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This paper presents the determination of the interlaminar stresses close to the free edges of general cross-ply composite laminates
based on higher order equivalent single-layer theory (HESL). The laminates with finite dimensions were subjected to a bending
moment, an axial force, and/or a torque for investigation. Full three-dimensional stresses in the interior and the boundary-layer
regions were determined. The computed results were compared with those obtained from Reddy’s layerwise theory. It was found
that HESL theory predicts precisely the interlaminar stresses near the free edges of laminates. Besides, high efficiency in terms of
computational time is obtainable when HESL theory is used as compared with layerwise theory. Finally, various numerical results
were presented for the cross-ply laminates. Also design guidelines were proposed to minimize the edge-effect problems in composite

laminates.

1. Introduction

Laminated composite materials are being used in several
industries due to their high strength-to-weight ratio and
stiffness-to-weight ratio. However, they are susceptible to
different types of damage such as delamination which occurs
due to high stress concentration near the edge of composite
laminates. These stresses are induced by mismatch in elastic
properties between adjacent plies of composite laminates
[1]. It has been shown that the state of stresses in the edge
zone of the laminate is three-dimensional (3D) in nature.
Many attempts have been made to compute these stresses
next to laminate’s free edges [1-12]. However, because of
intrinsic complexities involved in the problem, no exact
solution is known for elasticity equations. Therefore, many
approximate methods used to determine the interlaminar
stresses are recorded in the survey paper by Kant and
Swaminathan [3]. Based on a laminated model containing
anisotropic layers, the first approximate solution of inter-
laminar shear stresses was presented by Puppo and Evensen
[4]. Other approximate analytical methods used to examine
the problem are the employment of the higher order plate

theory proposed by Pagano [2], the perturbation technique
by Hsu and Herakovich [5], the boundary-layer theory by
Tang and Levy [6], and the approximate elasticity solutions
by Pipes and Pagano [7]. An approximate theory is also
utilized by Pagano [8, 9] based on assumed in-plane stresses
and the use of Reissner’s variational principle. The principle
of minimum complementary energy and the force balance
method are used by Kassapoglou and Lagace [10] to study the
symmetric laminates under uniaxial loading. A variational
method involving Lekhnitskii’s stress function is utilized
by Yin [11, 12] to determine the interlaminar stresses in a
multilayer strip of a laminate subjected to combinations of
mechanical loads. Lin et al. [13] improved the technique
developed by Kassapoglou and Lagace [10] for symmetric
laminates under uniaxial tension to evaluate the interlaminar
stress distribution near the straight free edges of symmetric
and unsymmetric laminates under different types of loading
conditions. The first numerical method to solve the 2D
governing elasticity equations is given by Pipes and Pagano
[1]. They utilized a finite-difference technique to establish the
interlaminar stresses in along symmetric laminate under uni-
form axial strain. A layer reduction technique and a layerwise



theory (LWT) are employed by Lee and Chen [14] in the
analysis of a reduced laminate. They neglected the through-
thickness stretching and solved a simply supported plate
subjected to bidirectional sinusoidal distributed loading.
A displacement-based variable kinematic global-local finite
element method is offered by Robbins and Reddy [15]. Their
displacement field hierarchy contains both a conventional
plate expansion (2D) and a full layerwise (3D) expansion.
Neves et al. [16, 17] developed a higher order theory that
considers deformations in the thickness direction under Car-
reras unified formulation to predict the buckling behaviour
of laminated plates and modeling functionally graded plates
accounting for extensibility in the thickness direction. The
obtained governing equations and boundary conditions are
then interpolated by collocation with radial basis functions.
Mantari et al. [18] developed a new shear deformation theory
for sandwich and composite plates. The presented theory is
relatively close to 3D elasticity bending solutions. The theory
accounts for adequate distribution of the transverse shear
strains through the plate thickness and tangential stress-free
boundary conditions on the plate boundary surface; thus,
a shear correction factor is not required. A new model is
proposed by Rahmani et al. [19] based on the high-order
sandwich panel theory to study the effect of external loads on
the free vibration of circular cylindrical composite sandwich
shells with transversely compliant core, including also the
calculation of the buckling loads. Thai et al. [20] present a
novel finite element formulation for static, free vibration and
buckling analyses of laminated composite plates. The higher
order shear deformation plate theory (HSDT) is introduced
in the present method to remove the shear correction factors
and improve the accuracy of transverse shear stresses. A
new improved high-order theory is presented by Kheirikhah
et al. [21] for biaxial buckling analysis of sandwich plates
with soft orthotropic core. Third-order plate theory is used
for face sheets, quadratic and cubic functions which are
assumed for transverse and in-plane displacements of the
core, respectively.

It was found from the literature that no work has
been found to study interlaminar stresses by higher order
equivalent single-layer theory (HESL). Here, HESL theory is
used to analytically study the interlaminar stresses in both
finite and long cross-ply laminates subjected to a bending
moment, an axial force, and/or a torque. Then HESL results
are compared with those calculated from LWT. The presented
works (HESL) are either accurate enough (and general) or
computationally efficient.

2. Higher Order Equivalent Single-Layer
Theory (HESL)

General cross-ply laminates are subjected to the bending
moment, the axial force, and/or the torque in order to
accurately determine the interlaminar stresses. The geometry
of the laminate is illustrated in Figure 1. The formulation
is limited to linear elastic material behavior, small strain,
and displacements. The coordinate system (x, y, z) is located
at the middle plane of the laminate. Thickness, width, and
length of the laminate are h, 2b, and 24, respectively.
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2.1. Displacement Field and Strains. The integrations of the
three-dimensional elasticity strain-displacement relations
[22] within the kth layer of the laminate producing the most
general form of displacement field are given by

U (x,y,2) = Byx + Bexz +u® (3, 2), (1a)

