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Abstract: MicroElectroMechanical Systems (MEMS) resonators are attracting increasing interest

because of their smaller size and better integrability as opposed to their quartz counterparts. However,

thermal drift of the natural frequency of silicon structures is one of the main issues that has hindered

the development of MEMS resonators. Extensive investigations have addressed both the fabrication

process (e.g., introducing heavy doping of the silicon) and the mechanical design (e.g., exploiting

proper orientation of the device, slots, nonlinearities). In this work, starting from experimental data

published in the literature, we show that a careful design can help reduce the thermal drift even

when slots are inserted in the devices in order to decrease thermoelastic losses. A custom numerical

code able to predict the dynamic behavior of MEMS resonators for different materials, orientations

and doping levels is coupled with an evolutionary optimization algorithm and the possibility to find

an optimal mechanical design is demonstrated on a tuning-fork resonator.

Keywords: MicroElectroMechanical Systems; resonators; modelling; optimization

1. Introduction

Quartz crystals, thanks to their phase noise, thermal stability, ageing properties and power

handling, were considered the frequency-reference industrial standard in the past century. Recently,

MicroElectroMechanical Systems (MEMS) resonators (see e.g., [1]) entered the market (see [2]) of

quartz oscillators as a possible solution to the increasing request of size reduction and integrability

with the electronics and the other MEMS devices.

Several examples of MEMS resonators fabricated either in single-crystal silicon (see e.g., [3]) or

polysilicon (see e.g., [4,5]) are available in the literature, but still need to be improved in terms of

thermal drift and power handling (see [6]).

The thermal drift is mainly related to the intrinsic temperature dependence of the elastic constants

(see e.g., [7–10]) and of the other thermal properties of silicon (i.e., thermal conductivity, specific heat

and thermal expansion coefficient).

A strategy which led to encouraging results consists in modifying the structure of silicon

through proper doping, either of n- or p- type. It has been recently proven that temperature

stabilization with n-doping is applicable to various types of resonance modes and that second order

temperature compensation comparable to that of quartz resonators is possible with doping higher

than 1020 cm−3 (see e.g., [3,11]). Alternative approaches have been put forward in the literature

such as temperature compensation methods that utilize either a tri-mode operation scheme (see [12])

or a nonlinear amplitude-frequency coupling (see [13]). Other solutions consist in the design of

lateral micromechanical resonators supported by proper mechanical structures that introduce stresses

to counteract temperature induced frequency shifts (see [14]), or of etch holes in Lamè resonators
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to modify their thermal drift (see [15]). Finally, active electronic compensations techniques are an

alternative viable solution (see e.g., [16]).

As a model problem, we will focus on the classical single-ended tuning-fork (SETF) resonator of

Figure 2a, fabricated in single-crystal silicon and vibrating according to an in-plane bending mode

(see Figure 2b). It is worth stressing that very similar conclusions could be reached working with

other types of resonators like torsional, Lamè or length extensional ones. This simple structure has the

benefit of featuring virtually zero anchor losses [17], dissipation originating mainly from thermoelastic

effects. We will also neglect any contribution from gas damping assuming near vacuum working

pressures and sufficiently large gaps. However, if required, this dissipation could be estimated as

suggested in [18,19].

In Section 2 the temperature dependence of all the mechanical and thermal properties of silicon

is analyzed for different levels of doping and then applied to predict the frequency drift and the

evolution of the quality factor of the SETF.

In Section 3, working on the analytical model of an idealized SETF, particular care is devoted

to the investigation of the effect of material orientation. We show that the SETF, for a fixed level of

doping, has an intrinsic lower bound of relative frequency drift associated with a specific material

orientation and independent of the resonator dimensions.

However, the rather low thermoelastic quality factor is a strong limit for practical applications.

