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Structures which are commonly used in our infrastructures are becoming lighter with progress inmaterial science.�ese structures
due to their light weight and low sti	ness have shown potential problem of wind-induced vibrations, a direct outcome of which is
fatigue failure. In particular, if the structure is long and 
exible, failure by fatigue will be inevitable if not designed properly. �e
main objective of this paper is to perform theoretical analysis for a novel free pendulum device as a passive vibration absorber. In
this paper, the beam-tipmass-free pendulum structure is treated as a 
exiblemultibody dynamic system and theANCF formulation
is used to demonstrate the coupled nonlinear dynamics of a large de
ection of a beam with an appendage consisting of a mass-ball
system. It is also aimed at showing the complete energy transfer between twomodes occurringwhen the beam frequency is twice the
ball frequency, which is known as autoparametric vibration absorption. Results are discussed and compared with �ndings of MSC
ADAMS. �is novel free pendulum device is practical and feasible passive vibration absorber in the mitigation of large amplitude
wind-induced vibrations in tra�c signal structures.

1. Introduction

Many mechanical systems can be modeled as a beam with a
lumped mass, such as a wing of an airplane with a mounted
engine, a robot arm carrying a welding tool, or a tra�c light.
Understanding the dynamics of those systems having 
exible
and slender beams is of great importance in vibration analyses
to prevent catastrophic failures of the structures. �erefore,
there is an extensive amount of experimental and numerical
work on the responses of beams in the nonlinear dynamics
and vibration �eld.

�ere is widespread interest in pendulum modeling and
the use of the pendulum as a vibration absorber. �is
interest ranges from the dynamics of Josephson’s Junction in
solid state physics [1] to the rolling motion of ships [2, 3]
and the rocking motion of buildings and structures under
earthquakes [4].

Autoparametric vibration absorber is a device designed
to absorb the energy from the primary mass (main mass)

at conditions of combined internal and external resonance.
Autoparametric resonance is a special case of parametric
vibration and is said to exist if the conditions at the internal
resonance and external resonance aremet simultaneously due
to external force [5–7]. Autoparametric vibration absorber
has received considerable attention since mid-1980s and
researchers published many interesting papers [8–19]. �ere
are many practical examples of designing vibration absorber
published using the concept of autoparametric resonance
[20–26].

�e �rst studies in multibody systems were on the
dynamics of the rigid bodies which were related to gyrody-
namics, the mechanism theory, and biomechanics. A good
review of this topic is given by Schiehlen [27]. One of the
�rst formalisms is given by Hooker and Margulies [28]
in which they analyzed the satellites interconnected with
spherical joints. Another formulation was published in 1967
by Roberson and Wittenburg [29]. Wittenburg [30] wrote
the �rst textbook on multibody dynamics in which he
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explained rigid body kinematics and dynamics as well as
general multibody systems. In 1988, Nikravesh [31] provided
information about the computer-aided analysis of multibody
systems in his textbook. Haug [32] provided basic methods of
the computer-aided kinematics and dynamics for spatial and
planar systems. Many more authors provided textbooks in
the �eld of kinematic and dynamic simulations of multibody
systems such as Roberson and Schwertassek [33], Huston
[34], and Garćıa de Jalón and Bayo [35].

Until now, we discussed papers and textbooks that were
related to the multibody systems consisting of rigid bod-
ies. However, in many applications, bodies undergo large
deformations, which necessitate the modeling of the 
exible
bodies. Flexible multibody systems have attracted many
researchers and several 
exible multibody formulations have
been established such as the 
oating frame of reference
method, incremental �nite element corotationalmethod, and
the large rotation vector method. Agrawal and Shabana [36]
proposed the component mode synthesis method in which
each elastic component is identi�ed by three sets of modes:
rigid body, reference modes, and normal modes. Rigid body
modes are used to describe the rigid body translation and
large rotations of a body reference, reference modes are
used to de�ne a unique displacement �eld, and the normal
modes are used to de�ne the deformation relative to the
body reference. An alternative formulation was proposed by
Yoo and Haug [37] in which a lumped mass �nite element
structural analysis formulation is used to generate deforma-
tion modes. In the 
oating reference frame formulation, a
mixed set of absolute and local deformation coordinates are
used to de�ne the con�guration of the deformable body [38–
40]. �is method became the most widely used approach
due to its straightforward nature. However, the mass matrix,
centrifugal, and Coriolis forces appear to be highly nonlinear.
�e incremental �nite element approach uses rotation angles
as nodal variables, which lead to linearized kinematic equa-
tions.�erefore, models obtained by using incremental �nite
elements cannot describe the exact rigid body displacements
[41]. In order to solve this problem in the incremental
�nite element approach, a di	erent approach called the
large rotation vector formulation has been proposed. In this
method, �nite rotations are employed instead of in�nitesimal
rotations, which results in an exactmodeling of the rigid body
displacements [42].