P (x,9,2) = - Bixz +v? (3,2), (1b)
ugk) (x, y,2z) = Byxy — %Bﬁx2 +w® (y,2), (1c)

where u,, u,, and u; represent the displacement components
in the x-, y-, and z-directions, respectively, of a material
point initially located at (x, y, z) in the undeformed laminate.
The displacement field in (la), (1b), and (1c) may be used,
in principle, for obtaining the stress field in any compos-
ite laminate subjected to arbitrary combinations of self-
equilibrating mechanical and uniform hygrothermal loads.
In the present work, however, our attention is focused
on symmetric and unsymmetric cross-ply laminates under
the bending moment, the axial force, and/or the torque.
General cross-ply laminates based on physical grounds can
be established as (see Figure 1)

u® (x,3,2) = -u® (~x,7.2).. @

Upon imposing this condition on (la), (1b), and (lc), it is
readily seen that u®)(y,z) = 0. Thus, for cross-ply laminates
the most general form of the displacement field is given as

ul® (x, y,2) = Bgxz + By,
k k
ug)(x,y,z):—lez+v()(y,z), 3)

® (5,2).

u® (x,y,2) = Byxy - %Bze +w
The unknown constants, namely, B;, B,, and B, appearing
in (3), are global response of the laminate. On the other
hand, unknown functions v%( y,z) and w®( y,z) are local
response of the laminate.

The purpose of the present section is to show the
HESL theory with infinity number of terms which provides
sufficiently accurate results for the interlaminar stresses
in composite laminate. In HESL, the components of the
displacement vector at a material point in cross-ply laminated
composite are expressed as [23]

uy (%, 3,2) = u(x, y) + 2 (%, y) + 21, (%, ) + -+
wy (%, :2) = v(x. ) + 2y (. 3) + 29 (e y) +-- (@)

s (%, y,2) = w (%) + 2y (x,9) + 2y (%) + -

Relations (4) may more conveniently be presented as

u, (6 02)=u(xy)+2 (xy) k=1,2,...,1,

w, (%, 9,2) =v(%y)+2y (x,y) i=1,2...,n, (5

uy (x, y,2) = w(x,y)+zj¢j(x,y) i=12,...,m,
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FIGURE 1: Laminate geometry and coordinate system.

where k, 7, and j are dummy indexes indicating the summa-
tion of terms from k = i = j = 1 to desirable number (i.e.,
I or n or m). It is expected that the accuracy of such theories
can, generally, be increased by taking more terms in (5). Also,
u,, U,, and u; are the displacement components of any point
within a laminate in the x-, y-, and z-directions, respectively.
k +i+ j+ 3 unknown displacement functions should be
found for a single layer or more layers in the laminate. The
displacement field in (3) within HESL is simplified by

uy (x, y,z) = Bgxz + Byx,

u, (x,y,z) = —lez+v(y)+zi1,(/i (y) i=12,...,n

us (x,9,2) = Bixy — ~Bex” + w(y) + 2'¢; (¥)

j=L2,...,m
(6)

By using the displacement field (6) in the principle of
minimum total potential energy [22] and considering the
constants as unknown parameters, (5 + i + j) equilibrium
equations are expressed as

(SV:N}’,:O, (7a)
dw: N, =0, (7b)
dA,

Sy, ’”_d_yy: i=1,2,...,n (7¢)
dA ;. .

5, : Jz—d—;y=o j=1,2,...,m, (7d)

b
5B, : J (Quy-M,)dy =T, (8a)
-b
b
5B, : J N.dy = F,, (8b)
-b
b
8B : J M. dy = M,, (8¢c)
-b

where a prime indicates an ordinary differentiation with
respect to variable y and the stress and moment resultants

appearing in (7a), (7b), (7¢), and (7d) and (8a), (8b), and (8¢)
which are defined as

h/2
(Mx,Mxy) = J-h/z (ax, oxy) zdz,

h/2

(o900 = [ (00,000

e ) dz,

W ©)
(A A,) =J (0,2,0,.2") dz,

-hf2
(sz’BiJ’Z) - J—h/z

h/2 »
(azjz ,(Tyle )dz.

By substituting the displacement field (6) into (9), through
the linear strain-displacement relations of elasticity and the
plane-stress constitutive law [24] of a lamina, the stress and
moment resultants can be expressed as

(M, M,N,,N,,A,,B,)
= —(Dgs> D16> Bi6> Bas> 0, 0) By

+ (D16’D11’ By, By, Fiyi 105 jHj13) Bg

+(B12’BII’A11’A12’ i1 JH 113)32
!
+ (326’B12’ A1p Ay Figys jH 123) 4
+ (0 Fii112 Fi2s Figgs Foings jLij 123) ‘//;
. . 2
+ (0 JHj13, jHj 113, JHj 1535 jLijo123, J Hyjos 33) (/)j’
(10a)
(NyZ’A jyz Biyz)
. . 2
= (1Fi—144’ iL; yj4401 in—244) Vi
(10b)
+ (A44’Hj44>iFi—144) w
+ (Hj44’ Hyjag iLi—1j44) ¢;)
Q, =AsB,y, (10¢)



where
Ao Bop D y (™ oo ( d =
( pq> Bpg> . lzz) z p,q=126,
i= i
N i+l __(f
Fipq=ZJ Cpddz,
i=1 7%
N 1
_ i+ _(k) J
Hijpq = ZJ Cpg?'dz
i=1 Y%
N 1
B i+ —(k) 1 J
Lijpq = Z J dz,
i=1 Y%
(11
where qu are the transformed stiffness of an orthotropic

lamina. For free edges of the laminate at y = +b according to
the principle of minimum total potential energy the traction-
free boundary conditions must be imposed as

M,,=N,=N,,=A; =A;,=0 aty=1xb  (12)
Substituting (10a), (10b), (10¢) into (7a), (7b), (7¢), the equi-
librium equations are obtained in terms of the displacement
components which can be given as

! !
Ov:BBg+ ApBy — BygBy + AV + Fippy;

(13a)
Hj—123¢j =0,
dw: Ay w' +iF yy; + Hjyyd) = 0, (13b)
2
8y i Fogaq Wi +iF, 1 4q w' +iL;_ 1]44‘15
" n ! (13C)
= Fipv = By = jLij123¢; =0
. . . !
0¢;: jH; 13Bs + jH; 1 13B, + jH 1 53v
. ! 2
+jLij 23 + jHyj 53395 (13d)

—iL; 1]44#’1 ]44w H2j44¢;l =0

To determine the parameters B,, B,, and By as well as
the interlaminar stresses in (13a)-(13d), the general solution
of the ordinary differential equations in (13a)-(13d) is first
obtained in terms of B;, B,, and Bg. Then, by applying the
boundary conditions in (12) and using the global equilibrium
equation in (8a), (8b), and (8c), the constant parameters B;,
B,, and B will be found in terms of the bending moment M,
axial force F,, and torque T},. For completeness, the details of
the steps involved are displayed in Appendix A.

