, 0.4 mm pixel pitch, 1024�1024

pixels; Perkin Elmer Optoelectronics, Santa Clara, CA� with

�250 mg/cm
2

CsI:Tl scintillator, and a motion control sys-

tem �6K series translation stages, Parker Daedal, Harrison,

PA, and Dynaserv rotation motor, Parker Hannifin, Rohnert

Park, CA� that sets the system geometry to that approximat-

ing CBCT-guided radiotherapy �93.5 cm source-to-axis dis-

tance and 144 cm source-to-detector distance� with the phan-

tom rotated at isocenter. Acquisition techniques were held

fixed at 120 kVp �1.53 mm Al+0.1 mm Cu added filtra-

tion� and 0.63 mA s per projection, imparting a constant in-

air exposure per projection of 0.49 mR at the detector.

Projections were acquired for 12 orbital extents ��tot�
spanning a continuum of low-angle tomosynthesis to full

CBCT: 10°, 20°, 40°, 60°, 90°, 120°, 160°, 200° �180°

+fan�, 240°, 280°, 320°, and 360°. For each orbital extent,

two general acquisition schemes were adopted. The first was

a “constant-��” case in which a constant angular separation

of 0.45° was fixed between projections, giving a variable

number of projections �and total dose� for each setting of �tot.

In this scheme, therefore, as �tot increases �and background

clutter is reduced�, quantum and electronics noise vary, while

view-sampling effects are constant. The second scheme was

a “constant-Nproj” case in which the number of projections

was fixed at 89 for all �tot. This scheme represents the prac-

tical case where total dose is a fixed constraint and �tot needs

to be chosen in a manner that optimally manages the

tradeoffs among background clutter, quantum noise, and

view-sampling effects. Together, these schemes allow inves-

tigation of the fairly complex tradeoffs among competing

noise sources and a broad set of experimental conditions

against which to test the theoretical model.
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Image reconstruction was performed using the FDK algo-

rithm for 3D filtered backprojection �FBP�, with a Hann

apodization filter and no additional interslice filter for tomo-

synthesis. Projections were binned 2�2 pixels and images

were reconstructed at isotropic voxel size �0.52�0.52

�0.52� mm3, chosen to adequately resolve the smallest

sphere in the phantom. Modified Parker weights
54

were ap-

plied to redundant views of angle greater than 180°�fan,

with the exception of a full 360° acquisition where a uniform

weighting of 0.5 was multiplied to all projections.

II.C. Experimental validation: Human observer
performance

II.C.1. Human observer study

As a simple measure of observer-based imaging perfor-

mance, multiple-alternative forced-choice tests were per-

formed in which an array of ROIs was shown to observers,

with one ROI containing the signal and M −1 ROIs contain-

ing background only. A 9AFC test �M =9, displayed as a 3

�3 array of ROIs� was chosen to give optimal statistical

power for the selected tasks according to the table formu-

lated by Elliot,
55

which relates sensitivity of measurements

of detectability and proportion correct �Pcorr� to the number

of choices. Each signal ROI was a 70�70 pixel subimage

cropped from a coronal slice of a 3D reconstruction with the

signal at the center of the ROI. The noise ROIs were cropped

from the same or neighboring slices and care was taken to

avoid out-of-plane shadow of the signal or other artifacts.

Different noise realizations were used for each imaging task,

but the same regions of interest were used for various �tot in

both the constant-�� and constant-Nproj schemes. In addition,

both the signal and noise ROIs were randomly flipped up/

down and left/right to minimize observer familiarity with the

images. The grayscale window was fixed to a range of 90%

of the minimum to 110% of the maximum pixel value and

the level was set to the mean. Observers were not allowed to

adjust the window/level or zoom of the images, and a con-

stant viewing distance of �50 cm was encouraged but not

strictly enforced.