Most of the methods explained above su	er from highly
nonlinear terms inside the mass matrix, centrifugal, and
Coriolis forces.�erefore, a new approach called the absolute
nodal coordinate formulation (ANCF) was proposed for the
solution of large deformation problems [40, 43–50]. In this
formulation, instead of the angle of rotations, absolute slopes
are used as nodal variables.

In this paper, the beam-tip mass-ball structure is treated
as a 
exible multibody dynamic system and the ANCF
formulation is used to demonstrate the coupled nonlinear
dynamics of a large de
ection of a beam with an appendage
consisting of a mass-free pendulum system. �is novel free
pendulum device is practical and feasible passive vibration
absorber in the mitigation of large amplitude wind-induced
vibrations in tra�c signal structures.
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Figure 1: Planar beam element.

2. Formulation of Equations of Motions for
Flexible Multibody Dynamics

2.1. Displacement Field. In this paper, a planar beam element
is used to model 
exible beam under investigation. Referring
to Figure 1, the global position vector r of an arbitrary point� on the element is de�ned in terms of the nodal coordinates
and the element shape function as [44]

r = (�1�2) = Se, (1)

where S is the global shape function and e is the vector of
element nodal coordinates de�ned as

e = [�1 �2 �3 �4 �5 �6 �7 �8]� . (2)

�e elements of the vector of nodal coordinates are de�ned
as [44]

�1 = �1 (	 = 0) ,
�2 = �2 (	 = 0) ,
�3 = 
�1 (	 = 0)
	 ,
�4 = 
�2 (	 = 0)
	 ,
�5 = �1 (	 = �) ,
�6 = �2 (	 = �) ,
�7 = 
�1 (	 = �)
	 ,
�8 = 
�2 (	 = �)
	 ,

(3)

where � is the beam element length and 	 is the axial
coordinate that de�nes the position of an arbitrary point on
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Figure 2: Beam coordinate system.
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Figure 3: Global nodes.

the element in the undeformed state. �1, �2, �5, and �6 are the
absolute displacement coordinates and �3, �4, �7, and �8 are
the global slopes of the nodes.

�e element shape function can be de�ned as [43]

S = [1 0 2 0 3 0 4 0
0 1 0 2 0 3 0 4] , (4)

where

1 = 1 − 3�2 + 2�3,
2 = � (� − 2�2 + �3) ,
3 = 3�2 − 2�3,
4 = � (�3 − �2) ,
� = 	� .

(5)

2.2. Mass Matrix. Kinetic energy of the �nite element can be
written as

� = 12 ∫�ṙ�ṙ ��. (6)

Substituting (1) into (6) yields

� = 12 ė� (∫�S�S ��) ė = 12 ė�M�ė, (7)

where � is the element volume, � is the mass density of the
beam element material, and M� is the mass matrix of the
element. Using (7), the mass matrix of the element can be
calculated as

M� = ∫�S�S ��. (8)

2.3. Generalized Elastic Forces. In order to develop the
equations of motion of the beam element, generalized elastic
forces, Q�, corresponding to the beam element have to be
de�ned. If the strain energy of the element is �, then the
vector of elastic forces is de�ned as

Q� = (
�
e )� . (9)

In this paper, continuum mechanics approach is used to
derive the strain energy of the element in the absolute nodal
coordinate formulation. �is approach uses arc length to
de�ne the element deformation instead of using the local
coordinate system. �e strain energy of the element can be
written as

� = �� + �� = 12 ∫�
0
���2� �	 + 12 ∫�

0
� !2�	, (10)

where �� is the strain energy due to the longitudinal defor-
mation and �� is the strain energy due to the bending.
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�e longitudinal strain, ��, and the bending curvature, !,
can be de�ned as [51]

�� = 12 (r��r� − 1) ,
! = $$$$$$$$$

�2r�	2
$$$$$$$$$ .