3. Layerwise Theory

3.1. Displacement Field and Strains. It should be emphasized
that the solution proposed by Tahani and Nosier [25] was
used to verify HESL theory for predicting stress in the edge of
composite laminates. The proposed solution was used while
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different boundary conditions are considered. This offers to
develop new analytical solution which is expressed in the
present work. The displacement field in this theory may be
represented as [25]

= Uy (%, y) Ok (2),
= Vi (%) Ok (2),
= Wi (x,y) Oy (2),

uy (%, 9, 2)

u, (x,9,2) (14)

us (%, 3,2)

(k=1,2,...,N+1),

where u;, u,, and u; represent the displacement compo-
nents in the x-, y-, and z-directions, respectively [26]. Also
Ui (x, ), Vi (x,y), and W (x, y) show the displacement
components of all points located on the kth plane in the
undeformed laminate, and @, (z) is continuous function of
the thickness coordinate z. Moreover, N indicates the total
number of numerical layers considered in a laminate. It
should be noted that a repeated index indicates summation
over all values of that index. Substituting (14) into the linear
strain-displacement relations of elasticity [27], the results are
obtained as

U, do, W,
= —(D 5 V (D >
BTk e VTV Tk

A dCDk A
— @, =U— —(D ,

o, LA
& = dZ Wk’ yxy - ay q)k a (Dk

3.2. Equilibrium Equations. Using the principle of minimum
total potential energy [23], 3 (N + 1) equations of equilibrium
corresponding to 3 (N + 1) unknowns Uy, V;, and W, can be
shown by

oMk anjy BMk aM"
x -Qt=o, —2 =,
ax dy Q Oox ay Q
orR* OR"
R, I Nk,
ox Oy
(16)

where k = 1,2,..., N + 1. In (16), the generalized stress and
moment resultants are defined as

M2 4o
N¥ I kdz,

N —h/2 “dz
(Rr) = [ (0100, 0y
x>y ) T n2 xz> k4>

o . 1)
(Qx,Q ) Jh/z (axz,oyz) ke,

dz
(Mf,Mf,, Ml;y) = J—h/z

hj2
(0 0,0y )CDkdz.
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The boundary conditions for a laminated plate with a rectan-
gular platform in the layerwise theory at an edge parallel to

y-axis involve the specification of Uy or Mfz, Vi or Mfzy, and

W, or R’;. Similarly, at an edge parallel to x-axis, the boundary

conditions involve the specification of U or Ml;y, V. or Mﬁ,
k

and Wy or R).

3.3. Displacement Equations of Equilibrium. The linear con-
stitutive relations for the kth orthotropic lamina, with fiber
orientations of 0° and 90° only, are given by [24]

xy | Sym C66

o,
ox
oV,
Jy k
d(DkW
dz F

do, oW,
v,k 2k
“az T oy
dd, oW,
U—+—
K dz " ox ¥

U,

L dy

Dy

(18)

s

v,
_kq)k

O, +
kT ox )

—(k
where ng) represent the off-axis stiffnesses within the kth
layer of the laminate. By substituting (18) into (17), the stress
and moment resultants are written as

i\ U, OV
(005 = (o1, ) 57 + (0 030) 5
+(BY, BS))w,

13> J’

LU, oV,
Nf=BA-L+BE—L + AW,

Box 2oy
My, = D’gf;iyf + D’gé%, )
() = (45 ) v, (0 ) 5
(5 = (4 )+ (8508) 5

where the coeficients A", B¥, and D" appearing in (19)
are defined in Appendix B. Finally, substituting (19) into (16)
yields the governing equations of equilibrium as

pYu

Jaxx

kj
+ Dg U

kj kj kj
gy — AU, + (D12 + D66) V.

iy
+ (Bl — Bis) W,

Jx

:0,

ki ki
+ DV, 44V

Jyy ~ A

kj kj kj
(D12 + D66) Ujxy + DggVjxx

(20)

+ (B, - By)w,, =0,

(B];{S - B{];) Uj,x + (B]:{l - Bélg) Vj,y + Dl;{sw

Joxx
ki AT
+DGW,, — AW, =0,

where a comma followed by a variable indicates differentia-
tion with respect to that variable.

For completeness, the details of the steps involved in the
analytical solutions are displayed in Appendix C.

4. Results

4.1. Numerical Results and Discussion. To verify the accuracy
and efficiency of the present method, several numerical
examples are presented for general cross-ply laminates sub-
jected to the bending moment, axial force, and/or torque. The
analyses were performed for 4-layer and 6-layer laminates
made of graphite/epoxy. The used mechanical and physical
properties of the layers are presented in Table 1 [24].

In addition, the thickness of each physical ply is assumed
to be 0.5mm (i.e., b = 0.5mm). HESL (i) represents that i
number of (j = 7) term is taken in (6). Clearly, as the number
i is increased, the accuracy of the results is also increased. In
the numerical examples that follow the interlaminar stresses
are determined by integrating the local equilibrium equations
of elasticity. Also, the width-to-thickness ratio (i.e., 2b/h)
is assumed to be, unless otherwise mentioned, equal to 10.
Furthermore, the stress components are normalized as

_ 0y
Ty = (1)
where 0, = (1/bh)(F, + My/h + T,)/h).

