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Volatility surfaces of foreign exchange and interest rate options

• Volatilities vary in strike (smile)
• Volatilities vary in time to maturity (term structure)
• Volatility clustering
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Fourier and Laplace based
valuation formulas

Carr and Madan (1999)

Raible (2000)

Borovkov and Novikov (2002): exotic options

Hubalek, Kallsen, and Krawczyk (2006): hedging

Lee (2004): discretization error in fast Fourier transform

Hubalek and Kallsen (2005): options on several assets

Biagini, Bregman, and Meyer-Brandis (2008): indices

Hurd and Zhou (2009): spread options

Eberlein and Kluge (2006): interest rate derivatives

Eberlein and Koval (2006): cross currency derivatives

Eberlein, Kluge, and Schönbucher (2006): credit default swaptions
Harmonic analysis (Parseval’s formula)
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Exponential semimartingale model

BT = (Ω,F ,F,P) stochastic basis, where F = FT and F = (Ft )0≤t≤T .
Price process of a financial asset as exponential semimartingale

St = S0eH t , 0 ≤ t ≤ T . (1)

H = (Ht )0≤t≤T semimartingale with canonical representation

H = B + Hc + h(x) ∗ (µH − ν) + (x − h(x)) ∗ µH . (2)

For the processes B, C = 〈Hc〉, and the measure ν we use the notation

T(H|P) = (B,C, ν)

which is called the triplet of predictable characteristics of H.
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Alternative model description

E(X ) = (E(X )t )0≤t≤T stochastic exponential

St = E(eH)t , 0 ≤ t ≤ T

dSt = St−d eHt

where eHt = Ht +
1
2
〈Hc〉t +

Z t

0

Z
R

(ex − 1− x)µH (ds, dx)

Note

E(eH)t = exp
“eHt −

1
2
〈eHc〉t

” Y
0<s≤t

(1 + ∆eHs) exp(−∆eHs)

Asset price positive only if ∆eH > −1.
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Martingale modeling

LetMloc(P) be the class of local martingales.

Assumption (ES)
The process 1{x>1}ex ∗ ν has bounded variation.

Then

S = S0eH ∈Mloc(P)⇔ B +
C
2

+ (ex − 1− h(x)) ∗ ν = 0. (3)

Throughout, we assume that P is an equivalent martingale measure for
S.

By the Fundamental Theorem of Asset Pricing, the value of an option
on S equals the discounted expected payoff under this martingale
measure.

We assume zero interest rates.
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Supremum and infimum processes

Let X = (Xt )0≤t≤T be a stochastic process. Denote by

X t = sup
0≤u≤t

Xu and X t = inf
0≤u≤t

Xu

the supremum and infimum process of X respectively. Since the
exponential function is monotone and increasing

ST = sup
0≤t≤T

St = sup
0≤t≤T

“
S0eH t

”
= S0esup0≤t≤T H t = S0eHT . (4)

Similarly

ST = S0eHT . (5)
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Valuation formulas – payoff functional
We want to price an option with payoff Φ(St , 0 ≤ t ≤ T ), where Φ is a
measurable, non-negative functional.

Separation of payoff function from the underlying process:

Example
Fixed strike lookback option

(ST − K )+ = (S0 eHT − K )+ =
`
eHT +log S0 − K

´+
1 The payoff function is an arbitrary function f : R→ R+; for

example f (x) = (ex − K )+ or f (x) = 1{ex>B}, for K ,B ∈ R+.

2 The underlying process denoted by X , can be the log-asset price
process or the supremum/infimum or an average of the log-asset
price process (e.g. X = H or X = H).
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Valuation formulas

Consider the option price as a function of S0 or better of s = − log S0

X driving process (X = H,H,H, etc.)

