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Abstract. The Fourier transform infrared (FTIR) spectra
of fine particulate matter (PM2.5) contain many important
absorption bands relevant for characterizing organic mat-
ter (OM) and obtaining organic matter to organic carbon
(OM/OC) ratios. However, extracting this information quan-
titatively – accounting for overlapping absorption bands and
relating absorption to molar abundance – and furthermore
relating abundances of functional groups to that of carbon
atoms poses several challenges. In this work, we define a
set of parameters that model these relationships and apply
a probabilistic framework to identify values consistent with
collocated field measurements of thermal–optical reflectance
organic carbon (TOR OC). Parameter values are character-
ized for various sample types identified by cluster analysis of
sample FTIR spectra, which are available for 17 sites in the
Interagency Monitoring of Protected Visual Environments
(IMPROVE) monitoring network (7 sites in 2011 and 10 ad-
ditional sites in 2013). The cluster analysis appears to sep-
arate samples according to predominant influence by dust,
residential wood burning, wildfire, urban sources, and bio-
genic aerosols.

Functional groups calibrations of aliphatic CH, alcohol
COH, carboxylic acid COOH, carboxylate COO, and amine
NH2 combined together reproduce TOR OC concentrations
with reasonable agreement (r = 0.96 for 2474 samples) and
provide OM/OC values generally consistent with our current
best estimate of ambient OC. The mean OM/OC ratios cor-
responding to sample types determined from cluster analysis

range between 1.4 and 2.0, though ratios for individual sam-
ples exhibit a larger range. Trends in OM/OC for sites aggre-
gated by region or year are compared with another regression
approach for estimating OM/OC ratios from a mass closure
equation of the major chemical species contributing to PM
fine mass. Differences in OM/OC estimates are observed ac-
cording to estimation method and are explained through the
sample types determined from spectral profiles of the PM.

1 Introduction

Organic mass to organic carbon (OM/OC) was originally
characterized using gas chromatograph–mass spectrometry
(GC-MS) data (White and Roberts, 1977; Turpin and Lim,
2001) by estimating molecular weight per carbon for individ-
ual molecules. However, the analyzed compounds only com-
prised a small fraction of the overall OM mass, and their rep-
resentativeness for actual aerosol mixtures has been a subject
of perennial inquiry. An alternative approach to estimate OM
from mass balance of chemical species obtained by sequen-
tial extraction has been demonstrated (El-Zanan et al., 2005,
2009; Polidori et al., 2008), but the labor-intensive operation
limits the number of samples that can be analyzed. To ob-
tain an effective OM/OC over a large number of samples for
a given site or season, regressing concentrations of a suite
of particulate matter (PM) components to the gravimetric
mass (via the “reconstructed fine mass” equation) in monitor-
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ing network measurements has been proposed (Frank, 2006;
Malm and Hand, 2007; Simon et al., 2011). However, the
results can be difficult to interpret on account of combined
measurement errors and intercorrelations among PM com-
ponent concentrations.

In this work, we advance our ability to estimate OM/OC
from Fourier Transform infrared (FTIR) spectra of PM
(Allen et al., 1994; Russell, 2003; Takahama and Ruggeri,
2017). In this approach, OM and OC is estimated from or-
ganic molecular structures in the PM detected by absorption
of mid-infrared radiation. The model for OC estimation from
functional groups (FGs), referred to as “FG-OC”, and rele-
vant background are presented in Sect. 1.1. A new framework
for constraining estimates through a combination of labora-
tory and ambient measurements and chemical simulations is
described in Sect. 1.2.

1.1 OM/OC by FG estimation

Another bottom-up approach for deriving estimates of
OM/OC is to use chemical measurements of atomic com-
position of the organic fraction using mass fragments from
high-resolution aerosol mass spectrometry (Aiken et al.,
2008) and FGs from FTIR. Here we focus on FTIR based on
its demonstrated capability to characterize PM2.5 on polyte-
trafluoroethylene (PTFE) filters collected in US monitoring
networks. The original concept of calibrating by FGs was
outlined by Anderson and Seyfried (1948) and Allen et al.
(1994) and further developed by Russell (2003) and Ruthen-
burg et al. (2014).

The areal FG-OC mass density mC on each sampled filter
i is constructed from the areal molar densities n of several
FGs, denoted by the index g:

mC,i =
MC

α

∑

g∈G∗
λC,gnig, (1)

where MC = 12.01 is the atomic mass of carbon, α is the
mass recovery fraction, and λC is a coefficient that can be
interpreted as the mean “fractional carbon” associated with
each FG within the set of measured FGs, G∗. Mass and mo-
lar densities typically take on units of µgm−3 and µmol m−3,
respectively. The molar densities of each FG are related to
spectral absorbances x by a separate linear model (Ruthen-
burg et al., 2014):

nig =
∑

j∈J
xijβ

(kg)

jg . (2)

The approximation made by Eq. (2) is that the absorbance
due to a substance is proportional to its abundance (Beer–
Lambert–Bouguer law) (Griffiths and Haseth, 2007); the co-
efficients of β embody the extent of overlap among target an-
alyte and interferents, and relation between absorbance and
molar densities. The coefficients are determined by calibra-
tion of laboratory-standard spectra to known molar densi-
ties of FGs; however, regularization must be used to solve

for β because the number of variables (spectral absorbances)
are typically greater than number of calibration samples, ab-
sorbances are multicollinear, and the inverse solution is sen-
sitive to small perturbations to the data. Partial least squares
(PLS) regression (Wold et al., 1983; Martens and Næs, 1991)
projects the spectra matrix and areal density of target analyte
onto a set of common latent variables, and regularization is
imposed by truncating the number of these variables. There-
fore, β is a function of the regularization parameter – the
number of latent variables k retained – for each FG. Further
details for PLS are provided in Appendix B, and a summary
of symbols related to the FG-OC model is provided in Ta-
ble A1.

From the same molar densities of FGs used to estimate
mC, molar densities of non-carbon atoms in set A∗ can be
added to provide an estimate of OM:

(OM)i = mC,i +
∑

g∈G∗

∑

a∈A∗
Maλagnig,

where λag are integers relating FG abundances to composi-
tion of atoms a and – unlike λC,g – are well defined. OM/OC
is estimated by normalization to estimated carbon:

(OM/OC)i = 1 +
∑

g∈G∗
∑

a∈A∗Maλagnig

mC,i

. (3)

There are two specific challenges associated with OC es-
timation from FGs, which also affect OM and OM/OC esti-
mates. The first is to select the appropriate model (β) when
a nonunique set of regularization parameters generate sim-
ilar predictions for laboratory standards used for valida-
tion but vary widely in their predictions in ambient sam-
ples (Reggente et al., 2019). The second is to determine
a relationship between FG abundance to number of carbon
atoms (through λC and α) since many carbon atoms can be
polyfunctional, functionalized with FGs that are not mea-
sured, or not functionalized to be detectable by FTIR. The
fractional carbon parameter λC takes on values of unity or
less to prevent multiplicitous enumeration of the same car-
bon atom from knowledge of FG abundance. For instance,
λC,aCH = 0.5 for methylene carbon leads to the correct esti-
mate of one carbon atom for every two aliphatic CH (aCH)
groups measured. Similarly, λC,aCH = 0.33 corresponds to
methyl carbon, λC,aCH = 1 to methine carbon, and so on.
Conventionally, λC was obtained by assuming the most nu-
merous configurations of carbon present in assumed archety-
pal molecules (e.g., linear hydrocarbon or ring-structured
compounds). Values assumed in previous works range be-
tween 0.39 and 0.88 (Allen et al., 1994; Russell, 2003; Reff
et al., 2007; Chhabra et al., 2011; Ruthenburg et al., 2014;
Table S1 in the Supplement); similar uncertainties exist for
other FGs. Takahama and Ruggeri (2017) proposed an exten-
sion to this approach whereby organic molecules and molec-
ular mixtures are conceptualized as a collection of function-
alized carbon atoms. Based on the FGs for which calibrations
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are built, λC can be estimated from the number of measured
bonds on each carbon atom or by regression over a collection
of carbon atoms. Likewise, the detectable fraction of carbon
atoms, α, in molecules and molecular mixtures can be cal-
culated exactly within this scheme. This approach was illus-
trated for molecules found in the aerosol phase from a sim-
ulation of α-pinene photooxidation (in the presence of NOx)
coupled with gas–particle partitioning (Ruggeri et al., 2016).