(11)

Using (1), (9), (10), and (11), one can �nd the vector of elastic
forces as

Q� = K�e + K�e, (12)

where sti	ness matrices K� and K� are de�ned as [51]

K� = ��� ∫�
0
��S���,

K� = ∫�
0
� S���S���	.

(13)

More detailed derivation for the elastic forces is well
explained in [51].

2.4. Generalized Gravity Forces. Let % be the distributed
gravity force applied on an arbitrary point on the element.
�en, the virtual work done due to this external force can be
de�ned as

&'� = %�&r, (14)

where &r is the virtual change in the position vector of the
point of application of the force. Using (1), one can write the
virtual work term as

&'� = Q
�
�&e, (15)

whereQ� = S�% is the vector of generalized forces associated
with the element nodal coordinates.
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Using (15), virtual work due to the distributed gravity
force of the beam element for the planar case can be written
as

∫ [0 −�*] S&e ��
= -*[0 −12 0 − �12 0 −12 0 �12] &e.

(16)

�erefore, using (16), the vector of generalized distributed
gravity forces can be written as

Q� = -* [0 −12 0 − �12 0 −12 0 �12]
� . (17)

2.5. Generalized Constraint Forces. Let q =[51 52 53 ⋅ ⋅ ⋅ 5	]� be the set of generalized coordinates of
the 
exible body, where 7 is the number of coordinates. If7ℎ is the number of the constraints, where 7ℎ ≤ 7, then the
vector of constraint equations can be written in the form of

C (51, 52, . . . , 5	, :) = C (q, :)
= [<1 (q, :) <2 (q, :) ⋅ ⋅ ⋅ <	ℎ (q, :)]� = 0 (18)

and the Jacobian of the constraint equations can be de�ned
as

Cq (q, :) =

[[[[[[[[[[[[[
[


<1 (q, :)
q

<2 (q, :)
q...

<	ℎ (q, :)
q

]]]]]]]]]]]]]
]

= 0. (19)

Using the vector of Lagrange Multipliers, �, one can write
generalized constraint forces,Q�, as [40]

Q� = −Cq (q, :)� �, (20)

where Cq(q, :) is given by (19) and � is de�ned as

� =
[[[[[[[
[

D1D2...
D	ℎ

]]]]]]]
]

. (21)
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Figure 7: Computational algorithm for dynamic analysis.

2.6. Equations ofMotion. Using the principles of virtual work
in dynamics and the expression of the kinetic and strain
energies given in (6) and (10), the system equations ofmotion
in augmented form can be written as [40]

[M CT
q

Cq 0 ][q̈
�
] = [Q� −Q�

Q
] , (22)

where M is the constant symmetric mass matrix, � is the
vector of LagrangeMultipliers,Q� is the vector of body elastic
forces, Q� is the vector of the externally applied body forces
such as gravity, magnetic, and other forces, and the vectorQ
is given by [40]

Q = −C�� − (Cqq̇)q q̇ − 2Cq�q̇, (23)

where subscript : denotes partial di	erentiation with respect
to time.

3. Modeling Beam-Tip Mass-Free
Pendulum System

3.1. Coordinate Systems. Referring to Figure 2, the following
coordinate systems can be de�ned for the beam-tipmass-free
pendulum system:

(i) 	-H: inertial coordinate system
(ii) 	1-H1: body coordinate system of the tip mass, where

origin is rigidly attached to the center of mass of the
tip mass

(iii) 	2-H2: ball coordinate system, where origin attached
to the end of the beam and the coordinate system
rotates with the motion of the ball

(iv) 	3-H3: body coordinate system of the ball, where
origin is rigidly attached to the center of mass of the
ball.
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ẏ (m/s)

−0.5−0.05 0.05
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Figure 9: Ball locked/phase plane curves for the forcing frequency of 4.13Hz at steady state.