To study the convergence of the stresses near free edges,
two symmetric laminates [90°/0°]; and [0°/90°], subjected
to the bending moment, the axial force, and the torque
are considered. On account of the nature of the cross-ply
laminates, both 0, and o, are zero here as expected. Figures
2 and 3 demonstrate the convergence of the solution for o,
versus y at the z = h/4 for the [90°/0°], and [0°/90°],
laminates. It is seen that, for both [90°/0°], and [0°/90°],,
0, is seen to rise or fall suddenly near the free edge, while
being zero in the inner region of the laminate also the peak
stress steadily increases as the number of terms (i) taken is
increased. This is often attributed to a possible singularity at
the 0°/90° interfaces.

Numerical results are obtained from equilibrium equa-
tions. The present results are directly compared with those
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TaBLE 1: Engineering properties of graphite/epoxy.

Engineering properties E, (GPa) E, = E; (GPa) Gy, = G5 (GPa) G,; (GPa) V= U3 U3
Graphite/epoxy 132 10.8 5.65 3.38 0.24 0.59
1.6 10 ¢
2l 5l [0°7/90°/0°/90°] 1
‘
0.8} 0 ——— !
N e
' s
0.4 =S [0°/90°/90°/0°]
o -10t
-0.4 s -15 —
0 0.2 0.4 0.6 0.8 1 0 01 02 03 04 05 06 07 08 09 1
y/b yIb
-——i=9 i=6 —— HESL (9)-symmetric > Layerwise-unsymmetric
— i=25 - i=12 v Layerwise-symmetric --- HESL (9)-unsymmetric

FIGURE 2: Convergence of interlaminar normal stress along the
0°/90° interfaces of [90°/0°/0°/90°] laminate.

02
0 i .
02}
0.4}
bN
-0.6 |
-0.8 -
,1.
,12 1 1 1 1 1 1 1 1 1 )
0 01 02 03 04 05 06 07 08 09 1
y/b
— i=25 ——i=6
...... i=9 ———i=12

FIGURE 3: Convergence of interlaminar normal stress along the
0°/90° interfaces of [0°/90°/90°/0°] laminate.

obtained from LWT. Figure 4 shows the o, distribution at
the 0°/90° interfaces of [0°/90°/90°/0°] and [0°/90°/0°/90°]
laminates under the bending moment and the axial force. An
excellent agreement is found between the present solutions
and those of LWT.

Figures 5 and 6 show the 0, and o0, distribution at the
0°/90° interfaces of [0°/90°/90°/90°/90°/0°] and [0°/0°/0°/90°]
laminates under the bending moment and the torque. Good
accordance is seen between the results of the two theories. It is
noted that the accuracy of HESL theory can be improved by
taking more terms. Also the layerwise theory needs to take
many terms to approach accurately the results of the present
theory and these terms cause that LWT is more complex
and computationally more time consuming than the HESL
theory, so, it is better that HESL theory is used to compute
the local phenomena such as free-edge-effect problems and
the distribution of interlaminar stresses more precisely and

FIGURE 4: Distribution of interlaminar normal stress along the
interfaces of [90°/0°/0°/90°] and [0°/90°/90°/0°] laminates.

25
20 ¢
15 + o,
10
S
5¢F
O Al S s S ES e -
—5F
710 1 1 1 1 1 1 1 1 1 J
0 01 02 03 04 05 06 07 08 09 1
yib
—— HESL(12) v LWT
--- HESL(12) v IWT

FIGURE 5: Distribution of interlaminar stress along the 0°/90°
interface of [0°/90°/90°/90°/90°/0°] laminate.

less computationally than the layerwise theory in laminate
composites.

The effect of the laminate width-to-thickness ratio on the
interlaminar stresses for the [90°/0°/90°/0°/90°/0°] laminate
under the bending moment is investigated in Figure 7. By
decreasing the width-to-thickness ratio, the boundary-layer
region is expanded towards the internal region of the laminate
with its width being almost equal to the thickness of the
laminate. It is seen that the magnitude of the interlaminar
stress at the free edge does not change while the width-to-
thickness ratio of the laminate changes. On the other hand,
this is evident that the highly localized nature of interlaminar
stresses occurs near and exactly at the free edges of the
laminate.

The variation of interlaminar shear stress o, through the

thickness and near the free edge of the [90°/0°/90°/0°] lami-
nate under the bending moment and the torque is revealed
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12 +

v LIWT
v LWT

--- HESL(12)
—— HESL(12)

FIGURE 6: Distribution of interlaminar stress along the 0°/90°
interface of [0°/0°/0°/90°] laminate.

0 . 9
\
i
,4 L -
S
o -8 ;
i
-12f ;
i
_16 1 n n I I 1 )
0 01 02 03 04 05 06 07 08 09 1
y/b
—— 2b/h=50 - 2b/h =10
---2b/h=20 ----2b/h=5

FIGURE 7: Distribution of interlaminar normal stress along the
first 90°/0° of [90°/0°/90°/0°/90°/0°] laminate for various width-to-
thickness ratios.

in Figure 8. It is observed that the maximum negative and
the maximum positive values of o, occur within the bottom

90° layer and the top 0° layer at the 90°/0° interfaces of the
laminate, respectively. The variations of interlaminar normal
stress o, through the thickness of the unsymmetrical cross-
ply laminate [90°/0°/90°/0°] under the bending moment and
the axial force are portrayed in Figure 9. The maximum
negative and the maximum positive values of o, occur within
the bottom 90° layer and the top 0° layer both near the 90°/0°
interfaces at the free edge (i.e., y = b), respectively. From
Figure 9, it is seen that o, decreases away from the free edge
as the inner region of the laminate is approached.