Observer studies were conducted in a darkened reading

room using a monochrome diagnostic quality display �Image

Systems, Richardson Electronics Ltd., Plymouth, MN�. Prior

to each test, observers were trained using images acquired at

the same experimental conditions as the test data, typically

24 images for a given task, requiring �10 min to gain fa-

miliarity with the task. The test data for each task included

images acquired at 12 levels of �tot �detailed above� for both

the constant-�� and constant-Nproj schemes, with five statis-

tically independent samples acquired for each case, giving

�12 angles� � �2 schemes� � �5 images� � 120 readings.

The order of the five tasks was randomized for each ob-

server, as was the order of images presented for each task. At

�5 s per choice, a complete study required �5 tasks� �

��10 min��training� 	 �5 tasks� � �12 angles� � �2
schemes� � �5 images� � ��5 s��test� � 100 min for each

observer.

For the fairly simple �nonclinical� imaging tasks involved

in these phantom studies, medical physicists/engineers were

considered suitable observers. Eight observers were in-

volved, yielding �8 observers � 5 independent images �� 40

responses for each data point on the graphs below. Assuming

independence among observers, all responses were pooled

and the fraction of correct responses was computed to yield

the mean proportion correct �Pcorr�.
Measurements of Pcorr follow a binomial distribution with

mean equal to Pcorr and standard deviation Pcorr�1− Pcorr�.
Statistical error in Pcorr can be estimated from the standard

deviation or confidence interval. As mentioned below, Pcorr

measurements were also interpreted in terms of dslice� and area

under the ROC curve �Az�. Based on the binomial distribu-

tion of Pcorr, the distribution of Az was derived using the

relations between Az and Pcorr �below�. The corresponding

measurement error in Az was expressed as the 95% confi-

dence intervals calculated from the distribution of Az.

II.C.2. Comparison of theoretical and experimental

results

For direct comparison of theoretically derived detectabil-

ity index �d3D� or dslice� in Eqs. �4�–�12�� and experimentally

measured Pcorr, we used the basic relationships among d�,

Pcorr, and Az that follow from the simplifying assumptions of

normal, equal variance distributions in the underlying deci-

sion variables, consistency in observer response over the

course of the tests, etc.
9

The detectability index and Az are

related by

Az =
1

2
+

1



�

0

d�/2

e−x2

dx =
1

2
	1 + erf	d�

2


 , �26�

d�
2 = 4inverf2�2	Az −

1

2

� , �27�

which in turn are related to Pcorr as

Pcorr�d�,M� =
1

2

�

−�

�

exp	−
�x − d��2

2

���x��M−1dx ,

�28�

where M is the number of alternatives in the AFC test �9
herein� and � is the cumulative Gaussian distribution. Note

the usual relationship: Pcorr=Az for M =2. A lookup table

relating Pcorr, d�, and Az was constructed using these rela-

tions. Theoretical and experimental results could therefore be

directly compared in terms of any of these three performance

metrics. In selecting a metric by which to display the results

below, d� �which is unbounded from 0 to �� and Pcorr �which

is less general in its interpretation due to a particular choice

of M� were felt to be somewhat less meaningful at a glance.

While any of the three metrics would suffice for purposes of

comparison, results below are reported in terms of Az. Com-

pared to Pcorr, Az provides more general representation of

results that can be compared to other studies �e.g., ROC per-

formance�; compared to d�, the Az metric is bounded and

easily interpreted within the limits of pure guessing �Az
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→0.5� and “completely obvious” �Az→1.0�, which the

physical phantoms and experimental conditions were con-

structed to span. Comparison in terms of d� or Pcorr �not

shown� exhibited the same level of agreement and does not

affect the conclusions of the work.

III. RESULTS

III.A. Comparison of theoretical detectability and
human observer performance

Figures 3 and 4 plot Az vs total angular extent ��tot� for all

five imaging tasks under the constant-�� and constant-Nproj

cases, respectively. In each graph, theoretical calculations

from the cascaded systems model are plotted as solid or

dashed curves and human observer measurements are repre-

sented by individual data points with error bars correspond-

ing to 95% confidence intervals.