Parameter selection based on surrogate samples (either
laboratory samples or virtual molecules in simulation) and
independent estimation of ambient OC and OM is the ulti-
mate objective for operational use of FTIR. However, there
are inherent differences in chemical composition (i.e., molec-
ular structure, mixture complexity) between such surrogate
samples or mixtures with real, ambient PM. Past studies
to evaluate a limited number of parameter selection ap-
proaches, however, have led to various degrees of agreement
between FG-OC and thermal–optical reflectance organic car-
bon (TOR OC), and it was unclear how this bias was man-
ifested in OM/OC estimates reported by FTIR. Therefore,
at the current stage of development, we define our objec-
tive to devise a framework to characterize the multitude of
plausible parameters that are consistent with available field
measurements. Because we do not have reference values for
each FG in ambient samples, we turn to available observa-
tional data with lower chemical resolution (TOR OC) as ref-
erence, together with a probabilistic framework (Sect. 1.2)
for providing plausible estimates for model parameters. De-
spite known artifacts (Watson et al., 2005; Chow et al., 2005;
Cheng et al., 2011; Chan et al., 2019), TOR OC serves as
a useful target for FG-OC calibration at this stage to con-
strain its parameter uncertainties. The implications of these
artifacts are also taken into consideration in the model eval-
uation stage. This strategy furthermore allows estimation of
OM/OC from FTIR that are consistent with TOR OC, which
is widely used as a reference for OC.

1.2 Probabilistic framework

The inverse problem of parameter estimation in calibration is
ill-posed, meaning that small differences in the input – either
data or model parameters – may lead to instabilities in the so-
lution (i.e., parameter estimates) (Kabanikhin, 2008; Calvetti
and Somersalo, 2018). Bayes’ theorem (Bayes, 1763; Robert
and Casella, 2010; Gelman et al., 2013) provides a theoret-
ical foundation for introducing regularization (i.e., auxiliary
knowledge) in natural units of the parameters to stabilize the
solution and for characterizing plausibility of candidate pa-
rameters. Letting p broadly denote any probability density or
mass function, the theorem can be written as

p(θ |y) =
p(y|θ)p(θ)

p(y)
(4)

where p(y) =
∫

θ
p(y|θ)p(θ)dθ , y is the observed data (TOR

OC), θ = {θ1,θ2, . . .θD} is the parameter vector of dimen-

sion D (which includes unfixed FG-OC and PLS parame-
ters), p(θ) is the prior distribution of parameters, p(y|θ) is
the likelihood, and p(θ |y) is the posterior distribution. The
model for FG-OC (mC, Eq. 1) and explanatory variables (am-
bient sample spectra, denoted by x in Eq. 2) corresponding
to each TOR OC observation are assumed given and are ex-
cluded in this notation (Gelman et al., 2013). In this multi-
variate context, a single integral denotes an integral or sum
over all parameters. Notation related to probabilistic mod-
eling is summarized in Table A2; data and models used for
each of these terms are further described in later sections.

As apparent from Eq. (4), model parameters are treated as
random variables and therefore intrinsically associated with
probability distributions. p(θ) serves as the mechanism for
regularization, and its influence on final estimates p(y|θ) be-
comes diminishingly small with increasing number of obser-
vations y. p(y|θ) reflects plausibility of parameters evaluated
from model–measurement agreement; the epistemic uncer-
tainty characterized by this distribution (O’Hagan, 2004) is
reduced in accordance with informativeness of y. As a point
of contrast, conventional modeling approaches typically rely
on expected values of p(θ) to fix model parameters for for-
ward estimation of y from x. Possibly using their distribu-
tions for error propagation. The inverse problem is formu-
lated as an optimization problem to obtain a point estimate
of θ that maximizes p(y|θ), without incorporating knowl-
edge of p(θ). Confidence intervals or prediction intervals ob-
tained through this classical approach reflect the aleatoric un-
certainty attributed to measurement errors and limitations of
statistical sampling (Dowd, 2018).

Bayesian inference has been used previously in atmo-
spheric modeling (e.g., Pinder et al., 2006; San Martini
et al., 2006; Thompson et al., 2011; Henderson et al., 2012;
Wang et al., 2013; Tukiainen et al., 2016) for estimating
under-constrained parameters using field observations in sev-
eral different contexts. We adopt this approach to provide
probabilistic estimates to unknown parameters; starting from
prior distributions derived from laboratory measurements
and available molecular structures, and updating them based
on their plausibility for modeling OC as reported by TOR. In
particular, the mass recovery fraction of OC is explicitly in-
cluded as an unknown parameter for estimation to allow bet-
ter understanding of potentially measured and unmeasured
contributions of carbon to FG-OC, separate from remaining
biases with respect to the TOR measurements. We describe
the measurements used in Sect. 2 and adaptation of this mod-
eling framework in Sect. 3. Results are presented in Sect. 4,
and concluding remarks are provided in Sect. 5.

2 Experimental data

We apply this method to the Interagency Monitoring of
Protected Visual Environments (IMPROVE) (http://vista.
cira.colostate.edu/Improve/, last access: 25 March 2020)
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Figure 1. Map of IMPROVE network monitoring sites used in this work. For analysis in Sect. 4.4, the contiguous US is divided into four
quadrants (vertical and horizontal dashed red lines centered at 40◦ N and −100◦ W); Alaska is considered a separate region.

2011 and 2013 data set (2474 samples) used by Reggente
et al. (2016) and Takahama et al. (2019), except that the
Baengnyeong Island, South Korea, site is excluded to focus
on the US sites (Fig. 1). The Sac and Fox, KS, site was dis-
continued mid-2011 and so is not included in the analysis for
the 2013 data set. Contiguous US sites are further demarcated
into Northeast, Southeast, Southwest, and Northwest regions
by the position 40◦ N and −100◦ W following the conven-
tion of Hand et al. (2019). The data set consists of reported
values and uncertainties for gravimetry, TOR, X-ray fluores-
cence (XRF), and ion chromatography (IC), which are used
for Bayesian calibration and regression analysis of the recon-
structed fine mass (RCFM) equation (Sect. 3.3). The reported
data were obtained from the Federal Land Manager Environ-
mental Database (FED) (http://views.cira.colostate.edu/fed/;
last access: 16 August 2019).

For FG calibrations, we use 250 laboratory-standard sam-
ples consisting of nine type of organic compounds and or-
ganic blanks (ammonium sulfate standards with no organ-
ics) previously prepared by Ruthenburg et al. (2014). The
calibration models of Kamruzzaman et al. (2018) and Boris
et al. (2019) are additionally adapted for quantification of the
amine and carboxylate content, respectively. PTFE of ambi-
ent and laboratory samples were analyzed nondestructively
by FTIR in transmission mode (Maria et al., 2003) after plac-
ing them in a custom mini-chamber purged with air passed
through a molecular sieve to remove water vapor and car-
bon dioxide (Ruthenburg et al., 2014; Debus et al., 2019).
Spectra were truncated to the region above 1500 cm−1 and
baseline-corrected (Kuzmiakova et al., 2016) to reduce scat-
tering contributions from the PTFE filter (McClenny et al.,

1985) and particles (Takahama et al., 2019). Further details
on the sample collection, analysis, and spectra processing
steps are described by previous works (Ruthenburg et al.,
2014; Reggente et al., 2016; Debus et al., 2019; Takahama
et al., 2019). This body of work leads to a collective set of
measured functional groups G∗ consisting of aliphatic CH
(aCH), alcohol COH (aCOH), carboxylic COOH (COOH),
nonacid carbonyl (naCO) (which includes ketone and ester),
carboxylate COO (oxOCO), and amine NH2 (NH2). Uncer-
tainties in PLS calibration and molecular structure parame-
ters only associated with aCH, aCOH, and COOH are con-
sidered, since the other species did not contribute an ap-
preciable amount to the FG-OC over a range of parameters
considered. Because of the inclusion of COOH (for which
λC,COOH = 1) and additional fixed contributions from sev-
eral FGs, the mass recovery parameter α in Eq. (1) can be
uniquely distinguished from λC,aCH and λC,aCOH, leading to
a model that is identifiable (Walter and Pronzato, 1997).