The distributions of the interlaminar stresses o, and o,
along the upper and lower interfaces of the unsymmetrical
cross-ply [90°/90°/0°/90°] laminate subjected to the bending
moment, the axial force, and the torque are demonstrated
in Figure10. It is observed that the interlaminar stresses
demonstrate high stress gradient near the free edge. Both
stresses are seen to grow suddenly near the free edge, while
being zero in the interior region of the laminate. It is also

observed that the interlaminar shear stress o, rises toward

Interlaminar shear stress

40

— y=b .~ y=0.96b
...... y =099 - y=094b
-—- y=098b

FIGURE 8: Distribution of interlaminar shear stress through thick-
ness of [90°/0°/90°/0] laminate.

Interlaminar normal stress

50

z/h
...... y=0.94b —= y=10.9%
---y=096b  — y=b
- y=1098b

FIGURE 9: Distribution of interlaminar normal stress through
thickness of [90°/0°/90°/0] laminate.

the free edge and decreases (or increases) rather abruptly to
zero at the free edge.

4.2. Preliminary Design Guidelines. A comprehensive struc-
tural analysis program for designing composite laminates is
very extensive and complex. This generally involves several
analysis phases such as laminate stress and strength analysis.
Hence, there is still a need to provide some preliminary
knowledge of the lay-up sequence of composite laminates.
Usually, structural properties of composite laminates such as
stiffness, strength, and dimensional stability are affected by



8
1.2+
0.8
o 04
0
—-04 L
0 01 02 03 04 05 06 07 08 09 1
ylb
— oyatz=h/4 o,atz =-h/4

== 0y, atz=h/4 - - 0y atz = -h/4

FIGURE 10: Distribution of interlaminar stress along the width in
[90°/90°/0°/90°] laminate.

the laminate stacking sequences. Because each property has
different relations with a particular stacking sequence, the
choice of stacking sequence suited for a particular application
may require a compromise. The obtained preliminary design
guidelines consist of the following.

(1) The laminates stacking sequence (LSS) should be
symmetric about the midplane to avoid extension-
bending coupling. If this is not possible due to other
requirements, locate the asymmetry or imbalance as
near to the laminate midplane as possible. Avoid
symmetric LSS that create high interlaminar tension
stresses (s) at free edges.

(2) Avoid grouping of 90° plies and separate 90° plies
by a 0° ply to minimize interlaminar shear and
normal stress. Minimize groupings of plies with the
same orientations to create a more homogeneous
laminate and to minimize interlaminar stress. If plies
must be grouped, avoid grouping more than four
plies of the same orientation. Minimizing grouping
helps to increase strength and minimize interlaminar
shear and normal stresses and therefore minimize the
tendency to delaminate.

(3) Shield primary load carrying plies by positioning
them inside of laminate to increase tensile strength
and buckling resistance.

(4) An LSS should have at least both distinct ply angles
(e.g., 0°, 90°) with a minimum of 10% of the plies
oriented at each angle. Ply angles should be selected
such that fibers are oriented with principal load axes.

(5) Locating 90° ply toward the exterior surfaces
improves the buckling allowable in many cases.

5. Conclusions

In this research, analytical solutions were established within
HESL theory for the edge-effect problem of general cross-
ply composite laminates with finite dimensions under the
bending moment, the axial force, and/or the torque. The
edges of the laminates at y = b were assumed to
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have traction-free boundary conditions. The accuracy and
effectiveness of HESL theory in describing the localized
three-dimensional effects were demonstrated by comparing
the results of HESL theory with those calculated from the
layerwise theory. Good agreement was observed between the
results of HESL and LWT theories. Furthermore, the analysis
using HESL was found to be more cost effective and accurate,
so HESL was employed to assess the local phenomena instead
of LWT theory. Here, several numerical results were shown
for the different loading problems. The design guidelines were
developed to provide cross-ply laminate stacking sequences
with minimized the free edges effects.

Appendices
A.

According to the principle of minimum total potential energy
[22] at the equilibrium configuration of a body the variation
of the total potential energy IT of the body must vanish as

SII=8U + 6V =0, (A1)

where 6U is the variation of total strain energy of the body;
that is,

oU = JU (ax&sx +0,0¢, +0,0¢, +0,.0y,,
v (A.2)

+ 0,0, + axy(Syxy) dxdydz,

and V is negative of the work done on the body by the
specified external forces. Here, V. = -2M,aB, — 2T,aB, —
2F,aB, and therefore, 6V = -2M,adB, —2T,adB, —2F,adB,.
Also, the variations of strains in (A.2) are found as

Se, = 20B + 0By, By, =iz 'Sy, + 8w’ + 2/5¢),

e, = &' + 28y, Yy = B1ys

de, = jz"'8¢;, Oy, =-Bz.
(A.3)

Upon substituting (A.3) and 8V = -2M,adB,; — 2T,adB, —
2F,adB, into (A.1), carrying out the necessary integrations,
and employing the fundamental lemma of calculus of varia-
tions the equilibrium equations and the associated boundary
conditions of a laminate under bending are obtained to be
as in (7a), (7b), (7c), and (7d), (8a), (8b), and (8¢), and (12),
respectively. To solve the linear equations in (13a), (13b),
(13¢), and (13d), first we obtained v' and w' from (13a) and
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(13b); then substituting v and w' into (13¢) and (13d) and
integrating (13c) and (13d) yield

.. ] Y
Sy SL (L )y +8, () i +Ss (”1)¢j =0

i=12,...,n

89, : 84 (i) i + S5 (i) 8 + S5 (i )6,

' ‘ ) (A.4)
=S;(j) Bsy + S5 (j) By + Sy (j) By
j=L2,...,m,
_ y
3= [ s
where
FizaF 22 - i+ j=even
A22 0.5(i+5) 22
FinFj o
S, (i,j) =1 —L=-F, i>j
A22 j22
FipnFirn B >
A22 i22 >
iF._ . F._
i2Fi+j_244 s j = even
Ay

iFi_44Fj 144

.. 2 . .
Sz(l>]):‘]F2j7244_ 0 1>]
44
) iF 1 aaFj1as |
Py g4 — — . > 1
~ 44

iF 1 44Hjyy JEiHj 153

S5 (i, j) = il 1jaq— = jLijo10s +

>

Ay Ap
84 (0> )
iL N iF; 144H gy ; JEiHj 133
ij-123 T T T liqjae T T
Y Ay o Ap
3 i+ j=even
- iL N JFj 14444 i JEinHj 153
ij—123 A Jhi1ja4 A,
otherwise,