The constant-�� acquisition scheme �Fig. 3, ��=0.45°

for all cases� shows a monotonic increase in Az with angular

extent as contrast is improved for task on uniform back-

ground �task 1� and as out-of-plane clutter is gradually re-

moved for tasks on cluttered background �tasks 2–5�. Fur-

thermore, in the constant-�� case, total dose increases with

�tot, further supporting a monotonic increase in performance.

For each task, a maximum Az of 1 is reached at a certain

value of �tot, beyond which all model and human observers

identify the signal as conspicuous. Of the five tasks consid-

ered, task 1 �sphere detection on a uniform background� and

task 4 �cube vs sphere discrimination� were the easiest, with

conspicuity predicted and realized in the region �tot �30°.

Conversely, task 2 �large sphere detection in clutter�, task 3

�small sphere detection in clutter�, and task 5 �encapsulated

sphere discrimination in clutter� were more challenging, as

shown by both theoretical calculations and observer results

peaking in the range �tot�100° –150°. Task 2 achieved bet-

ter performance than task 3, seen by a steeper increase in Az

with �tot. The interpretation is that low-frequency tasks asso-

ciated with detection of signals of larger spatial extent reside

in a similar frequency range as the power-law background

and thus experience faster increase in detectability with the

FIG. 3. Comparison of theoretical and measured performance for five imaging tasks in the constant-�� acquisition scheme. Curves correspond to theoretical

calculations for the five observer models �PW, PWEi, NPW, NPWE, and NPWEi� of Eqs. �8�–�12�. Reasonable correspondence between theoretical and

experimental results is observed, with NPWEi showing the best agreement overall.
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rejection of out-of-plane clutter �i.e., increase in �tot�. High-

frequency tasks, on the other hand, associated with finer de-

tails exhibit frequency content in a higher range than the

background and thus do not benefit as significantly from the

rejection of out-of-plane clutter. The prewhitening models

�PW and PWEi� tended to overestimate observer perfor-

mance in all cases, while the nonprewhitening models �NPW,

NPWE, and NPWEi� exhibited reasonable agreement with

measurement for all tasks over the entire continuum of �tot.

Not surprisingly, the NPWEi model gave closer correspon-

dence to the measured human performance than NPWE,

since it includes additional terms related to inefficiency im-

parted by internal noise. We examined the observer effi-

ciency implied by the ratio of measured and theoretical dslice�

�squared� and found a complicated dependence on task �as

might be expected from Abbey et al.
56� and angular extent

��tot�. Efficiency varied in the range �0.1–0.5 but did not

exhibit any clear trends in retrospective analysis as a func-

tion of task or �tot.

Figure 4 summarizes theoretical and experimental results

for the constant-Nproj acquisition scheme �Nproj=89 projec-

tions for all cases�. In this case, the total dose is fixed for

settings of �tot, giving a fixed level of quantum noise amid

varying levels of background clutter and view-aliasing noise.

Similar to the constant-�� case, the PW and PWEi observer

models overestimated observer performance, whereas the

various NPW models yielded reasonable agreement with ex-

perimental results. An exception was observed for the small

sphere detection task, where human observer performance

agreed with NPWEi model for �tot180°, but was closer to

the PW observers beyond �tot�180°. This result is evident

also in Fig. 2�c�, where due to the high contrast of the sphere,

the signal was sufficiently different from the background for

�tot�180° for conspicuous discrimination and noise �includ-

ing view-sampling effects� does not appear to “masquerade”

as signal. An interesting nonmonotonic trend in Az vs �tot was

predicted and observed: Az initially increases with �tot in a

manner similar to the constant-�� case �due to reduced out-

FIG. 4. Comparison of theoretical and measured performance for five imaging tasks in the constant-Nproj acquisition scheme. Labeling is the same as in Fig.