3 Statistical analysis

3.1 Cluster analysis of spectra

Effective model parameters for a group of samples can be
estimated at the level of each site or season directly. How-
ever, estimating parameters for a group of chemically similar
samples instead is favorable in that parameter values associ-
ated with molecular structure are more likely to be represen-
tative for each sample in a less diverse population. Normal-
ized FTIR spectra are used as indicators of chemical compo-
sition and grouped by hierarchical cluster analysis according
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to similarity (Hastie et al., 2009; Russell et al., 2009) (further
details are provided in Sect. S3 in the Supplement). Model
parameters are then applied to each member sample and ag-
gregate statistics for OM and OM/OC are obtained for each
site and season from their constituent samples.

3.2 Bayesian calibration

The following statistical model,

yi ∼ N(mC,i,σi) = mC,i + εi, (5)

assumes that systematic variations in TOR OC y in each sam-
ple i are modeled by FG-OC mC and that non-systematic
contributions of measurement errors ε are normally dis-
tributed with standard deviation σ (San Martini et al., 2006;
Skoog et al., 2017). The likelihood function in this model
corresponds to

p(y|θ) =
∏

i∈S

(

1

2πσ 2
i

)1/2

exp

[

−
(

yi − mC,i

)2

2σ 2
i

]

, (6)

where the product is taken over all samples in the set denoted
by S .

Choosing a prior distribution p(θ) (Eq. 4) is not a trivial
task (Bishop, 2009). Where possible, it is desirable to have an
informative but weak prior that does not have disproportion-
ate impact on the results. The prior distribution also imposes
bounds on the solution in that the likelihood estimated from
Eq. (6) is substantially downweighted in near-zero probabil-
ity density regions specified by the prior (or not considered in
regions where the density is identically zero for distributions
with finite bounds).

We parameterize the uncertainty σ 2 in Eq. (6) as

σ 2
i = σ 2

0 + κ2y2
i , (7)

with σ 2
0 denoting the irreducible error and κ2 denoting a

coefficient for the heteroscedastic (concentration-dependent)
error. These terms have familiar interpretations as 2σ0 is a
typical measure of the minimum detection limit (MDL), and
κ corresponds to the relative standard deviation (σ/y) in the
limit of high concentrations (y ≫ σ0). σ 2 for each sample is
calculated from combined uncertainties of the thermal frac-
tions of TOR OC, and initial estimates for these two param-
eters are obtained via regression to y. As reported to the IM-
PROVE database, TOR OC uncertainties are assumed to be
independent across samples, and correlation of errors across
thermal fractions for each sample are omitted. σ0 is kept
fixed to the fitted value of 0.04 µgm−3, as 2σ0 is higher than
that reported for the TOR OC MDL (0.05 µgm−3) (Dillner
and Takahama, 2015), and serves as a conservative estimate.
The fitted κ is approximately 7 %, which is lower than collo-
cated precision or overall errors (κ ∼ 15%) that have been re-
ported elsewhere (Dillner and Takahama, 2015; Brown et al.,
2017). Therefore, we include κ2 as an additional unknown

parameter to be estimated and assume an inverse gamma dis-
tribution around the fitted value for the prior. Uncertainties
in n and molecular structure parameters due to model vari-
ance of Eqs. (2) and (C2) are not included in this estimate.
The analytical precision (typically within 5 %) is greater than
that of TOR (Debus et al., 2019), but collocated precision
can be similar in magnitude (Dillner and Takahama, 2015).
Incorporating these considerations into Eq. (6) poses addi-
tional challenges (Rock et al., 1977) and is not considered
for this study. Because of the heteroscedastic error model
(Eq. 7), samples with lower concentrations can have com-
parable or greater impact on the likelihood; the abundance
of lower-concentration samples (according to approximately
lognormal concentrations in atmospheric samples; Ott, 1994)
means a few high-concentration points have less influence on
parameter estimation (Sect. S2).

To estimate probabilities associated with the number of
PLS latent variables, we use mean-square error of cross vali-
dation (MSECV) typically used for model selection and con-
vert it into probabilities using Boltzmann weighting (Ap-
pendix C1). The proposed approach leads to a prior favoring
solutions with lower MSECV estimated for the calibration
set (laboratory standards) and downweighting substantially
high-bias (high MSECV) solutions that are not sufficiently
complex to capture the spectral variations for quantification
of the FG (Fig. S1 in the Supplement).

The priors for structural parameters λC,g and α are esti-
mated from virtual mixtures of primary organic aerosol com-
pounds from automobile exhaust and wood burning mea-
sured by GC-MS (Rogge et al., 1993, 1998) and secondary
organic aerosol compounds in the Master Chemical Mech-
anism v3.3.1 database (Jenkin et al., 1997; Saunders et al.,
2003). In both data sets, compounds likely to be in the
aerosol phase were selected based on volatility (equilib-
rium vapor concentration C0 ≤ 103.5 µgm−3) (e.g., Robin-
son et al., 2007). Further details of the method are provided
in Appendix C2, and results of the analysis are given in
Sect. 4.1.

Having defined the likelihood function and prior distri-
butions, we obtain the posterior probability p(θ |y) from
measurements of y in two ways. Our primary technique is
Markov chain Monte Carlo (MCMC), which evaluates the
unnormalized posterior p(y|θ)p(θ) for numerically sampled
values of θ . We also confirm our results using Laplace’s
method, which is a Gaussian approximation of the maximum
of the unnormalized posterior. This method can only be used
for continuous variables, so it is applied for each combina-
tion of kg . More details on these techniques are provided in
Appendix D.

3.3 Reconstructed fine mass regression

For comparison, we estimate OM/OC as interpreted by coef-
ficients of the RCFM equation (a statement of mass closure)
used by the IMPROVE network (Malm et al., 1994; Malm

www.atmos-meas-tech.net/13/1517/2020/ Atmos. Meas. Tech., 13, 1517–1538, 2020



1522 C. Bürki et al.: OM/OC estimation

Figure 2. Prior distributions for λC and α. Histograms are generated from estimates from subsets of molecules representing a combination
of primary and secondary organic aerosols, and red lines are fitted parametric distributions (Weibull for λC to capture asymmetry and normal
for α).

and Hand, 2007; Chow et al., 2015). Given the atmospheric
concentration (µgm−3) c of a substance, regression is used
to obtain coefficients a:

cFM − cEC − cSS = aAScAS + aANcAN + aOCcOC

+ adustcdust. (8)