A known strategy for improving Q consists in adding slots along the beams to reduce heat conduction

(see [20–23]). Regrettably, slots may also sensibly increase the frequency drift in temperature. This topic,

though of the greatest practical impact, has received relatively little attention in the literature and

represents the main focus of this work. With this aim, in Section 4 we present a custom Finite Element

Method (FEM) tool developed to compute the natural frequency and the quality factor of a MEMS

resonator under different temperature conditions. After addressing some comparisons with the

analytical solution, in Section 5 we introduce slots in the resonator beams and apply an optimization

tool based on an evolutionary algorithm to obtain a device that shows good performance in terms of

temperature stability and a high quality factor.

Closing remarks and future perspectives are reported in the last section.

2. Mechanical and Thermal Properties of Single-Crystal Silicon

Single-crystal silicon is a material with cubic symmetry (see [24]) and its stiffness matrix is defined

by three elastic constants c11, c12 and c44. If the Cartesian axes are aligned with the [100], [010] and

[001] directions, it reads, for T = 25 ◦C:

[C] =



















c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44
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165.7 63.9 63.9 0 0 0

63.9 165.7 63.9 0 0 0

63.9 63.9 165.7 0 0 0

0 0 0 79.6 0 0

0 0 0 0 79.6 0

0 0 0 0 0 79.6



















[GPa]. (1)

It is customary to express the temperature dependence of these coefficients with a quadratic

expansion:

cij = cij(@T=25 ◦C)(1 + Tcij1
∆T + Tcij2

∆T2) (2)

with ij =11, 12 or 44 and ∆T the temperature shift with respect to the environmental temperature

T = 25 ◦C. Limiting our attention to Posphorous doping, experimental data for Tcij1
and Tcij2

in (2) are

available in many sources (see e.g., [8,9,25,26]).

These data have been tabulated (see Table 1) and interpolated in order to provide estimates also

beyond the interval of available levels.
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Table 1. Doping concentration dependence of the elastic constants of silicon and their temperature

dependences. Elastic constants are expressed in GPa, while Tcij1
in ppm/◦C and Tcij2

in ppb/◦C2.

Doping Concentration
c11 c12 c44 Tc111

Tc121
Tc441

Tc112
Tc122

Tc442Type [cm−3]

dop-n 3.00 ×1013 [26] 165.64 63.94 79.51 −63.4 −78.7 −55.4 −35 −56 −7

dop-n 1.98 ×1019 [26] 163.94 64.77 79.19 −39.2 −116.2 −58.7 −118 NaN −28

P 4.10 ×1019 [8] 163 65.4 79.2 −34.5 −133.7 −67.8 −115 22 −51

P 4.66 ×1019 [8] 162.5 65.7 79.1 −32.5 −131.8 −68.7 −110 18 −43

P 6.60 ×1019 [9] 164 66.7 78.2 −34.2 −135.17 −67.8 −103.04 −1.1 −40.26

P 7.47 ×1019 [8] 161.4 66.1 78.5 −30.7 −134.9 −71.9 −78 −12 −31

As 1.20 ×1019 [9] 164.2 65.6 78.6 −46.58 −124.61 −63.12 −105.41 31.73 −45.21

As 1.66 ×1019 [8] 164 64.3 79.5 −48.5 −114.7 −63.7 −111 25 −58

As 2.46 ×1019 [8] 163.8 64.9 79.4 −44.2 −124.6 −65.1 −111 34 −55

Sb 1.30 ×1018 [9] 165.6 64.4 79.3 −65.5 −85.08 −60.92 −67.85 −28.1 −52.81

Once c11, c12 and c44 are computed for a given temperature and doping, the orientation ϑ of the

mechanical structure with respect to the [100] direction (see Figure 1) is taken into account through

a proper rotation applied to the stiffness matrix defined in (1). Please note that in the following,

if not otherwise specified, the mechanical structure is designed in a reference frame aligned with

the [100], [010] and [001] directions of the silicon wafer (i.e., ϑ = 0◦) and the doping is Phosporous