3. Fair correspondence is observed between theoretical and experimental results, including a complex nonmonotonic trend in performance at large angles

above �tot�180° associated with finite sampling effects �view aliased noise�.
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of-plane clutter�; however, as the total angle increases fur-

ther, performance is seen to degrade somewhat, particularly

for imaging tasks involving higher spatial-frequency compo-

nents �tasks 3 and 5�, followed by an increase toward �tot

=360°. The nature of the effect is detailed more completely

below, owing to the distribution of a limited number of pro-

jections over wide angular ranges. While the nonmonotonic

trend was predicted and observed to occur in the range

180° �tot360°, agreement between theory and measure-

ment is far from perfect: The effect appears to be overesti-

mated for task 3 �small sphere detection� and underestimated

for task 5 �encapsulated sphere discrimination�. In task 1

�sphere detection on uniform background�, theoretical calcu-

lations for the NPWEi observer model are consistent with the

general trend of the observer measurement, but do not show

exact correspondence in Az values. The other tasks �involv-

ing lower spatial-frequency tasks� were in better agreement.

III.B. Number of projections and orbital extent: Effect
on quantum noise and view aliasing

The initial decrease in detectability starting at �tot�150°

under the constant-Nproj scheme can be attributed to view-

aliasing artifacts arising for large angular separation between

projections, visible to the eye as granular mottle in the coro-

nal images of Fig. 2 �evident also as familiar radial streaks in

the correspondent axial images, not shown�. As �tot is further

increased to 360°, detectability is seen to recover as a result

of two possible scenarios of projection distribution illustrated

in Fig. 5: �1� A range of projections overlap, forming a re-

gion of redundant sampling �to which Parker weights are

appropriately applied� or �2� projections do not overlap, but

instead result in a region of finer sampling. The first scenario

almost always applies for the constant-�� case because the

finely spaced projections approximate a continuum in which

projections at angles above 180° fan constitute redundant

samples. In the constant-Nproj case, however, the first sce-

nario may only occur under certain combinations of Nproj and

�tot, in which case the summing and averaging of redundant

rays passing through a particular voxel reduces stochastic

noise components �quantum and electronics noise� associ-

ated with the projections, but does not affect the magnitude

of “deterministic” noise �background clutter� or the signal

�task function�. The number of redundant projections in-

creases as the angular extent increases. Thus, greater reduc-

tion in stochastic noise competes with deteriorating view-

aliasing artifacts as angular extent increases, resulting in the

nonmonotonic reduction in detectability observed in Fig. 4.

An alternative scenario may also arise due to the large �� in

the constant-Nproj scheme, where projections acquired above

180° fan interleave between previously acquired projections,

resulting in a region of finer sampling. In such cases, reduc-

tion of view-aliasing artifacts also causes detectability to re-

cover.

The distribution of projections in the Fourier domain

�axial fx-fy plane� according to the central slice theorem is

plotted in Fig. 5 for six values of �tot. Note that the figure

FIG. 5. Illustration of Fourier-domain projection distribution on the axial �fx-fy� plane according to the central slice theorem. A total of 89 projections are

distributed across a range of �tot. Under the assumption of parallel-beam geometry, redundant projection views are sampled in the �tot=200°, 240°, 280°, and

320° cases �i.e., competing effects of increased view aliasing and reduced stochastic noise�, while a 360° acquisition results in interleaved projection views and

finer sampling �i.e., reduced view aliasing and an increase in detectability�. The sampling distribution depends on the number of projections and angular

extent. For example, evenly distributing 89 projections over 320° gives redundant, overlapping projections under the parallel-beam approximation �“brighter”

spokes�; however, at 360°, projections do not overlap and result in finer angular sampling.
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illustrates the angular sampling distribution associated with a

given number of projection over a given angular range and

does not depict the actual noise-power spectrum. Redundant,

overlapping projections appear as brighter spokes. The inter-

mediate angular ranges ��tot=200°, 240°, 280°, and 320°�
exhibit the behavior associated with scenario 1, in which

projections overlap across a range of angles above 180° �il-
lustrated in Fig. 5 by increased intensity �brightness� in over-

lapping rays�. For this specific number of projections �Nproj

=89�, the 360° case actually corresponds to finer sampling

and gives a reduction in view-aliasing artifacts due to inter-

leaving of projections. In relation to the valley observed in

Fig. 4, detectability begins to decrease above �tot�180° due

to increased view-aliasing artifacts, followed by an increase

beyond �tot�280° due to the reduction of stochastic noise

with a greater number of redundant projections �correspond-

ing to scenario 1�. At 360°, detectability further increases due

to finer sampling �corresponding to scenario 2�.