FM is the dry fine mass concentration, measured by gravi-
metric analysis and corrected for particle-bound water us-
ing available relative humidity measurements of the analy-
sis laboratory and hygroscopic growth factors for constituent
species as described by Hand et al. (2019). AS and AN are
ammonium sulfate and nitrate, respectively, estimated from
the sulfate and nitrate under the assumption of full neutral-
ization. SS is sea salt, estimated as 1.8 times the chloride
concentration. Dust, also referred to as “soil,” is calculated
from assumed oxide forms of silicon, calcium, iron, and ti-
tanium. OC and EC are as quantified by the TOR method
(Sect. 2). To reduce collinearity among variables, EC and
SS are not included in the regression but subtracted from
FM a priori (Simon et al., 2011; Hand et al., 2019). The
coefficients and their confidence intervals are obtained by
multiple linear regression (MLR) solved by ordinary least
squares (OLS) (Weisberg, 2013) and error-in-variables re-
gression (EIV) (Fuller, 1987) as described by Hand et al.
(2019) and Simon et al. (2011), respectively. To avoid con-
fusion with other approaches described in this study, the two
methods for solving Eq. (8) will be collectively referred to as
RCFM regression and labeled as RCFM-OLS and RCFM-
EIV. Furthermore, the results of aOC will be referred to as
the OM/OC ratio estimate according to this approach. OLS
does not consider heteroscedasticity or relative magnitude of
measurement errors of any variable, which can lead to biased
coefficient estimates and confidence intervals that do not re-
flect the actual uncertainty (Fuller, 1987; Simon et al., 2011;
Weisberg, 2013). The latter issue is addressed in this work
by providing confidence intervals obtained by bootstrapping
(Davison and Hinkley, 1997). EIV regression alleviates this
problem by considering measurement errors of both explana-
tory and response variables explicitly (neglecting error co-

variances in this implementation); however, the estimates are
subject to the accuracy of estimated measurement errors. The
implementation provided by Simon et al. (2011) is used for
estimation of coefficients and their uncertainties. Analyti-
cal uncertainties reported for each measurement are used for
their estimates, but unaccounted systematic biases can affect
the coefficient aOC (Hand et al., 2019).

4 Results

For this paper, we limit our focus on topics related to
the estimation of parameters that generate FG-OC congru-
ent with TOR OC concentrations and comparisons of new
OM/OC ratios obtained by FTIR with RCFM regression es-
timates. Obtaining FG composition for each filter sample
enables analysis of site-specific OM/OC ratios and source-
class characteristics in much greater detail, and is reserved
for a separate, dedicated paper on the subject. The follow-
ing subsections cover characterization of prior distributions
estimated for the unknown molecular structure parameters
λC and α (Sect. 4.1), description of spectral clusters formed
(Sect. 4.2), posterior parameter estimates (Sect. 4.3), and
comparison with RCFM regression (Sect. 4.4).

4.1 Prior distributions

Prior distributions of structural parameters obtained by the
method described in Sect. 3.2 are summarized in Fig. 2.
The values between 0.46 and 0.48 for λC,aCH are consis-
tent methylene (CH2) group structures, though another rea-
son this narrow distribution can occur is that single aliphatic
CH bonds are often found together with one other measured
FG on the same carbon atom (Takahama and Ruggeri, 2017).
In such cases, a value of λC,aCH close to 0.5 prevents double
counting of carbon by the two bonds (Sect. 1.1). The broad
values for λC,aCOH reflect the diverse carbon types in which
alcohol groups are found. The α value centered around 0.74
reflects the undetected carbon fraction, typically missed due
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Figure 3. Examples of molecules containing carbon that are not
detected by the measured set of FGs.

to branched molecular structure or functionalization by un-
measured FGs.

Several examples for molecules with incomplete carbon
recovery (α < 1) are shown in Fig. 3. More generally, the
types of carbon atoms undetected vary widely in their struc-
ture (Fig. S3). These molecules contain un-functionalized
carbon atoms (only bonded to other carbon atoms) and car-
bon atoms functionalized by, for example, aldehyde, per-
oxide, aromatic, phenolic, and organonitrate groups, which
have absorption bands in the mid-infrared but are not in-
cluded in our set of calibrations. These FGs have not
been prioritized for calibration following the hypothesis that
molecules with these functionalities are not found in great
abundance in IMPROVE samples. Aldehydes are susceptible
to hydration in aqueous solutions, leading to formation of al-
cohols (Schwarzenbach et al., 2002; Takahama et al., 2013b).
Peroxides have been shown to be labile under various (light
and dark) conditions (Epstein et al., 2014; Krapf et al., 2016).
Phenolic OH and aromatic groups exhibit sharp absorption
peaks near 3500 and 3100 cm−1, respectively (Bahadur et al.,
2010), which are not observed in ambient sample spectra; in
previous studies, Russell et al. (2011) suggested the aromatic
and unsaturated FGs contributed to less than 5 % of OM
mass. Organonitrates also hydrolyze in the presence of water
to form alcohols and nitric acid (Liu et al., 2012; Zare et al.,
2019), and organosulfate FGs are not included in this analy-
sis but their contribution to the overall OM mass concentra-
tion is often bound to be less than a few percent (Hawkins
et al., 2010; Russell et al., 2011; Takahama et al., 2013a;
Budisulistiorini et al., 2015; Hettiyadura et al., 2017). Ad-
ditionally, oxygen has been found to be the heteroatom con-
tributing most to the variability OM/OC ratios in ambient
samples (Pang et al., 2006).

The procedure of parameter updating with ambient OC es-
timates can help place these values in the proper context. Pre-
vious estimates of FG-OM generally reported agreement of
70 %–100 % for submicrometer OM compared against AMS
(Russell et al., 2009; Gilardoni et al., 2009; Corrigan et al.,

2013), and FG-OC was estimated to be 60 %–70 % of TOR
OC in PM2.5 in the IMPROVE network samples (2011 data
set) (Ruthenburg et al., 2014; Reggente et al., 2019). While
these differences have been partially attributed to incomplete
mass recovery of carbon by FTIR, now the estimated mass
recovery fraction based on molecular structure information
is included explicitly into the calibration model.

In reporting OM/OC using Eq. (3), we can expect a sys-
tematic underestimation of OM/OC on account of unmea-
sured FGs. An alternative estimate can be obtained by con-
sidering the OM/OC of only the measured, functionalized
carbon (i.e., using αmC for normalization in Eq. 3). This lat-
ter approach can on average lead to a more representative
value of the overall OM/OC (Fig. S4) in oxygenated aerosol.
For this work, we use Eq. (3), which likely provides a lower
bound on OM/OC and a means to gauge improvement in
OM/OC estimates with the inclusion of additional FG cali-
brations.

4.2 Cluster descriptions

While the primary objective of cluster analysis for this study
is to create chemically similar groups for parameter estima-
tion, we include a brief remark on interpreted source classes
or composition associated with each spectra type. For this
analysis, we use spectral characteristics visualized in Fig. 4,
concentrations of tracer species or magnitude of tracer vari-
ables (Fig. S7; consisting of RCFM components and addi-
tional trace elements analyzed by XRF), and location and
time of occurrence as indicators of source classes (Fig. S8).

Clusters 1 and 4 are high-sulfate, low-organic samples
found predominantly in rural areas, suggesting the likely as-
sociation of the organic fraction with biogenic secondary or-
ganic aerosol (SOA). Samples in cluster 1 are found predom-
inantly in the Southeast and Northeast with a notable absence
in the Southwest. Nearly half of samples in clusters 2 and 5
are found in urban areas – particularly in Phoenix, AZ – and
the remaining found in rural areas are likely influenced by
nearby urban sources. Clusters 3, 8, and 11 occur predomi-
nantly in the Southwest and are associated with mineral dust,
as evidenced by sharp Si-O-H peaks above 3500 (Reggente
et al., 2019) and supported by observations of elevated con-
tributions of elements: Al, Ca, Fe, Si, and Ti. Clusters 6 and
7 occur predominantly in the Southeast and largely consist of
samples originally identified by Ruthenburg et al. (2014) as
being “anomalous” in their agreement of FG-OC with respect
to TOR OC. Reggente et al. (2019) later proposed that these
samples contained large ammonium sulfate and ammonium
nitrate particles (consistent with IC concentrations) that ex-
hibited an optical artifact known as the Christiansen peak ef-
fect, which leads to an increase in transmittance in the vicin-
ity of the wavelength where (i) the refractive index of the
substance approaches that of air and (ii) the particle size and
wavelength of radiation also become similar (∼ 3300 cm−1).
Thus, these samples share a particular absorbance profile,
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Figure 4. Visualization of spectral clusters. Vertical gray bars indicate regions excluded from cluster analysis. The clustering procedure and
interpretation are described in Sects. 3.1 and 4.2, respectively.

and quantification based on assumption of Beer–Lambert–
Bouguer law can be challenged in some wavenumber regions
– especially near the absorption band of alcohol aCOH – for
these samples. Samples in clusters 9 and 10 are associated
with burning. For purposes of interpretation, cluster 9 is split
according to child nodes of the hierarchical clustering tree
into wildfire (cluster 9a) and residential wood burning (clus-
ter 9b) groups, which are labeled according to their occur-
rence during a known fire period (Rim) and during winter
months where residential burning takes place (Phoenix, AZ;
Ramadan et al., 2011; Pope et al., 2017) (more in Sect. 4.3).