(P) with concentration 7.26 × 1019 cm−3. The elastic constants and their temperature dependences

for such level of doping concentration are obtained by fitting the experimental results reported in

Table 1. They read c11 = 161.41 GPa, c12 = 66.13 GPa, c44 = 78.56 GPa, Tc111
= −30.37 ppm/◦C,

Tc112
= −81.30 ppb/◦C2, Tc121

= −133.86 ppm/◦C, Tc122
= −8.70 ppb/◦C2, Tc441

= −71.69 ppm/◦C

and Tc442
= −30.39 ppb/◦C2. Please note that, if not otherwise specified, only the data from [8] for the

P-doping are used in the following for the sake of simplicity.

Figure 1. Material orientation of the local x1, x2 axes with respect to the wafer [100] direction.

Thermal properties of silicon have been less investigated in the past as a function of doping.

The thermal expansion coefficient (see [27]), the specific heat and the thermal conductivity (see [28])

are assumed doping-independent and equal to:

α(T) = 3.725(1 − exp(−5.88 × 10−3(T − 124))) + 5.548 × 10−4T + 0.0219)× 10−6 [K−1], (3)

cp(T) = 711 +
255

(

(T/300)1.85 − 1
)

(T/300)1.85 + 255/700
[J/(Kg × K)], (4)

k(T) = 145(T/298)−1.3 [W/(m × K)], (5)

respectively. The temperature dependence of the silicon density is finally expressed as:
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ρ(T) = 2330(1 − 3α(T)∆T + 9α(T)2
∆T2) [Kg/m3]. (6)

3. Analytical Model

Applying the theory of slender beams to each vibrating arm in Figure 2 and neglecting the

deformation of the lower connecting bar, the eigen-frequencies are:

fk =
λ2

k

2π

√

EJ

ρWtL4
(7)

where λk are tabulated coefficients (e.g., λ1 = 1.875), ρWt is the mass per unit length, J = 1/12tW3 is

the inertia modulus for in-plane bending, t is the out-of-plane thickness and E is the Young modulus

along the x2 axis, computed as the 22 coefficient of the inverse [C]−1 of the “rotated” stiffness matrix.

HB

L

W LB

s
y
m
m
e
tr
y

b)a)

x1

x2

Figure 2. Tuning fork resonator. (a) Schematic view of the tuning fork resonator with out of plane

thickness t. (b) First bending mode of the resonator. The contour of the displacement field is shown

in color.

An estimate of the thermoelastic quality factor Q is given by the classical Zener’s formula (see [29])

for a single beam in bending:

Q =
ρcp

Eα2T0

1 + (ωkτz)2

ωkτz
where τz =

W2

π2(k/(ρcp))
(8)

where α is the thermal expansion coefficient, cp is the specific heat, k is the thermal conductivity, T0 is

the temperature and ωk = 2π fk with fk defined in Equation (7).

3.1. Temperature Variation of Frequency

The temperature variation of the natural frequency of a MEMS tuning fork resonator is

investigated in the reference temperature range [−35 ◦C–85 ◦C]. The temperature coefficient of

frequency (TC f ) is typically defined for a given temperature as:

TC f =
1

f0(@25 ◦C)

d f0

dT
(9)

but here a global measure of relative frequency variation in the temperature range, measured in part

per million (ppm), is chosen as the indicator of the thermal drift of the device under study. It reads:

∆̃ f =
∆ f0

f0(@25 ◦C)
× 106 [ppm] (10)
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where

∆ f0 = max
T∈[−35 ◦C,+85 ◦C]

f0(T)− min
T∈[−35 ◦C,+85 ◦C]

f0(T). (11)

In this section, we apply the analytical formula (7) to obtain an appoximate estimate of ∆̃ f for the

resonator depicted in Figure 2, having the dimensions specified in Table 2. A constant out-of-plane

thickness t = 20µm is considered.

Table 2. Geometric dimensions of the tuning fork shown in Figure 2.