III.C. Implications for task-based system design in
tomosynthesis and CBCT

Given the reasonable correspondence observed between

theoretical and experimental results in Figs. 3 and 4, we

computed detectability for a variety of conditions as could

apply to the design and understanding of tomosynthesis and

CBCT systems. A spectrum of tasks were considered to elu-

cidate the distinction of low-frequency and high-frequency

tasks: �a� Low-frequency Gaussian detection task �Gaussian

width, �=3.6 mm� on a uniform background; �b� low-

frequency Gaussian detection ��=3.6 mm� in a cluttered

background; �c� midfrequency discrimination of two Gauss-

ian signals ��1=3.1 mm vs �2=3.7 mm�; and �d� high-

frequency discrimination of two Gaussians signals ��1

=1.3 mm vs �2=1.8 mm�. In each case, dslice� was computed

as a function of Nproj and �tot �with the dose per projection

view fixed at a level corresponding to 0.066 mR in-air expo-

sure to the detector� to examine tradeoffs among background

clutter and view aliasing. The NPWEi model was chosen,

since it demonstrated the best overall agreement with human

observer response �Figs. 3 and 4�. For simplicity in these

calculations, a parallel-beam geometry was assumed, imply-

ing that projections 180° apart were considered redundant

and were multiplied by a Parker weight of 0.5.

Results are shown in Fig. 6. For any of the tasks, one may

consider a “horizontal” slice of the dslice� surface as the case

in which the total dose is fixed and the angular range of the

tomosynthesis/CBCT system is varied. In practical terms,

this might correspond to a rotational C-arm system, in which

one seeks to determine what value of �tot provides a desired

level of detectability. Conversely, a “vertical” slice of the

dslice� surface corresponds to a fixed angular range, with the

number of views and total dose varied. This might corre-

spond to a tomosynthesis system with fixed �tot �e.g., a clini-

cal breast or chest tomosynthesis system� and one seeks to

determine what number of views �total dose� gives a desired

level of detectability. The alternative case �not shown� in

which dslice� �Nproj , �tot� was computed at fixed total dose

shows a complementary set of tradeoffs among quantum

noise, background clutter, and view aliasing.

As shown in Fig. 6, for all four tasks, when the number of

projections is low �constant-Nproj with Nproj �200�, the

trends observed in the experiments of Figs. 3 and 4 are once

again observed: dslice� increases with angle, reaches a maxi-

mum, then decreases due to competing effects of view alias-

ing and distribution of projections described above. As the

number of projections increases �and view-aliasing artifacts

are reduced�, a distinct difference is observed among the

tasks in uniform and cluttered backgrounds. After reaching a

maximum, dslice� decreases with �tot for the uniform back-

ground task while remaining constant for the cluttered back-

ground tasks. In the absence of clutter, increasing the angular

arc only increases quantum noise, therefore causing detect-

ability to decrease; however, in a cluttered background, this

effect is less pronounced due to the preponderance of back-

ground noise outweighing quantum noise. Note also the

overall reduction in the magnitude of dslice� in Fig. 6�b� com-

pared to Fig. 6�a� despite equivalent task and signal power,

attributable to background noise. Another difference between

the uniform and cluttered background tasks can be seen from

profiles at a fixed angle: For a given number of projections,

the uniform background task exhibits continued improve-

ment in detectability with Nproj as quantum noise is driven

FIG. 6. Surface plots of dslice� �in a coronal slice as computed by Eq. �12�� for a wide range of �tot and Nproj for 4 imaging tasks: ��a and b�� A low-frequency

task corresponding to detection of a 3.6 mm Gaussian on �a� uniform and �b� cluttered backgrounds; ��c and d�� a higher-frequency task corresponding to

discrimination of two Gaussians of size �c� 3.1 and 3.7 mm and �d� 1.3 and 1.8 mm, each on a cluttered background.
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down by increasing dose, whereas the cluttered background

tasks reach a background-noise-limited region, beyond

which increasing Nproj or dose brings no further improvement

in detectability.