Previous work in cluster analysis with aerosol FTIR spec-
tra resolved differences among urban (fossil fuel combus-
tion), terrestrial vegetation (burning and non-burning), and
marine aerosols (e.g., Russell et al., 2009; Liu et al., 2009;
Takahama et al., 2011; Corrigan et al., 2013). These stud-
ies focused on spectra collected during short, intensive field
campaigns (typically considering samples from a single lo-
cation and single season each) with higher time resolution
(typically 4 h) and used an inlet with nominal size cut of one
micrometer. Spectra types from monitoring networks are not
expected to have a direct correspondence to their work, due
to the use of a 2.5 µm size cut (more influence of dust and
larger inorganic particles) and time resolution (24 h) of mea-
surements (more mixing of source classes and degrees of ag-
ing). In particular, the naCO fraction in IMPROVE network
samples has been estimated to be negligible using several
methods (Reggente et al., 2019), while naCO varies substan-
tially across spectra types in the submicrometer samples col-
lected during intensive field campaigns and has been used as
an indicator of biogenic and biomass burning aerosol (Rus-
sell et al., 2011). Nevertheless, some similar spectra cate-

gories are found through differences apparent in absorption
profiles.

That such a large number of samples from a wide range of
sites and seasons are considered together in this work sug-
gests that selecting a limited number of clusters for statis-
tical estimation is likely to provide only a crude separation
in chemical and spectral variations that differentiate source
classes or mixture proportions of source classes. In addi-
tion, first differentiation in spectra (i.e., initial branches of
the hierarchical tree) is determined by ammonium NH, alco-
hol aCOH, and carboxylic COH, as their broad absorption
bands comprise a substantial portion of the absorbance in the
spectrum. These factors can lead to clusters which contain
both rural and urban samples that differ primarily by aliphatic
CH absorption (which affects the overall OM/OC but not its
oxygenated fractionation), and surprising associations across
regions (e.g., Fresno, CA, samples associated with samples
in the Southeast in the same cluster). However, for the pur-
poses of parameter estimation this level of disaggregation is
found to be computationally tractable and sufficient in that
estimates for smaller subsets of spectra do not substantially
change the OM/OC estimated with this limited number of
clusters.

4.3 Estimated parameters

Estimates of parameter distributions obtained by MCMC are
generally confirmed by the Laplace method (Fig. 5 shown
as an example for a single cluster and Fig. S9 for all clus-
ters). Therefore, the following results will focus on results of
MCMC analysis. The posterior distributions for most param-
eters show a departure from the mode of their prior distri-
butions, suggesting that the results are not dominated by in-
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Table 1. Mode of parameter posterior distributions for each cluster.

Cluster No. of samples α λaCH λaCOH kaCH kaCOH kCOOH κ

1 387 0.59 0.49 0.44 7 16 10 0.20
2 176 0.60 0.49 0.53 10 16 10 0.18
3 771 0.81 0.43 0.59 13 12 10 0.27
4 442 0.83 0.48 0.07 16 17 10 0.31
5 343 0.57 0.49 0.44 10 16 10 0.17
6 87 0.80 0.48 0.58 10 16 10 0.20
7 68 0.66 0.49 0.59 10 16 10 0.20
8 128 0.71 0.48 0.50 10 16 10 0.29
9 43 0.76 0.48 0.37 16 16 10 0.13
10 21 0.79 0.48 0.21 16 16 10 0.13
11 8 0.71 0.49 0.32 9 16 10 0.17

Figure 5. Example posterior distribution of cluster 2 from MCMC. Dark lines correspond to prior distributions, blue histograms correspond
to sampled posterior distributions, and red lines correspond to Laplace estimation. “Density” refers to the probability or mass density and the
variables are described in Sects. 1.1 and 3.2. Nonparametric densities are approximated by kernel density estimation (Hastie et al., 2009),
shown in the top row of this figure.

fluence of the priors. The mode of each posterior parameter
distribution for every cluster is shown in Table 1. The number
of latent variables kaCH and kaCOH vary by cluster, suggest-
ing that a different model is appropriate for different spec-
tra types (and presumably different types of PM). The mass
recovery fraction α ranges between 0.57 and 0.83, consis-
tent with the range estimated for primary and secondary OM
species (Sect. 3.2). Given our expectations for low abundance
of unmeasured FGs (Sect. 4.1), low α may indicate a surpris-
ing amount of branched molecules with un-functionalized
carbon atoms – though we cannot rule out the need to ex-
amine additional FGs or that some systematic discrepancies
(e.g., in absorption coefficients) between molecules in lab-
oratory and ambient samples are also incorporated into pa-
rameter estimates. λaCH is consistently near 0.48, with the
exception of cluster 3, but this is possibly due to the strong

prior. λaCOH varies much more substantially across clusters
and this is likely due to the different configurations of the
carbon atom functionalized by aCOH. The coefficient κ for
heteroscedastic measurement error varies between 0.13 and
0.31, which is greater than the reported TOR OC analytical
error of 0.07. The variations in κ across clusters may par-
tially reflect differences in thermal fractions or sensitivity to
different types of compounds, but it more likely reflects the
range of discrepancies between modeled and measured OC
across samples that arises from a given set of parameter val-
ues. Nonetheless, the estimates of remaining parameters are
robust with respect to this assumption, as assessed with sim-
ulations in which κ is kept fixed at the prior estimate of 0.07.

The comparison of fitted FG-OC with reference TOR OC
(Fig. 6) with 95 % intervals of the posterior predictive dis-
tribution (Robert, 2007; Vehtari and Ojanen, 2012; Gelman
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Figure 6. Comparison of reference TOR OC measurements and
FG-OC estimated by Bayesian calibration. FG-OC corresponds to
the mode of the posterior predictive distribution ỹ (Sect. S4). The
lines span the 95 % uncertainty intervals in TOR measurements hor-
izontally and 95 % prediction intervals of the posterior distribution
vertically. Diagonal line corresponds to 1:1 relation, and the dot-
ted red line corresponds to the best-fit line (Pearson’s r = 0.96;
slope = 0.87; intercept = 0.04 µgm−3).

et al., 2013; Sect. S4) shows reasonable agreement with re-
gards to correlation and bias. There is an underprediction for
several high-concentration samples due to the larger number
of samples with lower concentrations that collectively influ-
ence the likelihood (Sect. S2). Posterior predictive distribu-
tions are symmetric, and FG-OC estimated from their modes
is almost identical to that obtained from single-point esti-
mates of parameters obtained as the mode of their respective
distributions (Fig. S11). TOR OC measurements are out-of-
range of 95 % prediction intervals of the posterior distribu-
tion in approximately 5 % of samples. No abnormalities are
detected in spectra upon investigation, which may indicate
that these samples are not well served by the current calibra-
tion model (e.g., the selection of calibration standards). That
the cluster containing anomalous samples (clusters 6 and 7)
can reproduce TOR OC – in contrast to previous works of
Ruthenburg et al. (2014) and Reggente et al. (2019) – is sur-
prising but that the alcohol aCOH is estimated to be zero
could be due to the effect of anomalous dispersion (Sect. 4.2),
and some compensation may be incorporated into the value
of α for these samples.