L 195 µm
HB 45 µm
W 20 µm
LB 34 µm
t 20 µm

In Figure 3, the frequency variation (expressed in ppm) with respect to the value computed at

25 ◦C is reported for different orientations ϑ of the tuning-fork resonator with respect to the wafer

(see Figure 1). A strong dependence of the thermal drift on ϑ (see e.g., [8]) is apparent: ∆̃ f sweeps

the entire range from 2100 ppm down to 160 ppm when ϑ increases from 0◦ to 45◦. Due to symmetry,

other values of ϑ would generate the same results.
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Figure 3. Frequency variation f0(T) − f0(25 ◦C) relative to f0(25 ◦C) for the tuning fork shown in

Figure 2 for different orientations ϑ.

In Figure 4, the ∆̃ f defined in (10) is reported for different levels of doping. Different minima are

reached for each level: this confirms the already known result that the higher is the doping, the lower

is the thermal drift of the MEMS resonator (see [9]). Moreover, each doping level is associated to a

specific orientation ϑ of the mechanical structure that minimizes the ∆̃ f . In Figure 5a, the countour

of ∆̃ f is plotted for different orientations of the mechanical structure and for a variety of n-doping

levels (not only Phosporous is considered for this analysis for the sake of completeness). In Figure 5b,

a curve of minima is extrapolated from Figure 5a. Please note that in Figure 5, the elastic constants and

their temperature coefficients for a set of n-doping levels (see dots in Figure 5b) have been taken either

directly from the values reported in Table 1 for different n-dopants and from their fitting, and for this

reason they may not be fully coherent being referred to different fabrication processes.
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Figure 4. Maximum temperature variation of the natural frequency of the tuning fork in the range

[−35 ◦C–85 ◦C] for different orientations of the device with respect to the silicon wafer and for different

dopings of the silicon.
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Figure 5. (a) ∆̃ f for different orientations of the device with respect to the silicon wafer and for different

n-dopings of the silicon. The white dotted line represents the minima of the contour plot. (b) Minimum

temperature variation of the natural frequency of the resonator for different n-dopings of the silicon.

Moreover, it can be extrapolated that ∆̃ f is expected to vanish for a n-doping slightly larger than

10−20 cm−3.

A remark is worth stressing here. Starting from formula (7) and Equations (2)–(5), it is possible

to express the Young modulus E, the density ρ and the generic length ℓ as: E = E0Ẽ(T), ρ = ρ0ρ̃(T),

ℓ = ℓ0ℓ̃(T), respectively. Each variable is given by the product of its value at 25 ◦C by a suitable non

dimensional (tilded) function of temperature. All dimensions scale as ℓ. Then,

f = f0 f̃ (T) with f̃ (T) =
1
˜ℓ(T)

√

Ẽ(T)

ρ̃(T)
. (12)

Next, applying the definition of ∆̃ f :

∆̃ f =
1

f̃ (25 ◦C)

(

max
[−35 ◦C,+85 ◦C]

f̃ (T)− min
[−35 ◦C,+85 ◦C]

f̃ (T)

)

(13)
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it is readily seen that ∆̃ f is independent of the geometric dimensions.

3.2. Temperature Coefficient of Quality Factor

Since the dynamic behavior of a MEMS resonator strongly depends on the quality factor Q, in

this section the focus will be on the study of such quantity. Please note that the stability in temperature

of the quality factor is a key issue in MEMS resonators since it is related to the motional resistance of

the device and consequently strongly influences the design of the control circuit.

The main contribution to damping in a MEMS tuning fork resonator is due to the thermoelastic

effects. Gas damping (see [18]) is usually negligible since MEMS resonators are packaged in very low

pressure conditions (see e.g., [2]). Also anchor losses (see [17]) can be neglected because of the chosen

mechanical design that prevents the propagation of elastic waves through the anchors.