3.2. Generalized Coordinates. �e beam-tip mass-free pen-
dulum system consists of three bodies, among which the
beam is assumed to be 
exible, and the tip mass and ball
are assumed to be rigid. �e ANCF beam is modeled using
three �nite elements. Referring to Figure 3, the ANCF beam
element has four nodes; each node has four degrees of
freedom. �erefore, the total degree of freedom of the beam

is 16. �e vector of system generalized coordinates can be
de�ned as

qsys

= [�1 �2 ⋅ ⋅ ⋅ �15 �16 I J�1 J�2 J�1 J�2 K]� , (24)
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Figure 10: Frequency response curves for an excitation amplitude of 1mm peak-to-peak.
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Figure 11: Detailed dynamics of the system for the forcing frequency of 3.70Hz.

where [�1 �2 ⋅ ⋅ ⋅ �15 �16]� are beam absolute nodal coor-

dinates, [I J�1 J�2]� are ball (free pendulum) rotational

and translational coordinates, and [J�1 J�2 K]� are tip mass
translational and rotational coordinates, respectively.

3.3. Kinematic Constraints. �e connection between the free
end of the beam and the tip mass is modeled using a

�xed joint. Referring to Figure 4, the following constraint
equations for the �xed joint between the two bodies can be
written:

r� = R� + A�u�,
K − Arctan [�16�15 ] = 0, (25)
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where R� is the absolute displacement vector of the center of
mass of the tip appendage, r� is the absolute displacement
vector of the beam free end, A� is the transformation matrix
between the coordinates 	-H and 	1-H1, and u� is the
displacement vector of point A relative to point B in 	1-H1
coordinate system.

Constraint equations between the ball and the tip mass
can be de�ned such that the velocity of the contact point C
on the ball has to be equal to the velocity of the contact point
C on the tip mass. �erefore, referring to Figure 5, one can
write the following equations:

ṙC�
= ṙC� (26)

or

ṙC�
= ṙ� + Ȧ�1u�1,

ṙC�
= Ṙ� + Ȧ�2u�2, (27)

where ṙ� is the absolute velocity vector of the beam free end
A, Ṙ� is the absolute velocity vector of the center ofmass of the
ball, u�1 is the displacement vector of point C relative to point
A in 	2-H2 coordinate system, u�2 is the displacement vector
of point C relative to point D in 	3-H3 coordinate system,
Ȧ�1 is the time derivative of the transformation matrix A�1
between the coordinates 	-H and 	2-H2, and Ȧ�2 is the time
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Figure 17: Energy curves of the ball and the tip mass for the forcing frequency of 4.13Hz.

derivative of the transformation matrix A�2 between the
coordinates 	-H and 	3-H3.
3.4. Identifying Dependent and Independent Coordinates. �e
system has �ve dependent coordinates and seventeen inde-
pendent coordinates. For the numerical analysis, the vectors
of independent and dependent coordinates are selected as

q� = [�1 �2 ⋅ ⋅ ⋅ �15 �16 I]� ,
q = [J�1 J�2 J�1 J�2 K]� . (28)

3.5. Impact Force. Referring to Figure 6, if |N − K| ≥ 65∘, the
system will have impact between the tip mass and the ball.
�e average contact force, %�av , between the bodies during the
collision can be de�ned as

%�av = Δ�Δ: , (29)

where Δ: is the contact time and Δ� is the change in
momentum of one of the colliding bodies which can be
calculated using the conservation of momentum law and the
concept of coe�cient of restitution.

3.6. System Parameters. Numerical integration parameters,
rigid body parameters, and 
exible body parameters are given
in Table 1.

4. Numerical Solution

�e equations of motion of a multibody system consisting
of interconnected rigid and deformable bodies are a com-
bined set of ordinary di	erential and algebraic equations.
�ese kinds of equation sets are called di	erential algebraic
equations (DAEs) in literature. �e solutions to DAEs are
not as straightforward as ordinary di	erential equations.
Specialized numerical techniques have been developed for
the solution of DAEs. In this paper, the direct integration
approach based on the Wehage coordinate partitioning tech-
nique [52] and the Newmark [53] and the Newton-Raphson
methods is used for the solution of DAEs of the multibody
system under investigation.�e computational algorithm for
the dynamic analysis of the multibody system is given in
Figure 7.