Figure 7 shows the mean OM and OM/OC for each spec-
tra type. Trends in OM estimates across these types are con-
sistent with trends in TOR OC, with burning samples (clus-
ters 9 and 10) exhibiting the highest OM and biogenic and
dust-related samples (clusters 1, 3, 4, 8, and 11) having the
lowest OM, on average. Samples with urban influences (clus-
ters 2 and 5) have, on average, lower OM/OC than those
more associated with oxidized, biogenic (clusters 1 and 4).
The high aCOH contribution to OM/OC in the dust sam-

Figure 7. Mean OM and OM/OC for each cluster. Colors indicate
FG contributions to the OM/OC.

ples (clusters 3, 8, and 11) may be indicative of condensed
secondary OM (Murphy et al., 2006; Hawkins et al., 2010;
Takahama et al., 2010) but may also partially be due to mis-
appropriated hydroxyl groups or hydrates of water associated
with inorganic substances (Hudson et al., 2008; Frossard and
Russell, 2012). Wildfire burning samples (cluster 9a) consis-
tently display higher OM/OC than residential wood burning
samples (cluster 9b). Because these two sample types occur
during warm and cold months, respectively, the contribution
of photochemical aging relative to emission characteristics
cannot be easily determined from this type of analysis.

Some variability in OM/OC across samples is present
within several clusters. For instance, cluster 9 of the 11 origi-
nal clusters exhibited a bimodal distribution in OM/OC from
distinguishable contributions from urban wood burning and
rural wildfire samples (Fig. S10), and has already been disag-
gregated for discussion (Sect. 4.2). Within clusters 1, 2, and
5, contrast in OM/OC ratios between samples from urban
and rural sites can be observed, with values lower by ∼ 0.2 in
the former. Further inspection of child nodes does not clearly
separate urban and rural samples as with cluster 9, and this is
largely because urban and rural samples in the same cluster
differ primarily by the aliphatic aCH content, while the oxy-
genated groups are present in similar proportions. Due to its
sharp peaks, aCH absorbances comprise a small portion of
the overall variation in spectra considered in the clustering
technique and do not exhibit substantial influence in clus-
ter determination. The OM/OC distribution samples in clus-
ters containing dust-influenced samples are broad (regardless
of site type) due to the high variability in estimated alcohol
aCOH content.

4.4 Spatial and temporal characteristics

A large number of samples are required to evaluate mean-
ingful difference in coefficients due to the number of RCFM
components, range of variations in their concentrations, and
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Figure 8. Estimates of OM/OC with 95 % confidence interval
made by different techniques for the same sites for which FTIR
measurements are available (Sect. 2). OLS (ordinary least squares)
and EIV (error-in-variables) provide solutions to RCFM regression,
and FTIR estimates are constructed from contributing functional
groups. The x axes denote seasons: DJF (December, January, Febru-
ary) is winter, MAM (March, April, May) is spring, JJA (June, July,
August) is summer, and SON (September, October, November) is
fall.

their combined measurement errors. Therefore, multiple sites
or multiple years of data for a given site are often used for
analysis (Simon et al., 2011; Hand et al., 2019). For this
work, we report coefficients for the combined years of 2011
and 2013 and sites aggregated by region (restricted to those
for which FTIR spectra are available, Sect. 2) to examine
spatial and seasonal differences, or six sites for which FTIR
spectra are available in both years to examine temporal trends
between the 2 years.

Estimates across regions and seasons for the 2 years com-
bined are shown in Fig. 8. Given the limited number of sites
analyzed in this work, the region labels are used only to
summarize results across multiple sites and may not be in-
dicative of results for the entire region. For instance, the
highest OM/OC estimated by RCFM-OLS for all (∼ 160)
IMPROVE sites between 2011 and 2015 were found in the
Southeast and Northeast regions (Hand et al., 2019), whereas
their annual average values are, on average, below that of the
Northwest region, according to the sites and years considered
in this study.

Estimated trends in OM/OC between the two RCFM re-
gressions are consistent in that they generally predict higher
OM/OC during spring and summer, except in the Northwest
sites where the highest OM/OC is observed in the winter.
This type of agreement is not unexpected as the two methods
use the same mass balance approach and concentration mea-
surements. However, OM/OC estimates from RCFM-OLS
(ranging between 1.4 and 2.5) generally underestimate that
from RCFM-EIV (1.5–3.1) by ∼ 0.3 on average. This pat-

Figure 9. Probability densities of OM/OC estimated by FTIR for
sites included in Fig. 8, separated by site type. Densities for urban
sites are separated into Phoenix, AZ, which is shown in its own
panel, and the remaining five sites.

tern of underestimation was also reported previously (Simon
et al., 2011) – this difference may be partly due to the dis-
proportionate impact of high-OC (and low OM/OC) sam-
ples on squared residuals and subsequent regression coeffi-
cient estimates by RCFM-OLS, which are downweighted by
uncertainties in RCFM-EIV that increase together with con-
centration. The large confidence intervals for the Northwest
and Northeast sites reflect the fact that only one or two sites
are included in these regions, and displays the limit of reso-
lution by the RCFM regression approach for limited sample
sizes. Smaller confidence intervals shown for FTIR estimates
reflect the fact that regional estimates are calculated as the
mean of OM/OC values obtained for each sample. Magni-
tude of uncertainties in FTIR OM/OC due to posterior pa-
rameter uncertainties (Hoff, 2009) for any individual sample
is typically below 6 % but can be higher for samples in two
clusters (Sect. S4).

FTIR estimates of OM/OC for these regions (1.7–2.2) are
on average more similar to RCFM-OLS than RCFM-EIV
but show less variability across regions and seasons. In gen-
eral, we expect that FTIR estimates reported here may be
conservative (low) if important FGs are missing in our cali-
bration models (Sect. 4.1). While mean OM/OC ratios and
FG composition can be estimated for each location or pe-
riod explicitly, its magnitude can be roughly anticipated by
(i) the frequency of cluster types (Fig. S13) and (ii) variabil-
ity of OM/OC within each cluster (i.e., urban samples having
lower OM/OC in each cluster; Sect. 4.3).

Disaggregating FTIR estimates by site type reveals that
seasonal differences are greater in urban areas (∼ 0.2 be-
tween winter and summer) and less pronounced in rural areas
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Figure 10. Estimates of OM/OC with 95 % confidence intervals for
the same six sites for which FTIR measurements are available (one
urban and six rural sites). The same notation as Fig. 8 is used here.

(Fig. 9); regional averages are more indicative of trends in the
latter because there are fewer urban sites and hence a smaller
number of samples. OM/OC distributions indicate that rural
samples over all seasons and urban samples during the sum-
mer have a mode close to 1.8, which is the OM/OC multi-
plier currently assumed for the IMPROVE network. Phoenix,
AZ, is an urban site that exhibits particularly extreme differ-
ences in OM/OC, with low values due to wood burning and
possibly less aged urban emissions in the winter (clusters
9b and 5, respectively), and high values from the influence
of dust particles in the spring and summer (clusters 5 and
8) (Fig. S13). The broad OM/OC distribution during these
warmer months is due to the variability in alcohol aCOH
contribution estimated for the dust-influenced samples. More
generally, the higher OM/OC ratios estimated for the South-
west sites – particularly HOOV (Hoover, CA), BLIS (Bliss,
CA), and MEVE (Mesa Verde, CO) – during the spring sea-
son are due to the prevalence of dust-impacted samples. Be-
cause organic mass loadings of these dust-impacted sam-
ples are relatively low (Sect. 4.2), the mean OM/OC val-
ues during spring are similar to that of summer months if
ratios are alternatively calculated taking OC-weighting into
account. The higher OM/OC estimated during the spring
(1.93) in comparison to summer (1.76) in the single North-
east site (Proctor Maple, VT) is not confirmed by the other
two methods as their seasonal differences are not statistically
significant, but inspection of spectra types indicates that the
biogenic-type samples (cluster 4) were prevalent during the
spring, while more urban-influenced samples (cluster 5) with
lower OM/OC values were found during the summer in com-
parison.