⇒ Φ(S0 eH t , 0 ≤ t ≤ T ) = f (XT − s)

Time-0 price of the option (assuming r ≡ 0)

Vf (X ; s) = E
ˆ

Φ(St , 0 ≤ t ≤ T )
˜

= E [f (XT − s)]

Valuation formulas based on Fourier and Laplace transforms

Carr and Madan (1999) plain vanilla options

Raible (2000) general payoffs, Lebesgue densities

In these approaches: Some sort of continuity assumption (payoff or
random variable)
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Valuation formulas – assumptions

MXT moment generating function of XT

g(x) = e−Rx f (x) (for some R ∈ R) dampened payoff function

L1
bc(R) bounded, continuous functions in L1(R)

Assumptions

(C1) g ∈ L1
bc(R)

(C2) MXT (R) exists

(C3) bg ∈ L1(R)
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Valuation formulas

Theorem
Assume that (C1)–(C3) are in force. Then, the price Vf (X ; s) of an
option on S = (St )0≤t≤T with payoff f (XT ) is given by

Vf (X ; s) =
e−Rs

2π

Z
R

eiusϕXT (−u − iR)bf (u + iR)du, (6)

where ϕXT denotes the extended characteristic function of XT and bf
denotes the Fourier transform of f .
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Discussion of assumptions

Alternative choice: (C1’) g ∈ L1(R)

(C3’) êR.PXT ∈ L1(R)

(C3’) =⇒ eR.PXT has a cont. bounded Lebesgue density

Recall: (C3) bg ∈ L1(R)

Sobolov space

H1(R) =
˘

g ∈ L2(R) | ∂g exists and ∂g ∈ L2(R)
¯

Lemma
g ∈ H1(R) =⇒ bg ∈ L1(R)

Similar for the Sobolev–Slobodeckij space HS(R) (s > 1
2 )
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Examples of payoff functions

Example (Call and put option)

Call payoff f (x) = (ex − K )+, K ∈ R+,

bf (u + iR) =
K 1+iu−R

(iu − R)(1 + iu − R)
, R ∈ I1 = (1,∞). (7)

Similarly, if f (x) = (K − ex )+, K ∈ R+,

bf (u + iR) =
K 1+iu−R

(iu − R)(1 + iu − R)
, R ∈ I1 = (−∞, 0). (8)
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Example (Digital option)
Call payoff 1{ex>B}, B ∈ R+.

bf (u + iR) = −B iu−R 1
iu − R

, R ∈ I1 = (0,∞). (9)

Similarly, for the payoff f (x) = 1{ex<B}, B ∈ R+,

bf (u + iR) = B iu−R 1
iu − R

, R ∈ I1 = (−∞, 0). (10)

Example (Double digital option)
The payoff of a double digital option is 1{B<ex<B}, B, B ∈ R+.

bf (u + iR) =
1

iu − R

“
B iu−R − B iu−R

”
, R ∈ I1 = R\{0}. (11)
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Example (Asset-or-nothing digital)
Payoff f (x) = ex1{ex>B}

bf (u + iR) = − B1+iu−R

1 + iu − R
, R ∈ I1 = (1,∞)

Similarly f (x) = ex1{ex<B}

bf (u + iR) =
B1+iu−R

1 + iu − R
, R ∈ I1 = (−∞, 1)

Example (Self-quanto option)
Call payoff f (x) = ex (ex − K )+

bf (u + iR) =
K 2+iu−R

(1 + iu − R)(2 + iu − R)
, R ∈ I1 = (2,∞)
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Non-path-dependent options
European option on an asset with price process St = eH t

Examples: call, put, digitals, asset-or-nothing, double
digitals, self-quanto options

−→ XT ≡ HT , i.e. we need ϕHT

Generalized hyperbolic model (GH model): Eberlein, Keller (1995),
Eberlein, Keller, Prause (1998),

Eberlein (2001)

ϕH1 (u) = eiuµ
“ α2 − β2

α2 − (β + iu)2

”λ/2 Kλ
`
δ
p
α2 − (β + iu)2

´
Kλ
`
δ
p
α2 − β2

´
I2 = (−α− β, α− β)

ϕHT (u) = (ϕH1 (u))T

similar: NIG, CGMY, Meixner
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Non-path-dependent options II

Stochastic volatility Lévy models: Carr, Geman, Madan, Yor (2003)
Eberlein, Kallsen, Kristen (2003)

Stochastic clock Yt =

Z t

0
ysds (ys > 0)

e.g. CIR process

dyt = K (η − yt )dt + λy1/2
t dWt

Define for a pure jump Lévy process X = (Xt )t≥0

Ht = XYt (0 ≤ t ≤ T )

Then

ϕHt (u) =
ϕYt (−iϕXt (u))

(ϕYt (−iuϕXt (−i)))iu
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Classification of option types

Lévy model St = S0eH t

payoff payoff function distributional properties

(ST − K )+

call
f (x) = (ex − K )+ PHT usually has a density

1{ST>B}

digital

f (x) = 1{ex>B} –′′–

`
ST − K

´+
lookback

f (x) = (ex − K )+ density of PHT
?