0  S(1L,1) 0

[M] = 0 S5(2,1) 0

0 S(ml) 0

S, (1,1) S;(1,1) S;(1,2)

Sl (2s 1) S3 (2> 1) Sl (23 2)

S, (n 1) S, (m1) S, (n,2)

( H; 4, H;
j44 . .
_ - HO.S(i+j)44 i+ j=even
Ay
HiyyHjyy
.. j . .
SG0)= {2 s
44
HiyyHjyy
j .
A— - Hi44 J>5
{ 44
( iH . H;
2 JHj 123103
JHiyjp33 = — . ! + ] =even
22

jHj—l 23Hi—1 23

S (i, 7) = 4 j2H2j—2 33~ A i>j
22
) JHj 123H 123 .
N — ./ > 5
L 2
. . B .
S, (j) = JA_ZHj—lzs - jHj13
. A .
Ss (j) = ]A_ZHj_123 —jHj 113
B
Sy (j) = j " H;
9 Ay 123
j=12,....m i=12,...,n

(A5)

where [Sp] (P = 1,2,...,6) and the vectors {Sq} (Q =7,8,9)
are n X m matrices containing Sp(i, j) and m x 1 column
matrices containing S,(f), respectively. We introduced (A.4)
in a matrix form as follows:

[M]{u"} + [K] {p} = [L1{B}- y, (A.6)
where
= {00 BV B Vi B}
(A.7)
{B} = {Bl)BvBs}T’
with
S;(1,2) -+ S (1,m) S5 (1,m) ]
S5(1,2) --- 0 S5 (1,m)
S$5(2,2) --- §;(2,m) S5(2,m)
85(2’2) 0 85(2,}’”) >
S;(n,2) -+ S (n,m) S5 (n,m)
S5 (n,2) - 0 Ss (n,m) |




10

[S,(1,1) 0  S,(1,2)

;1) 0 S$,(22)

(K]

S, (n,1) 0 S, (n,2)

0

0
(L] =

0

The general solution of (A.6) can be readily shown by

{u} = [yl [sinh ()| {H} + K] (LB} -y, (AS9)
where [sinh(Ay)] is a 2n x 2m diagonal matrix. Also in
(A.9), [y] and (A2, )@, N )tf,m) represent the modal matrix
and eigenvalues of (-[M 17MKD), respectively. It is clear that
[M] and [K] are (2n)x(2m) matrices containing Sp(i, j) (P =
1,2,...,6) and [L] is 2m x 3 matrix containing S (i, j) (Q =
7,8,9). Also {H} is an unknown vector containing i + j
constants of integration. Next, upon imposing the remaining
boundary conditions (i.e., A;, = A;,, = O ateither y = b or
-b) in (12), the unknown vector {H} is determined in terms
of vector{B}.

B.

The coefficients AX , BY , and Dk appearing in (19) are given
as

(B.1)

. N Zit1 H dq)
ki _ —(0) j _
BY = § J Cpa®i—dz  pq =44,55,

pg = 11,12,22,66,

N [z i
ki i+l —(l)
DY = Z j Cpy@x®;dz  pq = 44,55,

S, (1,1) Sg(1,1) S,(1,2) S¢(1,2) ---

84(2)1) S6 (2’1) s4 (2’2) SG (2)2)
| S, (m, 1) Sg(n,1) Sy (n,2) Sg(n,2) -

S (1) Sg(1) S, (1)

So(2) $5(2) S;(2)

| Sy (m) Sg(m) S, (m) |
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0 - S(Lm 0
S4(l)m) SG(I’m)
0 - S@2m 0

Sy (2,m) S¢(2,m)

0 - S, (n,m) 0
Sy (n,m) Sg(n,m) |

0 0

0 0

0 0
(A.8)
The linear global interpolation function is defined as
Dy (2)
0 Z <2
2
Vi1 (8) 122
= (k=1,2,...,N+1),
1//Ii (Z) 2 S Z S Zpy
0 Z 2 Zs
(B.2)

where 1//,1' (j = 1,2) are the local Lagrangian linear interpola-
tion functions within the kth layer which are defined as

1

1
vy (2) = P (2k1 — 2)» P
K

Y@= (z-2), (83)
k

with h being the thickness of the kth layer.

C.

C.1. Analytical Solutions. The investigation is performed
when analytically a rectangular composite laminate is sub-
jected to the bending moment, the axial force, and the torque
at its two opposite ends (x = —a and x = a) (see Figure 1).
The linear Lagrangian interpolation functions through the
thickness are used as in [26]. It is assumed that the laminates
have invariably the traction-free boundary conditions at y =
b and y = —b. The boundary conditions at these edges are
considered as

k _ ask _ pk _ _
My, =M} =R\ =0 atys=zb. (C.1)
Here the edges of the laminate are subjected to the bending
moment M, the axial force F;, and the torque T;, at x = ta:

h/2 dd
R* = 2T, j TPk g,
—h/2 dz

B h/2 1
M, = a1, J o, (2) (— - 1) dz,
h/2 V4
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hi2 @, (z
M = —ZM(,J D)y,
~h/2 z

FO h/2
—Z—I D, (z)dz at x = +a.
A Jonp

(C2)
To find analytical solutions for (C.2), it is assumed that

Uj(xy) =u;(x,y) +U; (%),
V(o) = vy (5 3) Y, 09,

W;(x,y)

(C3)
=w; (x,y) + W, (x),

(j=1L2,....N+1).
Upon substitution of these expressions into (20), two sets of

equations are obtained. The first set contains Uj(x), V]-(x), and
Wj(x) which are expressed by

DU} - A%U, + (B - Bl) W] =0,

DV - A%V, =0,

(B - BIS) U + DEW," - A% W, = 0.