5. Results

5.1. ANCF Results. System parameters given in Table 1
are used for the numerical solution, and detailed system
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Table 1: System parameters.

Numerical integration parameters Rigid body data Flexible beam data

Newmark
parameters

Newton-Raphson
parameters

Tip mass Ball Flexible beam

S = 0.7U = 0.36ℎ = 0.003 sec
� = 10−57� = 100

W� = 1.871 × 10−5 kg⋅m2-� = 0.1154 kgZ�2 = 0.0204m
W� = 3.15 × 10−7 kg⋅m2-� = 0.014 kg�� = 0.0075mJ = 0.0395m

� = 0.365/3m- = 0.116/3 kg� = 4.06 × 10−5m2� = 200Gpa = 8.47 × 10−12m4
	� = maximum number of iterations.
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Figure 18: Beam energy curves for the forcing frequency of 4.13Hz.

dynamics, including frequency response curves, time history
curves, FFT curves, phase plane curves, and energy curves,
are plotted for various base excitation frequencies. For each
of the numerical analyses, the frequency of the beam-tipmass
system is set to 4.13Hz, and in order tomaintain the condition
of autoparametric interaction the frequency of the ball is
tuned to one half of the beam-tipmass system frequency (i.e.,
it is set to 2.065Hz).

Before having detailed discussions on the unlocked ball
cases, one can refer to Figure 8, which shows the system
dynamics when the ball is locked. For the passive absorber

case, the ball is locked inside the housing track and the system
is excited at its natural frequency. Figure 9 shows the phase
plane curve of the system, where a periodic response can be
observed.

Figure 10 shows the frequency response (] in meters)
curves of the beam and the ball (N in degrees) for the
forcing amplitude of 1mmpeak-to-peak. To create this �gure,
numerical analyses with the base excitation frequencies
(^base in Hz) 3.50Hz, 3.70Hz, 3.80Hz, 3.85Hz, 3.90Hz,
3.95Hz, 4.00Hz, 4.05Hz, 4.10Hz, 4.13Hz, 4.25Hz, 4.40Hz,
4.50Hz, and 4.70Hz were performed. Steady-state response
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Figure 19: Comparison of the beam kinetic energy and the ball
kinetic energy for the forcing frequency of 4.13Hz.
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Figure 20: Comparison of the beam tip displacement, H, in active
(ball unlocked) and passive (ball locked) cases.

amplitudes were used to create frequency response curves. A
detailed investigation of Figure 10 reveals a strong autopara-
metric interaction between the beam and the free pendulum
when the forcing frequency reaches 3.95Hz and the �rst jump
phenomenon is observed.

As shown in Figure 10, point A on the beam response
curve and point C on the ball response curve are starting
points of the autoparametric region. �e oscillation of the
ball and the decrease in the beam response continue until
points B and D, where the frequency of the beam is 4.13Hz.
Points A-B on the beam response curve and points C-D
on the ball response curve are important as they de�ne
the complete energy exchange region. From Figure 10, it is
evident that the amplitude of the beam is decreased and the
energy is transferred to the ball when the primary resonance
case is reached. Moreover, the second peak observed in the
beam response is due to the beating phenomena and will be
explained later in this paper. In this paper, the detailed system
dynamics for the following important frequency values are
given: 3.70Hz is the frequency before the autoparametric

�base = 4.13Hz
Active absorber (red) and passive absorber (blue)

�
(d

eg
)

t (sec)

Angle �

Figure 21: Comparison of ball rotation angle in active (ball
unlocked) and passive (ball locked) cases.

region, 4.13Hz is the frequency at which complete energy
transfer occurs, and 4.25Hz is the frequency where beating
phenomena is observed.