Considering only the six sites – Phoenix, AZ; Olympic,
WA; Proctor Maple, VT; St. Marks, FL; Mesa Verde, CO;
and Trapper Creek, AL – for which FTIR measurements
are available between 2011 and 2013, we compare differ-
ences in mean OM/OC ratios (Fig. 10). Hand et al. (2019)
previously reported increasing trends in mean OM/OC ra-
tios between 2011 and 2013 over the entire network; par-
ticularly with an increase of ∼ 0.2 during summer months.
RCFM-OLS and RCFM-EIV for these sites also show in-
creasing OM/OC (by 0.35 and 0.5, respectively) for the sum-

Figure 11. Mean OM/OC ratios partitioned by FG contributions
for the FTIR estimates shown in Fig. 10.

mer months for the subset of sites analyzed in this work, and
a difference of 0.4 is also significant for RCFM-OLS for the
spring months. However, FTIR estimates show no such trend,
and the FG composition is also remarkably consistent be-
tween the 2 years at these sites (Fig. 11). The sample type
composition determined by the FTIR spectra between the
2 years are also similar (Fig. S14), which explains this simi-
lar estimate of OM/OC. Inspection of other regression coef-
ficients of Eq. (8) indicate other changes such as a decrease
in adust between the 2 years, which may suggest changing at-
mospheric composition or changes in analytical bias (Hand
et al., 2019) that affect estimates of aOC. This comparison
may support the need for further evaluation along two direc-
tions. One is in interpreting aOC from RCFM regression as
a surrogate for the OM/OC ratio (Hand et al., 2019). The
other is in understanding the changing contributions of FGs
not included in our set of calibrations (that also are excluded
from or have negligible influence on the spectral cluster anal-
ysis) over this period. For instance, recent studies of trends
in the Southeast US suggest that aromatic-, organosulfate-,
organonitrate-, and peroxide-containing compounds in OM
have declined in response to reduced anthropogenic emis-
sions of volatile organic compounds, SO2, and NOx (the lat-
ter two affecting OM through their influence over aqueous-
phase reactions and oxidant levels) over the last decades (Pye
et al., 2015; Blanchard et al., 2016; Marais et al., 2017; Carl-
ton et al., 2018; Pye et al., 2019). While most of these trends
would contradict the direction of discrepancy in OM/OC
trends estimated by RCFM and FTIR, the magnitude of
changes in emissions and the response of OM likely differ
across sites and years considered in this study.

5 Conclusions

We presented a new framework to enable estimation of OM
and OM/OC from FG calibrations of FTIR spectra that are
also consistent with the current best estimate of ambient
OC, which is taken from TOR measurements. In contrast
to RCFM regression approaches that estimate OM/OC from
mass balance of all other major components contributing
to particulate fine mass, estimation of this metric by FTIR
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uses spectra of particles collected on PTFE filters together
with laboratory standards of organic molecules. In contrast
to standard multivariable optimization approaches for pa-
rameter estimation, the proposed probabilistic approach in-
corporates prior knowledge of model parameters based on
performance against laboratory standards and sensible struc-
tural parameter values derived from atmospherically relevant
molecules compiled from measurements or computer mod-
els. While this information was exclusively used for parame-
ter determination in previous works, the Bayesian framework
used here weighs plausibility of parameter values against am-
bient observations. The clustering approach used for select-
ing subgroups with similar spectral profiles also leads to es-
timation of model parameters that better reflect samples in
each subgroup and provides a way for associating model pa-
rameters and OM/OC estimates to various chemical classes
of PM.

Model parameters that reproduce TOR OC measurements
could be found for more than 94 % of samples; this ap-
proach also identifies samples for which calibration mod-
els are potentially unsuitable. Spectra types associated with
dust, wildfire, residential wood burning, urban, and biogenic-
influenced samples were found in the IMPROVE 2011 and
2013 samples. Mean OM/OC ratios for various locations
or periods are consistent with occurrences of these spectra
types. In contrast to RCFM regression methods, no consis-
tent increase in OM/OC was found between 2011 and 2013,
and the spectra type composition was also consistent between
the 2 years.

This work enables many directions for future studies.
OM/OC ratios and FG composition can be further related
to sources and specific sites or seasons for the samples intro-
duced in this calibration study. Furthermore, the framework
is described generally such that it can be applied to samples
in monitoring networks or chamber experiments, and sys-
tematically evaluate improvements in calibrations with new
standards or FGs. Parameters that can be applied to new sam-
ples for prediction can potentially be determined by assess-
ing spectral similarity of new samples to the sample types
established through cluster analysis. For increasingly refined
spectral types, hierarchical Bayesian modeling (Gelman and
Hill, 2007) can be used to model relationships among sub-
groups (e.g., spectral clusters) and overcome limitations in
dealing with smaller sample sizes, albeit with added com-
plexity. Additional constraints – such as residual FM (Boris
et al., 2019) or additional measurements of FGs by nuclear
magnetic resonance (NMR) or spectrophotometry (Decesari
et al., 2007; Ranney and Ziemann, 2016; Duarte and Duarte,
2017) – can be introduced to the maximum likelihood ex-
pression to explore solutions which are consistent with other
available measurements.
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Appendix A: Notation

Table A1 describes mathematical symbols for carbon estima-
tion model, and Table A2 describes mathematical symbols
for Bayesian modeling.

Table A1. Notation for carbon estimation model.

Symbol Description

n moles (in areal density) of atom or functional group
x infrared absorbance
λ number of atoms per functional groups
α carbon mass recovery fraction
m mass of atom
M atomic mass
t PLS scores
p PLS X loadings
q PLS Y loadings
e model residuals
k number of latent variables in PLS model
G∗ set of functional groups that are measured
A∗ set of non-carbon atom types that are measured by G∗

C set of carbon types
C∗ set of carbon types that are measured by G∗

n∗ moles (in areal density) of a unit measured by G∗

M set of molecules
|M| number of molecules in set
ζ fraction of primary to total (primary and secondary)

Table A2. Notation for Bayes theorem, likelihood, and posterior sampling algorithms.

Symbol Description Definition

y data (observations) as well as outcome variable TOR OC
θ set of all parameters θ (c) ∪ θ (d)

θ (c) set of continuous parameters {α,λC,aCH,λC,aCOH,κ2}
θ (d) set of discrete parameters {kaCH,kaCOH,kCOOH}
θ ′
i

set of continuous parameters that excludes θi θ r {θi} = {θ ′
i
(c)

,θ ′
i
(d)}

θ ′
i
(c) set of continuous parameters that excludes θi θ (c)

r {θi}
θ ′
i
(d) set of discrete parameters that excludes θi θ (d)

r {θi}
D number of dimensions (parameters)
p probability density or mass function
π,π̃ normalized and unnormalized posterior
L loss function log π̃

Z normalizing constant
H Hessian matrix
q proposal distribution
a acceptance probability
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Appendix B: Partial least squares calibration

The origin of the regularization term in Eq. (2) specifi-
cally for PLS regression is explained in this section. The
nonlinear iterative least squares (NIPALS) algorithm (Wold
et al., 1983) is used to project a matrix of mean-centered
laboratory-standard spectra with absorption xij , defined for
each wavenumber j (indexed from 1 to J ) and sample i, onto
a basis set of spectral profiles (loadings) whose elements are
pℓj , with ℓ representing the index of the reduced dimension
(also referred to as a latent variable or component). The PLS
scores tiℓ embody both the contribution of component ℓ to
the spectra and its contribution to the FG abundance (deter-
mined by gravimetric analysis for known aerosol composi-
tion) after additional scaling by coefficient qℓg .

nig(kg) =
J
∑

j=1

xijβ
(kg)

jg + eig =
kg
∑

ℓ=1

tiℓqℓg + eig

xij (kg) =
kg
∑

ℓ=1

tiℓpℓj + ex,ij . (B1)

∀g ∈ G∗. For a selected value of kg , the components beyond
kg + 1 comprise the residual terms ex,ij and eig . Using the
provided training samples, q, and p are found such that the
new variables t maximize the covariance with n during the
calibration process. Each new spectrum (of laboratory and
ambient samples) are then projected onto this basis set and
its scores used to estimate the FG abundance.