The second set of equations contains u]-(x, ¥), vj(x, y), and

w;(x, y) which are given by

ki,
11 ]xx

kj

D + Diu;, ~ A%, + (DY + DY) v

66”1 vy

jk _
Bss) Wiy = 0,

Vixy
kj
+ (B13 -

kj kj
(D12 + D66) Ujxy T Dss"] xx T Dzz"

- B w

ki pjk
x (B44 - st) Viy

by (C5)

AZVJ + (B

(Blsqs - B{];) U;

wjy =0,

ki, =
+ D44w - Ajw; = 0.

+ D55w 9y

hxx

It should be emphasized that a repeated index in (C.4) and
(C.5) is a summation index from 1 to N + 1. When the
boundary conditions (C.4) are considered, substituting (C.3)
into (C.2) yields

BLU; + DEW! = 2Ty}, (C.6a)
DgV| = 2T, (s - 1), (C.6b)
kj t Fo k
D U +B3W,; = -2Mn, —ZXn at x = +a, (C.6¢)

11
where
W2 @, (2 h/2
nI;:j i ( )dz, nk:J Dy (2) dz,
h/2 % ~h/2 )
= Jh/z D 4,
h h/2 dz
Blu; + Ddw,, = Du; ,+ Div; =0,
Du,, + Div; , + Bw; = 0, (C8)
at x = xa.

Equations (C.4) subjected to the boundary conditions (C.6a),
(C.6b), and (C.6¢c) can be solved analytically. It is to be
noted that there exist repeated zero roots (or eigenvalues) in
the characteristic equation of the set of equations in (C.4).
To improve the solution scheme of these equations, some
small artificial terms are added to these equations so that the
characteristic roots become all distinct. So, (C.4) are rewritten
as

D) - A';guj (3

KNl Kj
- Bys) W) =aU,

oV - AV, = o9V, (C.9)
(BY - B{’;) Ul + DIw]' - A w; = oW,
where, for convenience, &/ is assumed to be
) h/2
o = ocJ D dz, (C.10)
~h/2

where « is a prescribed number such that o*”’s in (C.10) are
comparanvely small compared to the numerical values of

stiffnesses A, 4 q (Pq = 33,44, 55). The system of equations
appearing in (C 9) is 3(N + 1) coupled second-order ordinary
differential equations with constant coeflicients which may be
introduced in a matrix form as

(M1 {7"} + K] {n} = {0}, (C.11)
where
= {w" .y W}
_ T

{U}t = {UI’UZ’ UN+1} > (C.12a)
{Vi= {Vsz’ VN+1}T’
{W} = {WI’WZ’ ’WNH}T’

_ y

W= | W (C.12b)
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The coefficient matrices [M] and [K] appearing in (C.11) are
defined as

[Dyy] 0] [Bys] - [Bss]"
(M]= | [0] [Dg] (0] ;
(0] [0] [Dss]
—[Ass] - [«] [0] [0]
(K] = or —[Ay] - [a] [0 ,
[Bss] — [Bis] [0] [Ass] - [a]
(C.12¢)
(H] = (2,]{Z,} - a,
—2T, {”h}
1Z,) = —2To({nz}—1{:n})
—2M, {n,} - ZXO {n}

] [A*sinh (Aa)] + [H,] [y] [sinh (Aa)],

[0] [0] [Dss]
[H,]= | 0] [0] [o0]
(0] [o] [O]
[Bss] [0]  [0]
[Hy] = | [0] [Dg] [0]
(D] [0]  [Bys]
(C.124d)
The general solution of (C.11) can be written as
{n} = [v] [sinh (Ax)] {H}, (C13)

where [sinh(Ax)], [y], and (A3, 43,..., A% y,,)) are a 3(N +
1) x 3(N + 1) diagonal matrix, the modal matrix, and
eigenvalues of (—[M 17MKD), respectively. In addition, {H} is
an unknown vector containing 3(N+1) integration constants.
It should be noted that by satisfying the boundary condition
in (C.6a), (C.6b), and (C.6¢) the integration constants in {H}
are found; then the problem is solved entirely.

It remains to solve (C.5) subject to the boundary condi-
tions in (C.1) and (C.8). To this end, it is emphasized that the
boundary conditions in (C.8) will identically be satisfied if
the following expressions for the displacement components
in (C.5) are assumed:

e (63) = 3 fha ()50 1,05) £, () cos (0,
+ flko (),
£3) = 3 fha ()50 ), (3)co8 (00,

+f2ko ()
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9)= Y 54 ()50 )+ iy () 05 a0

+ fako ()
(C.14)
k! k m
30 (y) + fr (J’) +(=1)
[Du 1m%m T Dufzm“Zm - D12 3m
(C.15)

+ D12 4m_Bl3 Sm

f1ko(y) =0,

where «,,, = mn/a, «,,, = mmn/2a with m are the Fourier
integer. Upon substitution of (C.14) into (C.5), the following
ordinary differential equations are obtained:

ki ck
Bléfém] = 0’

DY fl — (DYag,, + AY) £l - ay,, (DS + DY) £1,
~ay,, (B}~ Bs) f, = 0,
iy (D + D) iy + D53 fiy — (Deled,
- (B}
= B) Sl + (B

~ (A%, + Dot fL, =0,

ki .

A4{1)fim
ik "

_3514) 6Jm=0’

B;k) ] +ij I

Xm ( m 44J 6m

(C.16a)

ki pitt (ki 2 ki it
Dyg 2m_(D11‘X2m )me “Zm( +D66) 3m

i 'k .
— Qo (Blé _BQS)fSJm =0,

kj kj il i ki 2
— O (DIZ + Dsa) + D22 3m (D 6%m T

+ AL £,

kj jk\ il _
- (Bz3 - B44) 5m 0,
Jjk jk\ il I
— O ( - B; )me ( - 323) + D44 5m
kj kj 2 i
- (A33 + Dss“zm) Jom =0,
(C.16b)
kj ,jtt kj jk\ i kji i _
Dy fi + (Bz3 - B44) 30~ Aufr =0
ki il ik 1 ki ,j (C'U)
i j j Joei _
D44 30 (B - B ) A33 30 © 0.