Figures 6�b�–6�d� illustrate tasks with the same signal

power but different frequency characteristics. The detectabil-

ity index for the low-frequency task �b� is much lower than

that for midfrequency and high-frequency tasks in �c� and

�d�, respectively, due to the frequency components of the

task function coinciding with those of background noise.

This corresponds to the observation of Myers et al.
57

regard-

ing noise masquerading as signal. For low-angle tomosyn-

thesis �i.e., low �tot�, increasing the acquisition angle and

thereby removing out-of-plane clutter demonstrates more

pronounced improvement for low-frequency tasks than for

higher-frequency tasks.

On the other hand, detectability index for higher-

frequency tasks is more sensitive to the choice of �tot and

Nproj, since they reside in the same frequency region as view-

aliasing noise and are therefore more prone to the complex

tradeoffs among noise components described above. View-

aliasing artifacts within the low Nproj and high �tot region

degrades performance for midfrequency �c� and high-

frequency �d� tasks, but barely affects the low-frequency �a�
task. For the midfrequency task in �c�, a sharp transition in

the magnitude of dslice� can be observed along a diagonal with

an approximately constant choice of ��. Similarly for the

high-frequency task in �d�, there is a narrow selection of �tot

and Nproj with an approximately constant choice of ��,

which marks optimal performance. The trend observed is

highly dependent on the frequency range of the imaging

tasks, choice of observer model, and relative magnitude of

signal and noise. Overall, it is clear that low-frequency tasks

benefit more from increasing acquisition angle and are

mainly limited by background noise, while tasks involving

midfrequency and high-frequency components require care-

ful selection of acquisition parameters to minimize the influ-

ence of view-aliasing artifacts and quantum and electronics

noise. The framework provided by 3D cascaded systems

analysis combined with idealized task functions and observer

models provides a quantitative foundation from which spe-

cific trends in performance can be more rigorously investi-

gated with respect to specific imaging systems and applica-

tions.

IV. DISCUSSION AND CONCLUSIONS

This work derived the generalized detectability index as a

task-based performance metric for tomosynthesis and CBCT,

beginning with a 3D cascaded systems model for the imag-

ing systems and validating it in comparison to human ob-

server response for several simple imaging tasks over a wide

range of imaging conditions. A reasonable level of agreement

was observed between theoretical predictions and experi-

mental results. Interesting, nontrivial trends were revealed,

which suggest important design considerations for system

optimization. Tradeoffs among anatomical noise, quantum

noise, electronics noise, and view-sampling effects result in

complex behavior �e.g., nonmonotonic dependence of dslice�

on �tot� that suggest optimal choices of acquisition param-

eters specific to the imaging tasks.

Such behavior was reasonably predicted and explained by

the cascaded systems model, with the level of agreement

depending on the imaging task, perhaps not surprisingly,

considering the simplicity of Fourier hypothesis-testing task

functions �Eqs. �15�–�25�� in comparison to the complexities

of human visual perception. The case for which the model

deviated most from measurement was the encapsulated

sphere discrimination task under the constant-Nproj case for

�tot above 180°, where theoretical prediction did not accu-

rately predict the large drop observed in human observer

performance. This suggests room for improvement when

modeling high-frequency tasks which are more prone to de-

terioration by stochastic noise and view-sampling effects.