1{ST>B}

digital barrier
= one touch

f (x) = 1{ex>B} –′′–
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Valuation formula for the last case

Payoff function f maybe discontinuous
PXT does not necessarily possess a Lebesgue density

Assumption
(D1) g ∈ L1(R)

(D2) MXT (R) exists

Theorem
Assume (D1)–(D2) then

Vf (X ; s) = lim
A→∞

e−Rs

2π

Z A

−A
e−iusϕXT (u − iR)bf (iR − u) du (12)

if Vf (X ; ·) is of bounded variation in a neighborhood of s and Vf (X ; ·) is
continuous at s.
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Options on multiple assets
Basket options

Options on the minimum: (S1
T ∧ · · · ∧ Sd

T − K )+

Multiple functionals of one asset

Barrier options: (ST − K )+1{ST>B}

Slide-in or corridor options: (ST − K )+
NX

i=1

1{L<STi
<H}

Modelling: S i
t = S i

0 exp(H i
t ) (1 ≤ i ≤ d)

XT = Ψ(Ht | 0 ≤ t ≤ T )

f : Rd −→ R+

g(x) = e−〈R,x〉f (x) (x ∈ Rd )

Assumptions: (A1) g ∈ L1(Rd )

(A2) MXT (R) exists

(A3) b% ∈ L1(Rd ) where %(dx) = e〈R,x〉PXT (dx)
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Options on multiple assets (cont.)

Theorem
If the asset price processes are modeled as exponential semimartingale
processes such that S i ∈Mloc(P) (1 ≤ i ≤ d) and conditions (A1)–(A3)
are in force, then

Vf (X ; s) =
e−〈R,s〉

(2π)d

Z
Rd

e−i〈u,s〉MXT (R + iu)bf (iR − u)du

Remark
When the payoff function is discontinuous and the driving process does
not possess a Lebesgue density −→ L2-limit result
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Sensitivities – Greeks

Vf (X ; S0) =
1

2π

Z
R

SR−iu
0 MXT (R − iu)bf (u + iR)du

Delta of an option

∆f (X ; S0) =
∂V(X ; S0)

∂S0
=

1
2π

Z
R

SR−1−iu
0 MXT (R − iu)

bf (u + iR)

(R − iu)−1 du

Gamma of an option

Γf (X ; S0) =
∂2Vf (X ; S0)

∂2S0
=

1
2π

Z
R

SR−2−iu
0

MXT (R − iu)bf (u + iR)

(R − 1− iu)−1(R − iu)−1 du
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Numerical examples
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correlation.
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Lévy processes

Let L = (Lt )0≤t≤T be a Lévy process with triplet of local characteristics
(b, c, λ), i.e. Bt (ω) = bt , Ct (ω) = ct , ν(ω; dt , dx) = dtλ(dx), λ Lévy
measure.

Assumption (EM)
There exists a constant M > 1 such thatZ

{|x|>1}
euxλ(dx) <∞, ∀u ∈ [−M,M].

Using (EM) and Theorems 25.3 and 25.17 in Sato (1999), we get that

E
ˆ
euLt
˜
<∞, E

ˆ
euLt
˜
<∞ and E

ˆ
euLt
˜
<∞

for all u ∈ [−M,M].
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On the characteristic function
of the supremum I

Proposition
Let L = (Lt )0≤t≤T be a Lévy process that satisfies assumption (EM).
Then, the characteristic function ϕLt

of Lt has an analytic extension to
the half plane {z ∈ C : −M < =z <∞} and can be represented as a
Fourier integral in the complex domain

ϕLt
(z) = E

ˆ
eizLt

˜
=

Z
R

eizx PLt
(dx).
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Fluctuation theory for Lévy processes

Theorem
(Extension of Wiener–Hopf to the complex plane)
Let L be a Lévy process. The Laplace transform of L at an independent
and exponentially distributed time θ, θ ∼ Exp(q), can be identified from
the Wiener–Hopf factorization of L via