In Figure 6 the temperature variation of the Q (see [29]) of the tuning fork resonator shown in

Figure 2 is reported for different orientations of the mechanical structure. Please note that the Q is

computed through Equation (8) under the hypotheses discussed in [29].

From Figure 6, it is evident that the dependence of the Q on the orientation of the resonator is not

negligible, but it is at the same time not as important as for the thermal drift of the natural frequencies

(see Figure 3).
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32.14
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Figure 6. Temperature variation of the quality factor of the tuning fork in the range [−35 ◦C–85 ◦C] for

different orientations ϑ of the device with respect to the silicon wafer.

Similarly, different levels of doping of the silicon do not influence the temperature dependence of

the Q in a significant way.

4. Validation on the Real 3D Structure

Analytical formulas contain many simplifying assumptions among which we may cite 3D effects,

rigid connecting bar, non perfectly 1D heat flow. Considering also the perspective of investigating

structures with slots, we start applying a custom FEM code to compute the frequency and the

thermoelastic Q of the MEMS addressed in the previous section under varying temperature conditions

and arbitrary material parameters. The 2D geometry of the MEMS resonator shown in Figure 2 is

meshed with quadratic triangular elements and is extruded in the out-of-plane direction.
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The equations of fully coupled thermoelasticity assuming zero body forces read (see [30]):

ρ
∂2u

∂t2
= divσ, σ = d(ε − α(T − T0)1), (14)

ρcp
∂T

∂t
= div(k grad T)− αT0

E

1 − 2ν

∂trε

∂t
. (15)

These equations are both enforced in a weak manner with a FE approach and the following strategy

is applied. First, the mechanical mode of interest uM = f(x)eiωRt is computed from Equation (14)

setting T = T0, i.e., neglecting thermal coupling. The associated strain field is then inserted in

Equation (15) to obtain the complex valued temperature T = (τR(x) + iτI(x))e
iωRt. Assuming the

shape of the mechanical mode is not affected by thermal coupling, we set u = f(x)ei(ωR+iωI)t and

compute ωI from the full weak-form of Equation (14). Finally, the quality factor is obtained as

Q = ω2
R/ω2

I .

The code is first utilized to reproduce the analytical plot of ∆̃ f and Q. While formula (7) is known

to be accurate, Equation (8) contains many approximations and larger deviations between numerical

and analytical data are expected. This is confirmed in Figures 7 and 8 where the comparison between

the analytical predictions and the numerical results are reported in terms of temperature variation of

both the natural frequency and the Q. As expected, the numerical results that take into account the

full 3D geometry of the SETF differ from the analytical solutions more in terms of Q than of natural

frequency. However, the qualitative conclusions drawn in the previous section remain unaffected:

• For a given level of doping and resonant mode type (e.g. bending-mode) the material orientation

has a strong impact on ∆̃ f and a clear minimum can be achieved. This value is essentially

independent of the mode-order and geometric dimensions. The same minima are obtained

analytically and numerically, although they might correspond to slightly different rotations of the

material axes.
• The impact of material orientation on the Q value is minimal, and the rather low Q is an intrinsic

limitation.
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Figure 7. Temperature variation of the frequency of the tuning fork in the range [−35 ◦C–85 ◦C] for

different orientations of the device with respect to the silicon wafer. Dotted lines denote numerical

results, while continuous lines represent the analytical solution shown in Figure 3.
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Figure 8. Temperature variation of the quality factor of the tuning fork in the range [−35 ◦C–85 ◦C] for

different orientations of the device with respect to the silicon wafer. Dotted lines denote numerical

results, while continuous lines represent the analytical solution shown in Figure 6.