Figures 11 and 12 show system (ball is free to move)
dynamics for the forcing frequency of 3.70Hz. �e time
history curves of the beam and the ball, shown in Figure 11,
are examined, in which the beam has oscillation, whereas the
ball does not have any signi�cance. �e phase plane curves
shown in Figure 12 are obtained for the full simulation time.
�erefore, curves start from the static equilibrium position.
A�er passing the transient response region, they go to
steady state, where darker circular patterns on the curves are

obtained. Beam H versus Ḣ and ball I versus İ curves prove
that the responses are periodic. �e noninteractive motion
between the beam and the ball can be veri�ed by examiningN versus K and I versus K curves in Figure 12. From these
curves, it is clear that both the beam and the ball frequency
ratios are one. Investigating the FFT curves in Figure 11
reveals that the dominant frequency information is due to
the base excitation. In this �gure, two peaks are observed, in
which one of them is the base excitation frequency, which is
dominant, and the other is the beam-mass frequency. Since
the ball is not oscillating, its frequency information cannot
be observed.

Among the numerical analysis performed for the system,
the most important results are given in Figures 13–19 for the
forcing frequency of 4.13Hz, where complete energy transfer
from the beam to the ball takes place. From Figure 16, one
can see that the beam frequency (4.13Hz) is twice the ball
frequency (2.065Hz) and the forcing frequency is equal to
the beam frequency (4.13Hz), which is the condition for the
complete autoparametric interaction. Coupling between the
modes of the beam and the ball can also be veri�ed by looking
to the phase plane curves of the system at steady state as
shown in Figure 15. �e loop shown in this �gure is the
evidence for one to two frequency relationships between the
beam and the ball. For further proof of the energy transfer,
one can refer to Figure 19, which shows the kinetic energies
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Figure 22: FFT of the system for the forcing frequency of 4.25Hz.

of the beam and the ball during the full simulation time.
From this �gure, one can see that the beam kinetic energy
diminishes as time passes; however, the ball kinetic energy
still exists. Detailed system energy curves given in Figures
17 and 18 will be compared with ADAMS results found in
Section 5.2 in order to validate the ANCF results.

Referring to Figure 20, which compares the transverse
displacement of the beam tip for active (ball unlocked) and
passive (ball locked) cases, and Figure 21, which compares
the rotational angle of the ball for unlocked and locked cases,
one can claim the free pendulum as a suitable autoparametric
vibration absorber under periodic excitation.

Referring to Figure 22, time history curves of the beam
and the ball for the forcing frequency of 4.25Hz show an
interesting phenomenon called beating in vibration litera-
ture. Beating can be expressed as a special case in which
the amplitude of the vibrations periodically varies when
the forcing frequency is very close to the frequency of
the free vibrations of the system. Beating is undesirable in
absorber systems because energy can be transferred from the
secondary system (ball) back to the primary system (beam-
tip mass). As it can be seen from the FFT of the ball in
Figure 22, besides the peak value at 2.065Hz that corresponds
to the ball frequency, peaks with values around 1.9Hz and
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Figure 23: Beating cycle (ball response curve).

2.2Hz have been observed which are di	erent from the exci-
tation frequency (4.25Hz) and the beam frequency (4.13Hz).
�e source of this peak can be attributed to the beating
phenomenon. �erefore, a beating computation analysis will
be performed to �gure out and con�rm this conclusion.

Figure 23 shows the time history curve of the ball during
a complete beating cycle. Referring to this �gure, the beating
period can be computed using the start and end time of the
cycle as follows:

beating period = 26.1 − 22.2 = 3.9 sec. (30)

Similarly, the oscillation period can be computed as

oscillation period = beating period8 = 0.4875 sec, (31)

where 8 is the number of oscillations during one complete
beating cycle.

Moreover, equations for the beating period and the
oscillation period in terms of the beating frequencies ^1 and^2 can be written as [54]

beating period = 2_^1 − ^2 ,
oscillation period = 4_^1 + ^2 .

(32)

Combining (30), (31), and (32) and solving for the unknown
frequencies, one can obtain

^1 = 13.82 rad/s = 2.2Hz,
^2 = 11.94 rad/s = 1.9Hz. (33)

�erefore, it is con�rmed that the additional peaks seen
around 1.9Hz and 2.2Hz in the ball FFT are due to beating.
Similarly, investigating the beam FFT curve in Figure 23, one
can see two major peaks corresponding to the excitation fre-
quency (4.25Hz) and the beam natural frequency (4.13Hz)
and twominor peaks corresponding to integer multiples (×2)
of the beating frequencies ^1 and ^2. Figure 24 shows impact
details of the system at the beating.