E
ˆ
e−βLθ

˜
=

Z ∞
0

qE [e−βLt ]e−qt dt =
κ(q, 0)

κ(q, β)
(13)

for q > α∗(M) and β ∈ {β ∈ C|R(β) > −M} where κ(q, β), is given by

κ(q, β) = k exp
„Z ∞

0

Z ∞
0

(e−t − e−qt−βx )
1
t

PLt (dx) dt
«
. (14)
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On the characteristic function
of the supremum II

Theorem
Let L = (Lt )0≤t≤T be a Lévy process satisfying assumption (EM). The
Laplace transform of Lt at a fixed time t , t ∈ [0,T ], is given by

E
ˆ
e−βLt

˜
= lim

A→∞

1
2π

Z A

−A

et(Y+iv)

Y + iv
κ(Y + iv , 0)

κ(Y + iv , β)
dv , (15)

for Y > α∗(M) and β ∈ C with <β ∈ (−M,∞).

Remark
Note that β = −iz provides the characteristic function.
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Application to lookback options

Fixed strike lookback call: (ST − K )+ (analogous for lookback put).

Combining the results, we get

CT (S; K ) =
1

2π

Z
R

SR−iu
0 ϕLT

(−u − iR)
K 1+iu−R

(iu − R)(1 + iu − R)
du (16)

where

ϕLT
(−u − iR) = lim

A→∞

1
2π

Z A

−A

eT (Y+iv)

Y + iv
κ(Y + iv , 0)

κ(Y + iv , iu − R)
dv (17)

for R ∈ (1,M) and Y > α∗(M).

• The floating strike lookback option, ( ST − ST )+, is treated by a duality
formula (Eb., Papapantoleon (2005)).
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One-touch options

One-touch call option: 1{ST>B}.

Driving Lévy process L is assumed to have infinite variation or has
infinite activity and is regular upwards. L satisfies assumption (EM),
then

DCT (S; B) = lim
A→∞

1
2π

Z A

−A
SR+iu

0 ϕLT
(u − iR)

B−R−iu

R + iu
du (18)

= P(LT > log(B/S0))

for R ∈ (0,M).
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Equity default swap (EDS)

• Fixed premium exchanged for payment at “default”

• default: drop of stock price by 30 % or 50 % of S0 → first passage
time

• fixed leg pays premium K at times T1, . . . ,TN , if Ti ≤ τB

• if τB ≤ T : protection payment C, paid at time τB

• premium of the EDS chosen such that initial value equals 0; hence

K =
CE

ˆ
e−rτB1{τB≤T}

˜PN
i=1 E

ˆ
e−rTi1{τB>Ti}

˜ . (19)

• Calculations similar to touch options, since 1{τB≤T} = 1{ST≤B}.
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Basic interest rates

B(t ,T ): price at time t ∈ [0,T ] of a default-free zero coupon bond
with maturity T ∈ [0,T ∗] (B(T ,T ) = 1)

f (t ,T ): instantaneous forward rate

B(t ,T ) = exp
“
−
R T

t f (t ,u) du
”

L(t ,T ): default-free forward Libor rate for the interval T to T + δ as
of time t ≤ T (δ-forward Libor rate)

L(t ,T ) := 1
δ

“
B(t,T )

B(t,T+δ)
− 1
”

FB(t ,T ,U): forward price process for the two maturities T < U

FB(t ,T ,U) := B(t,T )
B(t,U)

=⇒ 1 + δL(t ,T ) =
B(t ,T )

B(t ,T + δ)
= FB(t ,T ,T + δ)
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Dynamics of the forward rates
(Eb–Raible (1999), Eb–Özkan (2003),

Eb–Jacod–Raible (2005), Eb–Kluge (2006)

df (t ,T ) = α(t ,T ) dt − σ(t ,T ) dLt (0 ≤ t ≤ T ≤ T ∗)

α(t ,T ) and σ(t ,T ) satisfy measurability and boundedness conditions
and α(s,T ) = σ(s,T ) = 0 for s > T

Define A(s,T ) =

Z T

s∧T
α(s, u) du and Σ(s,T ) =

Z T

s∧T
σ(s, u) du

Assume 0 ≤ Σi (s,T ) ≤ M (1 ≤ i ≤ d)

For most purposes we can consider deterministic α and σ
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Implications

Savings account and default-free zero coupon bond prices are given by

Bt =
1

B(0, t)
exp

„Z t

0
A(s,T ) ds −

Z t

0
Σ(s, t) dLs

«
and

B(t ,T ) = B(0,T )Bt exp
„
−
Z t

0
A(s,T ) ds +

Z t

0
Σ(s,T ) dLs

«
.