5. Optimization of the Tuning Fork Resonator

Having shown how to minimize the ∆̃ f by adjusting the orientation of the resonator with respect

to the silicon wafer and the doping level, the main goal of this section is to point-out a good strategy

to maximize the quality factor of the MEMS resonator. Since it is known from the literature (see

e.g., [20–23]) that slots may significantly reduce the thermoelastic damping, we now focus on the new

model-geometry for a SETF depicted in Figure 9. Clearly, a multiplicity of slots could be included in

the model, but the potentialities of the proposed approach are better put in evidence with a single

one. Also, some constraints are included mimicking the technological process-dependent restrictions

(i.e., R > 1 µm and the ones reported in Tables 3 and 4). However, different constraints related to the

specific fabrication process one wants to use, can be easily inserted in the procedure once fixed.

HB

L

W LB

s
y
m
m
e
tr
y

R

Y

LH

Figure 9. Tuning fork resonator with one hole: geometric dimensions defining the slit.

As an example, and with reference to the dimensions of Table 2, in Figure 10a the quality factor

computed numerically at 25 ◦C for different positions of the slots is reported, while in Figure 10b the

corresponding frequency variations ∆̃ f are shown. Please note that the position Y of the hole in the

resonator influences both the quality factor and the ∆̃ f .
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Figure 10. Influence of the hole position on the (a) quality factor and (b) on the variation of the

frequency in the range [−35 ◦C–85 ◦C]: only the results for the orientation that minimize ∆̃ f in the case

of the SETF of Figure 2 is reported for the sake of clarity. In this analysis LH = 73 µm, R = 3 µm and the

other geometric dimensions of Table 2 are employed.

The mechanical design of the slots in a resonator is, as expected, a key point for the maximization

of the quality factor while preserving a small ∆̃ f . An optimization procedure that takes into account

all the geometric dimensions of the resonator is hence discussed in the next section.

5.1. Covariance Matrix Adaptation Evolution Strategy Optimization

The CMA-ES (Covariance Matrix Adaptation Evolution Strategy) is an evolutionary algorithm

for non-linear non-convex black-box optimization problems in the continuous domain (see [31,32] for

more details). The CMA-ES is a second order approach estimating a positive definite covariance matrix

within an iterative procedure. At difference from quasi-Newton methods, the CMA-ES does not use

exact or approximate gradients and does not even presume or require their existence. This makes

the method applicable to non-separable and/or badly conditioned problems where gradient-based

optimization algorithms usually fail.

The CMA-ES is only one possible choice in the family of non gradient-based algorithms.

Alternative options are, for instance, Particle Swarm Optimization (PSO) (see e.g., [33]) or genetic

algorithms (see e.g., [34]). It should be stressed, however, that our aim here is not to identify the

best possible optimization procedure, but rather to prove a viable procedure for the improvement of

resonators performance.

The CMA-ES does not require parameter tuning since finding the optimal parameters is considered

to be a part of the algorithm design itself. Only the choice of the population size is left to the user:

smaller sizes allow for faster convergence, larger sizes improve the global search performance (see [35]

for more details). An initial solution, an initial standard deviation and, possibly, the termination

criteria (e.g., a function tolerance) need to be set by the user as well.

The CMA-ES has been adopted as one of the standard tools for continuous optimization in many

fields. Among the wide variety of applications of the CMA-ES optimization tool, one can mention the

feedback control of combustion (see [36]), the turbulent friction drag reduction (see [37]), the design of

a human-competitive lens system (see [38]) and the structural health monitoring (see [39]).

In this work, the CMA-ES is adopted for the optimization of the geometry of the SETF MEMS

resonator in Figure 9. Depending on the quantity to minimize/maximize (e.g., quality factor, frequency

variation in temperature), different objective functions and geometric constraints will be defined in the

following. Eight optimization variables are considered:

x = [Y R LH L W LB ϑ HB] (16)



Sensors 2018, 18, 2157 11 of 15

where Y, R, LH, L, W, LB and HB are the geometric quantities shown in Figure 9 while ϑ defines the

orientation of the resonator (see Figure 1): ϑ = 0◦ refers to the alignment of the x1-axis with the [100]

direction of the silicon wafer as previously stated.