Overall, results demonstrate that generalized detectability in-

dex yielded reasonable correspondence with human observer

performance for a variety of simple imaging tasks over a

broad range of experimental conditions in both the

constant-�� and constant-Nproj schemes, helping to bridge

the gap between Fourier-based metrics �e.g., NEQ� of system

performance and observer-based characterization of image

quality �e.g., ROC�.
Of the simple observer models considered, the nonpre-

whitening models, especially the NPWEi model, yielded the

best overall agreement with human observer response. The

fair agreement for the NPW model may seem surprising,

considering that such models have been shown previously to

correspond poorly with human observer performance due to

a large zero-frequency �DC� response.
58

In the generalized

detectability index calculation above, inclusion of the power-

law noise in the denominator introduces a large zero-

frequency noise component which diminishes DC response,

similar to the effect achieved by an eye filter in the NPWE or

NPWEi models. Therefore, the DC effect that confounded

NPW model agreement in a previous work
59

was not a sig-

nificant factor in the experiments considered above, with the

exception of the uniform background task. Burgess et al.
39

further modified the NPW model to include an eye filter and

internal noise, which improved agreement with observer re-

sponse significantly, consistent with the findings above. Pre-

whitening observer models’ consistently overestimated re-

sponse likely due to the fact that the discrete spheres in the

cluttered background were indistinguishable from the signal

and human observers were not able to completely decorrelate

noise. That said, it bears reiteration that the purpose of this

work was not to advance or improve any particular observer

model; rather, this work aimed to determine the extent to

which trends in human observer response may be predicted

by first principles of cascaded systems analysis �GNEQ�
combined with task functions through any of these simple

observer models. More sophisticated observer models

yielded through ongoing work in perception science will pre-

sumably yield further improvement, including channelized

Hotelling observer models
60–62

and forms of eye filter and

internal noise models.
63,64

This study involved simple, idealized detection and dis-
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crimination tasks as a starting point to assess imaging per-

formance. Modeling of more complex and higher order tasks

forms an important area of future work to better relate such

work to clinical applications. Examples include “search”

tasks analogous to an observer detecting and localizing sus-

picious lesions on a radiograph or “estimation” tasks in

which an observer needs to approximate the size of a lesion.

Also of interest are task functions representing multiple hy-

potheses, e.g., discrimination of signal-absent from signal-

benign and signal-malignant hypotheses. Similarly, the

model can be incorporated in analysis of multiple tasks, e.g.,

detection of a �low-frequency� lesion followed by detection

of �high-frequency� calcifications.
65

In the context of volu-

metric imaging, it remains to be shown to what extent the

fully 3D detectability index �Eqs. �2�–�7�� corresponds to

cases in which the observer “scrolls” slices, is presented with

a montage of multiple slices simultaneously or perceives a

volumetric rendering all at once. Another limitation of this

work is that only one reconstruction algorithm �FBP� with

one reconstruction filter �a smooth cosine Hann filter� was

investigated. Cascaded systems analysis is well suited to de-

scription of FBP reconstruction and extension to other meth-

ods �e.g., iterative reconstruction� would require a substan-

tially modified approach. Accommodating various

reconstruction filters within the model is straightforward, has

been examined in a previous work,
45

but was not investi-

gated directly here, since it had less influence on task perfor-

mance than angular range and number of projections.

In summary, the generalized detectability index was com-

pared to human observer performance for a variety of simple

tasks over a broad range of experimental conditions. Reason-

able agreement was obtained for all tasks across the tomo-

synthesis angular range �tot180°. Discrepancy was ob-

served for high-frequency tasks �e.g., small sphere detection

and encapsulated sphere vs solid sphere discrimination� un-

der the constant-Nproj scheme under conditions dominated by

view-sampling artifacts �i.e., small Nproj with �tot�180°�.
Such discrepancies identify areas for improvement of the

model and future investigation for task performance under

conditions dominated by image artifact �rather than purely

stochastic noise�. Still, generalized detectability index de-

rived from the 3D cascaded systems model demonstrates

considerable promise in relating simple Fourier metrics to

human observer performance and suggests utility as an ob-

jective function in the design and optimization of 3D imag-

ing systems in CBCT and tomosynthesis.
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