5.2. ADAMS Results. Since the system has complete energy
transfer at the forcing frequency of 4.13Hz, ADAMS simula-
tion is performed at this frequency, and the results are given
in Figures 25–30.

Comparing the transverse displacement curves of the
beam shown in Figures 16 and 27, one can see that both curves
start from the static equilibrium position −0.016m and have
their maximum value approximately around 0.003m before
5 seconds. A�er reaching the maximum value, they decrease
gradually, and toward the end of the simulation they have
small 
uctuations around the static equilibrium position.

Figures 26, 27, and 28 show details of the beam kinetic,
potential, and strain energies, respectively. Comparing Fig-
ure 28 with the beam strain energy curve given in Figure 18,
maximum strain energy is observed before 5 seconds and its
value is around 60N⋅mm. Similarly, for potential energy and
kinetic energy curves, maximum values are approximately
6N⋅mm and 3.25N⋅mm, respectively. In addition to the
numerical matches, similarities can be seen between the
decreasing and increasing trends of the strain energy, kinetic
energy, and potential energy curves of the two models.
Similar observations can be seen between the kinetic energy
and the potential energy curves of the ball and the tip mass.

In conclusion, the results obtained from ADAMS and
ANCF are observed to be in good quantitative and qualitative
agreement even though two methods used di	erent solution
approaches.

6. Conclusion

�is paper is concerned with the dynamics of a 
exible beam
with a tip mass-ball arrangement. �e system is treated as a

exible multibody system interconnected with joints. �e tip
mass and the ball are assumed to be rigid, and the beam is
treated as a 
exible body. Connection between the tip mass
and the free end of the beam is modeled using a �xed joint,
and the contact between the ball and the tip mass is modeled
using the geometry of the bodies.

�e absolute nodal coordinate formulation (ANCF) is
used to determine the mass matrix, sti	ness matrix, and
generalized forces of the system.Generalized elastic forces for
the 
exible beam are found using the continuum mechanics
approach. Nonlinear equations of motion of the system are
found using the Lagrangian Formulation, in which con-
straints are treated explicitly as extra equations by using
Lagrange Multipliers. �e resulting di	erential algebraic
equations are solved using a two-loop sparse matrix numer-
ical integration method, in which the kinematic constraint
equations are satis�ed at the position, velocity, and acceler-
ation levels.

�e detailed system dynamics including frequency
response curves, time history curves, FFT curves, phase
plane curves, and energy curves are plotted for various base
excitation frequencies. Numerical results are compared with
the results of previously studied similar systems and a good
qualitative agreement is observed.Moreover, the same system
with the same parameters is modeled using the mechanical
analysis so�ware, ADAMS, and the results are observed
to be in good quantitative agreement, although the two
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Figure 24: Impact details for the forcing frequency of 4.25Hz.
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Figure 25: Beam tip displacement, H, for the forcing frequency of
4.13Hz.
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Figure 26: Beam kinetic energy curve for the forcing frequency of
4.13Hz.

methods use di	erent formulations. �erefore, in view of the
numerical results, it is found that the free pendulum can
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Figure 27: Beam potential energy delta curve for the forcing
frequency of 4.13Hz.
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Figure 28: Beam strain energy curve for the forcing frequency of
4.13Hz.

be considered a suitable autoparametric vibration absorber
under periodic excitation.
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Figure 29: Ball potential energy delta curve for the forcing fre-
quency of 4.13Hz.
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Figure 30: Ball kinetic energy curve for the forcing frequency of
4.13Hz.

Futuristic structures will be made of materials like �ber
reinforced polymers which are much lighter than steel and
hence the vibration problemwill be more acute. For example,
tra�c signal light structures, highway signs, and luminaires
are observed to vibrate regularly at steady winds of 10
to 30mph. �e amplitude of vibration depends upon the
characteristics of the wind like mean speed, mean direction,
and gustiness; dynamic characteristics of the structures;
and shape and size of the structure. Vortex shedding and
bu	eting are the twopredominantwind-structure interaction
phenomena which could cause vibrations in this class of
structures, consistingmainly of a vertical pole and horizontal
arm and lights or signs attached to the arm.