Considering (C.14), the boundary conditionsin (C.1)at y = b
and y = —b are given as

o0
ko _ kj ¢! ki cj .
Mxy - Z (Dss im ~ Degs 4m“1m) sin (&;,,,%)

m=1

k] JI
+ (D66 ot D66 3moch) cos (ay,,x)

ki, 1 _
+ D66Vj =0,
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kj il .
( -Dy, 2m“2m + Dzz 3m T st Sm) sin (e, )

aga-
I
M8

3
o

kj ¢j jl
+ (DIZ im%im t Dzz am T Bz3 6m) cos (ay,,x)

j! kjrr ! kj _
+D22 20+323 50 DU + BiW; =0,

(o]
]I .
Z ( 44) 3m +D44 Sm) sin (ay,,x)

m=

—_

k] Jl
+ (B44 am T D44 Gm) cos (&, %)

+ BﬁV + D44 3](; + B44 50 = 0.
(C.18)

By introducing Fourier sine and cosine expansions for the
underlined terms in (C.18), the following boundary condi-
tions at y = band y = —b can readily be obtained as

kj kj rj Jo
Dy, 20+Bza =750
(C.19)
k
kit ki _ Ko
D44 30 +B44 20 — _7’
kj ¢il ki ¢j k
Dy fim = DesLim®im =~
ki ¢j ! k
Dy fim®im + Dzz im T Bz3 om = ~Jim> (C.20a)
kj ¢j! _ ok
By fam + D44 6m =-Ki,.»
k] ]I k
Dys 2m+D66 3m“2m ==L,
jl k
D 12 2m“2m+D 22 3m+B 23 Sm = _]2m’ (CZOb)
ki il ok
B44 3m + D44 5m - —sz,
where
kiv 1 _ 1k
D66Vj =I" (x)
Ik

I
M8

Ifm sin (e, %) + Ié‘m cos (ay,x) + ?O
1

3
I

kj kj k
DléU]'. +BAW; = J* (%)

00 k
= Z ];(m sin (0,,,x) + ]fm cos (0, %) + 70
m=1
BV, = K* (x)
o0
= Z K% sin (%) + KY cos (0,,%)
m=1
Kk
+ R
27
(C.21a)
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where the coefficients I¥, K¥, and J* appearing in (C.21a) are
given as

Ir = é J I* (x) sin (ay,,x) dx,
KE = i J K* (x) cos (ay,,,x) dx,
Ik = é J 1* (x) cos (aty,x) dx,
KE = é J K* (x) sin (ay,,x) dx, (C.21b)
1
JE o= - J T (%) cos (aty,x) dx,
k_ 1 k
Jo = —J I (x)dx,
a
];(m = é J J* (x) sin (ay,x) dx,
v 1
Ky = | K (x) dx. (C.21¢)

In order to obtain the solution of (C.16a) and (C.16b), it
is assumed that the boundary conditions at y = -b and

= b appearing in (C.20a) and (C.20b) are identical. To
be able to impose the boundary conditions only at one edge,
say, at ¥ = b and, a significant advantage of this is to save
some computational time, the system of equations appearing
in (Cl6a) are 3(N + 1) coupled second-order ordinary
differential equations with constant coefficients which are
introduced in a matrix form as

[S1{e"} + (Gl {u} = {0}, (C22)
where
T i T, T
= {7
il _ N+1 T
{flm} - {flm flm"" } > (C23a)
(P = (Fon T T}
{fGJm} {fém fﬁm"" N+1}T)
Fm = Jy Fimdy. (C.23b)

The coeflicient matrices [S] and [G] appearing in (C.22)
for solving (C.16a) are given as follows:



14

[ [Dgs] —ay,n ([Dy] + [Dgs])
[S]= | [0] [Ds,]
(0] [Bu] - [323]

[ ([Ass]"'“lm[Dn])
yp ([Dr2] + [

(
L X1 ([Bss )

]) - ([A44] + “fm [D66])
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(0]
(0] |,
[Dya]

[0] i ([Bs] — [Bss]") 29
[Bys] - [Bas]”
(0] - ([Aaa] +ag, [Dss])

The coeflicient matrices [S] and [G] appearing in (C.22) for
solving (C.16b) are given as

[Des] 0 ([D12] + [Dgs])  10]
[S]=1 [0] (D] . o1 |,
(0] [Bay] = [Bys] [Dy4]
(C.23d)
- ([Ass] + “2m [D 1]) (0] —om ([313] - [B%S]T)
(Gl = | &, ([D 12] + [ ]T) - ([A44] + “gm [Des]) [Bys] = [Bud]
®om ([ ) (0] - ([A33] + (Xgm [Dss])
The coeflicient matrices [S] and [G] appearing in (C.22) for References

solving (C.17) are given as

5 - [[Dn] [Bza] - [Bus] ] ,

(D5 [Bu] - [Bss] (230
=[]
The general solution of (C.22) can be written as
{u} = [¢] [sinh (Ay)] {B}, (C.24)

where [sinh(Ay)], [£], and (A2, )\;, N )\é(Nﬂ)) area3(N+1)x
3(N + 1) diagonal matrix, the modal matrix, and eigenvalues
of (-[S]'[G)), respectively. Moreover, {B} is an unknown
vector containing 3(N+1) integration constants. By satisfying
the boundary condition in (C.20a) only at one edge, say, at
y = b, the integration constants in {B} are obtained; then the
problem is solved completely.

The solution procedure for (C.16b) with the boundary
conditions in (C.20b) and (C.17) and with the boundary
conditions in (C.19) is similar to the one discussed in (C.16b),
and therefore, for the sake of brevity, it will not be taken up
here. The boundary conditions in (C.15) will identically be
satisfied.
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