Moreover, an initial value x0 and a standard deviation σ for each of the eight variables are chosen:

this implies that the CMA-ES starts the search at x0 and initially performs the search mainly in the

range (x0 ± 2σ). In the following:

σ = [10 10 10 10 10 10 5 10]. (17)

The population size is chosen according to the default option equal to (4 + floor(3 × log(8))) while

the termination criteria, TolFun and TolX, are based on the changes of the objective function and of

the optimization variables, respectively (e.g., TolFun < 1 ×10−6 means that the algorithm stops if

changes of the objective function are smaller than 1 ×10−6). Lower and upper bounds are introduced

in the optimization procedure in order to mimic feasibility criteria of the resonator (e.g., no negative

dimensions and no slots radius smaller than 1 µm are allowed). Moreover, an upper bound for the

in-plane thickness of the cantilever (i.e., W< 35 µm) is chosen in order to obtain a relatively small

footprint of the MEMS resonator.

The doping P with concentration 7.26 ×1019 cm−3 and an out-of-plane thickness of the device

equal to 20 µm are fixed. Please note that it is in principle possible to add such parameters in the

optimization variables reported in Equation (16) without any further modification of the optimization

procedure. A Matlab routine has been implemented in order to combine the CMA-ES algorithm with

the FEM Fortran code already presented for the computation of the natural frequencies and the quality

factor of the resonator. At each iteration of the optimization procedure, a new mesh is generated and

the objective function is computed on the basis of the results of the FEM code.

5.1.1. Q Maximization

As a first test, in this section the CMA-ES is applied to maximize the quality factor Q of the MEMS

tuning-fork resonator shown in Figure 9. The reference environmental temperature is set to T0 = 25 ◦C.

The objective function of the CMA-ES in this case is chosen as:

fobj = −Q(@25 ◦C). (18)

In Table 3, two optimal designs obtained through the CMA-ES for different constraints on the

geometric parameters and on the natural frequency are reported. Both of them show a very high Q,

but since no constraints have been imposed on the thermal drift of the natural frequencies, the ∆̃ f is

quite high (i.e., around 1000 ppm) with respect to the minimum found in the previous sections for the

current doping level (i.e., 160 ppm). However, the results of Table 3 confirm the strong influence of

the slots on the quality factor and offer a systematic procedure to design a MEMS resonator with low

thermoelastic damping.

5.1.2. Multi-Objective Function

Starting from the promising results in terms of Q maximization, here the objective function is

properly chosen to combine the minimization of the frequency variation ∆̃ f in the range of temperature

[−35 ◦C–85 ◦C] and the maximization of the quality factor Q at 25 ◦C:

fobj = 100∆̃ f − Q(@25 ◦C) (19)

where the weight 100 is only a reasonable proposal based on the results of the previous sections and

could be indeed modified to overweight one of the two factors. In Table 4, the results of different

optimization runs are reported. Please note that different constraints have been imposed on both the

geometry and the natural frequencies of the resonators.



Sensors 2018, 18, 2157 12 of 15

Table 3. Optimal geometries computed through the CMA-ES optimization algorithm starting from

the geometry shown in Figure 9. The employed objective function reads: fobj = −Q(@25 ◦C). All the

geometric dimensions are reported in µm and the angles in degrees.

Geometry Optimization Options Results

(a)

x0 = [110 3 73 195 20 34 0 45]
0.3 MHz < f0 < 0.7 MHz
R < W/2–2.5 µm
Y −R > −HB + 2.5 µm
Y + LH + R < L −2.5 µm

x = [81.86 14.94 92.05 191.36 34.88
69.95 2.034 68.71]
fobj = −Q(@25 ◦C) = −237831.19
f0 = 0.30 MHz
∆̃ f = 1115.21 ppm

(b)

x0 = [110 3 73 195 20 34 0 45]
0.4 MHz < f0 < 0.6 MHz
R < W/2–4 µm
Y − R > −HB + 4 µm
Y + LH + R < L −4 µm

x = [−7.27 10.37 64.18 155.44 28.75
66.82 0.09 69.11]
fobj = −Q(@25 ◦C) = −82910.63
f0 = 0.40 MHz
∆̃ f = 936.86 ppm

Table 4. Optimal geometries computed through the CMA-ES optimization algorithm starting from

the geometry shown in Figure 9. The objective function reads: fobj = 100∆̃ f − Q(@25 ◦C). All the

geometric dimensions are reported in µm and the angles in degrees.