�is study will provide useful information for designing
passive vibration control devices and systems in an exposed
environment. Also it will provide important information for
the design-iteration process leading to an optimum passive
vibration absorber for use in the real world. Results obtained
from this study will generate knowledge to develop (a)
better understanding of the working principles of control

systems, (b) design guidelines and standards, and (c) practical
approaches for design, fabrication, and �eld installations.

Competing Interests

�e authors declare that they have no competing interests.

References

[1] F. Salam and S. Sastry, “Dynamics of the forced Josephson
junction: the regions of chaos,” IEEE Transanctions on Circuits
and Systems, vol. 32, no. 8, pp. 784–796, 1985.

[2] W. Lee, A global analysis of a forced spring pendulum system
[Ph.D. thesis], University of California, Berkeley, Calif, USA,
1988.

[3] A. H. Nayfeh, D. T. Mook, and L. R. Marshall, “Nonlinear
coupling of pitch and roll modes in ship motions,” Jornal of
Hydrodynamics, vol. 7, no. 4, pp. 145–152, 1973.

[4] G. Mustafa, �ree-dimensional rocking and topping of block-
like structures on rigid foundation [M.S. thesis], Texas Tech
University, Lubbock, Tex, USA, 1987.

[5] R. A. Ibrahim, Parametric Random Vibration, John Wiley &
Sons, New York, NY, USA, 1985.

[6] A. H. Nayfeh and B. Balachandran, “Modal interactions in
dynamical and structural systems,” Applied Mechanics Reviews,
vol. 42, supplement 11, pp. S175–S201, 1989.

[7] A. H. Nayfeh, Nonlinear Interactions, Wiley, New York, NY,
USA, 2000.

[8] E. Sevin, “On the parametric excitation of pendulum-type
vibration absorber,” Journal of Applied Mechanics, vol. 28, no.
3, pp. 330–334, 1961.

[9] J.-C. Nissen, K. Popp, and B. Schmalhorst, “Optimization of a
non-linear dynamic vibration absorber,” Journal of Sound and
Vibration, vol. 99, no. 1, pp. 149–154, 1985.

[10] A. Ertas andG.Mustafa, “Real-time response of the simple pen-
dulum: an experimental technique,” Experimental Techniques,
vol. 16, no. 4, pp. 33–35, 1992.

[11] G. Mustafa and A. Ertas, “Dynamics and bifurcations of a
coupled column-pendulum oscillator,” Journal of Sound and
Vibration, vol. 182, no. 3, pp. 393–413, 1995.

[12] G. Mustafa and A. Ertas, “Experimental evidence of quasiperi-
odicity and its breakdown in the column-pendulum oscillator,”
Journal of Dynamic Systems, Measurement and Control, vol. 117,
no. 2, pp. 218–225, 1995.

[13] O. Cuvalci and A. Ertas, “Pendulum as vibration absorber for

exible structures: experiments and theory,” ASME Journal of
Vibration and Acoustics, vol. 118, no. 4, pp. 558–566, 1996.

[14] W. Lacarbonara, R. R. Soper, A. H. Nayfeh, and D. T. Mook,
“Nonclassical vibration absorber for pendulation reduction,”
Journal of Vibration and Control, vol. 7, no. 3, pp. 365–393, 2001.

[15] I. Cicek and A. Ertas, “Experimental investigation of beam-
tip mass and pendulum system under random excitation,”
Mechanical Systems and Signal Processing, vol. 16, no. 6, pp.
1059–1072, 2002.

[16] K. E. Rifai, G. Haller, and A. K. Bajaj, “Global dynamics of
an autoparametric spring-mass-pendulum system,” Nonlinear
Dynamics, vol. 49, no. 1-2, pp. 105–116, 2007.

[17] B. Vazquez-Gonzalez and G. Silva-Navarro, “Evaluation of the
autoparametric pendulum vibration absorber for a Du�ng
system,” Shock and Vibration, vol. 15, no. 3-4, pp. 355–368, 2008.



Shock and Vibration 19
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