If we choose A(s,T ) = θs(Σ(s,T )), then bond prices, discounted by the
savings account, are martingales.

In case d = 1, the martingale measure is unique (see Eberlein, Jacod,
and Raible (2004)).
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Key tool
L = (L1, . . . , Ld ) d-dimensional time-inhomogeneous Lévy process

E[exp(i〈u, Lt〉)] = exp
Z t

0
θs(iu) ds where

θs(z) = 〈z, bs〉+
1
2
〈z, csz〉+

Z
Rd

“
e〈z,x〉 − 1− 〈z, x〉

”
Fs(dx)

in case L is a (time-homogeneous) Lévy process, θs = θ is the cumulant
(log-moment generating function) of L1.

Proposition Eberlein, Raible (1999)

Suppose f : R+ → Cd is a continuous function such that |R(f i (x))| ≤ M
for all i ∈ {1, . . . , d} and x ∈ R+, then

E
»
exp

„Z t

0
f (s)dLs

«–
= exp

„Z t

0
θs(f (s))ds

«

Take f (s) =
P

(s,T ) for some T ∈ [0,T ∗]
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Pricing of European options

B(t ,T ) = B(0,T ) exp
»Z t

0
(r(s) + θs(Σ(s,T ))) ds +

Z t

0
Σ(s,T )dLs

–
where r(t) = f (t , t) short rate

V (0, t ,T ,w) time-0-price of a European option with maturity t and
payoff w(B(t ,T ),K )

V (0, t ,T ,w) = EP∗ [B−1
t w(B(t ,T ),K )]

Volatility structures

Σ(t ,T ) =
bσ
a

(1− exp(−a(T − t))) (Vasiček)

Σ(t ,T ) = bσ(T − t) (Ho–Lee)

Fast algorithms for Caps, Floors, Swaptions, Digitals, Range options



The model

Valuation

Payoff functions
and processes

Valuation
continued

Exotic options

Interest rate
derivatives

References

c©Eberlein, Uni Freiburg, 35

Pricing formula for caps
(Eberlein, Kluge (2006))

w(B(t ,T ),K ) = (B(t ,T )− K )+

Call with strike K and maturity t on a bond that matures at T

C(0, t ,T ,K ) = EP∗ [B−1
t (B(t ,T )− K )+]

= B(0, t)EPt [(B(t ,T )− K )+]

Assume X =

Z t

0
(Σ(s,T )− Σ(s, t))dLs has a Lebesgue density, then

C(0, t ,T ,K ) =
1

2π
KB(0, t) exp(Rξ)

×
Z ∞
−∞

eiuξ(R + iu)−1(R + 1 + iu)−1MX
t (−R − iu)du

where ξ is a constant and R < −1.

Analogous for the corresponding put and for swaptions



The model

Valuation

Payoff functions
and processes

Valuation
continued

Exotic options

Interest rate
derivatives

References

c©Eberlein, Uni Freiburg, 36

References

• Borovkov, K. and A. Novikov (2002). On a new approach to
calculating expectations for option pricing. J. Appl. Probab.
39, 889–895.

• Carr, P. and D. B. Madan (1999). Option valuation using the
fast Fourier transform. J. Comput. Finance 2 (4), 61–73.

• Eberlein, E., K. Glau, and A. Papapantoleon (2009).
Analysis of Fourier transform valuation formulas and
applications. To appear in Applied Mathematical Finance.

• Eberlein, E., K. Glau, and A. Papapantoleon (2009).
Analyticity of the Wiener–Hopf Factors and valuation of
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• Raible, S. (2000). Lévy processes in finance: theory,
numerics, and empirical facts. Ph.D. thesis, University of
Freiburg.


	The model
	Valuation
	Payoff functions and processes
	Valuation continued
	Exotic options
	Interest rate derivatives
	References