Geometry Optimization Options Results

(a)

x0 = [110 3 73 195 20 34 0 45]
0.3 MHz < f0 < 0.7 MHz
R < W/2–4.5 µm
Y −R > −HB + 4 µm
Y + LH + R < L −4 µm

x = [73.69 11.23 122.39 229.05 32.44
37.35 13.32 51.97]
fobj(x) = −45416.74
Q(@25 ◦C) = 62534.74
f0 = 0.31 MHz
∆̃ f = 171.18 ppm

(b)

x0 = [10 3 73 195 20 34 0 45]
0.3 MHz < f0 < 0.7 MHz
R < W/2–2.5 µm
Y − R>−HB + 2.5 µm
Y + LH + R < L −2.5 µm

x = [47.19 7.11 83.50 241.25 31.07
11.95 −12.996 93.35]
fobj(x) = −12126.73
Q(@25 ◦C) = 28164.73
f0 = 0.45 MHz
∆̃ f = 160.38 ppm

(c)

x0 = [110 3 73 195 20 34 0 45]
0.4 MHz < f0 < 0.6 MHz
R < W/2–4.5 µm
Y −R > −HB + 4 µm
Y + LH + R < L −4 µm

x = [90.10 9.68 87.17 239.46 33.20
74.95 −12.834 60.95]
fobj(x) = −14215.97
Q(@25 ◦C) = 30955.97
f0 = 0.44 MHz
∆̃ f = 167.4 ppm

Some remarks are worth stressing: (i) the problem is highly non-linear and has several local

minima that can be reached by varying initial conditions or constraints; (ii) a uniform convergence to

the global minimum could be achieved by enlarging the population size at the cost of more intensive

computations; (iii) independently of the previous remarks, all the different configurations summarized

in Table 4 are near optimal from an engineering point of view, both in terms of quality factor and

frequency variation. The minima for ∆̃ f are in the order of those of Figure 4 for the same doping

level while the Q(@25 ◦C) is consistently larger than the one shown in Figure 6. The CPU time for the

results shown in Tables 3 and 4 is around 48 hours of a computer DELL Intel Xeon CPU E3-1270 v3 @
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3.50 GHz with 32 GB of RAM. The use of the uncertainty quantification models (see e.g., [40]) that can

replace the costly FEM analyses after a proper training is currently under investigation.

6. Conclusions

The dynamic behaviour of a SETF MEMS resonator has been thoroughly analyzed both with

a simplified analytical model and a more comprehensive numerical tool. The dependence of the

natural frequency and of the quality factor on the doping level of the silicon, on the orientation of the

mechanical structure with respect to the wafer and on the geometry (e.g., slots) have been investigated

in the temperature range [−35 ◦C–85 ◦C].

An optimization procedure based on the evolutionary algorithm CMA-ES (available for download

in [41]) has been applied for the determination of the geometry of the MEMS resonator that maximizes

a suitably chosen multi-objective function accounting both for the quality factor and the frequency

drift in temperature. Different constraints have been imposed to prove the versatility and generality of

the proposed approach.

This work introduces a powerful strategy for the design of MEMS resonators, since the objective

function can be tuned or modified according to the needs of the users. The simulation approach can be

further extended to include the simulation of fluid damping (see e.g., [18]) and of anchor losses (see

e.g., [17]). These sources of damping, although negligible for the tuning-fork analyzed in the paper,

could be of importance for different mechanical designs. An experimental validation of the proposed

results is currently in progress.
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