Appendix C: Estimation of priors

C1 Number of latent variables k

For each FG, we estimate a prior for the number of latent
variables (denoted as k rather than kg in this section for read-
ability) by Boltzmann weighting (Adamson, 1979) of their
mean squared error of cross validation (MSECV) from lab-
oratory calibrations. The MSECV is written in terms of the
chi-square statistic χ2:

p(k) =
exp

(

−χ2
k /2

)

∑K
k=1 exp

(

−χ2
k /2

)

where χ2
k =

N · MSECVk

s2
, (C1)

where s2 is the expected magnitude of error, which we use as
a scaling variable fixed to the condition that χ2/(N−k−1) =
1 (reduced chi-square is unity) for the minimum MSECV so-
lution. The form of Eq. (C1) is also consistent with the no-
tion of likelihood ratios used in model selection and Akaike
weighting (Burnham and Anderson, 2003). The upper limit
on k is selected to balance inclusiveness of plausible solu-
tions against computational considerations; for each com-
ponent k is chosen to include several solutions within one

standard error of the MSECV and exclude physically unre-
alistic ones (with high proportion of negative predictions in
concentration). The choice of upper limit for k can change
the overall probability, but the relative probability among so-
lutions remains approximately similar for a range of upper
limits considered.

C2 Carbon fractions λC and mass recovery fraction α

This work extends the approach of Takahama and Rug-
geri (2017) to study functionalization at the level of each
carbon atom for a larger set of atmospherically relevant
molecules with known structure. We consider the set of
molecules in primary aerosols Mprimary from GC-MS mea-
surements by Rogge and coworkers (Rogge et al., 1993,
1998) that was previously analyzed for FG composition by
Ruggeri and Takahama (2016) and the set of gas-phase pho-
tooxidation products Msecondary from MCM v3.3.1. Consid-
ering species with equilibrium vapor concentrations C0 ≤
103.5 µgm3, there are 193 molecules in Mprimary and 1221
molecules in Msecondary (Fig. S2).

A subset of molecules M(s) are constructed by varying
the fraction ζ of primary vs. secondary aerosol molecules
between 0 and 1 by 0.05 increments and randomly sampling
from the required number from each population to satisfy the
balance:

|M(s)| = ζ (s)|M(s)
primary| + (1 − ζ (s))|M(s)

secondary|,
where | · | denotes the cardinality (number of elements) of the
set. To accommodate the limited number of primary com-
pounds available for random selection, the total number of
molecules |M(s)| considered for any subset was 50–150
so that each contained a random subset of Mprimary even
for ζ (s) = 1. We therefore estimate λC by nonnegative least
squares regression of measurable carbon abundance on FG
abundances repeated over various subsets s:

n∗
C,i =

∑

g∈G∗
λ

(s)
C,g nig + ei where n∗

C,i

=
∑

k∈C∗
nC,ik ∀ i ∈ M(s), (C2)

where nC,ik is the number of carbon atoms for molecule i in
carbon type k, which is summed over detectable carbon types
C∗. nig is the number of FGs g in molecule i for the measured
set G∗. The carbon associated with carboxylic COOH is sub-
tracted from n∗

C,i before regression since λC,COOH ≡ 1, and
only aliphatic CH and alcohol aCOH are included in the fit-
ting procedure. The detectable carbon fraction is estimated
from the same mixtures by normalizing the abundance of de-
tectable carbon over the total carbon (denoted by set C):

α(s) =
(

∑

i∈M(s)

∑

k∈C∗(s)

nC,ik

)

/

(

∑

i∈M(s)

∑

k∈C(s)

nC,ik

)

,

where p(λC,g) and p(α) are derived from the distribution of
values estimated over realizations of subsets s.
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Appendix D: Sampling the posterior distribution

Equation (4) is typically posed as a mathematical problem to
obtain the posterior distribution, written in this Appendix as
π(θ) = p(θ |y) for simplicity, from its unnormalized estimate
π̃(θ) = p(y|θ)p(θ):

π(θ) =
1

Z
π̃(θ) =

1

Z
e−L(θ). (D1)

L(θ) = − log π̃(θ) is referred to as the loss function and
Z is the normalizing constant (integral of π̃(θ) or e−L(θ)).
In our model (Eq. 1), we have both discrete and contin-
uous parameters which we discriminate with superscripts
(d) and (c), respectively. To explicitly expound on this no-
tation, θ (c) = {α,κ2,λC,g : g ∈ G∗}, θ (d) = {kg : g ∈ G∗}, and
θ = θ (c) ∪ θ (d). With θ ′

i = θ r {θi} denoting the set of all pa-
rameters except θi (i.e., the complement of θi with respect to
θ ), the marginal posterior distribution for θi is given by

π(θi) =
1

Z

∑

θ ′
i
(d)

∫

θ ′
i
(c)

π̃(θi,θ
′
i
(d)

,θ ′
i
(c)

)dθ ′
i
(c)

, (D2)

with π̃(θi,θ
′
i
(d)

,θ ′
i
(c)

) = p(y|θi,θ
′
i
(d)

,θ ′
i
(c)

)p(θi,θ
′
i
(d)

,θ ′
i
(c)

).
As with integral notation in Eq. (4), the single integral or
summation symbol applies over all parameters in the
indexed set, i.e.,

∫

θ
=
∫

θ1

∫

θ2
. . .
∫

θ
D(c)

. . .dθ1dθ2. . .dθD(c)

and
∑

θ ′
i
(d) =

∑

θ ′
i,1

(d)

∑

θ ′
i,2

(d) · · ·
∑

θ ′
i,D(d)

(d) . A summary of

notation for posterior sampling is provided in Table A2. We
use Markov chain Monte Carlo (MCMC) as our primary
tool to sample π(θ). To diagnose convergence and accuracy
of the MCMC calculations, we additionally use a simple
approximation (Laplace method) to confirm our parameter
distributions. We first summarize the Laplace method, as
it is a close extension of maximum likelihood estimation
(MLE) typically used in conventional parameter estimation
before describing MCMC sampling.

D1 Laplace method

The Laplace approximation (Tierney and Kadane, 1986;
Murphy et al., 2012) solves Eqs. (D1) and (D2) by mak-
ing a local Gaussian approximation to the posterior distri-
bution of the continuous variables about their maximum a
posteriori (MAP) estimate (i.e., maximum of the function
π̃ ). This method improves on the classical MLE approach
through the weighting of a prior (for a flat prior, the MAP
estimate is equivalent to the MLE estimate) and estimating
probabilities from the surface curvature of Eq. (D1) in the
vicinity of the MAP. The approximation only applies in the
domain of continuous parameters, so the calculation is per-
formed for every selected realization of discrete parameter
combinations. The probability estimate is formulated from
the normalization constant of a multivariate normal distribu-

tion, with D(c) × D(c) Hessian Hθ (c)∗ of L about θ (c)∗:

π(θ (c),θ (d)) =
[

detHθ (c)∗

(25)D
(c)

]1/2

e−
[

L(θ (c),θ (d))−L(θ (c)∗,θ (d))
]

∀θ (d). (D3)

Laplace’s method is typically associated with a second-order
Taylor series expansion about θ (c)∗, which further provides
the following approximation: L(θ (c),θ (d))−L(θ (c)∗,θ (d)) ≈
1
2 (θ (c) − θ (c)∗)T Hθ (c)∗(θ (c) − θ (c)∗) for each realization of
θ (d). Covariance among the continuous variables can fur-
ther be obtained from the inverse of the Hessian ma-
trix. The marginal posterior for each realization of the
variable θi is obtained by a Gaussian approximation for
each integral in Eq. (D2) and calculating the D(c)− 1 ×
D(c)− 1 Hessian H

θ ′
i
(c)∗ about the MAP defined as θ ′

i
(c)∗ =

argmax
θ ′
i
(c) π̃(θi,θ

′
i
(c)

,θ ′
i
(d)

):

π(θi) =
∑

θ ′
i
(d)

[

detHθ (c)∗

(25)detH
θ ′
i
(c)∗

]1/2

e
−
[

L(θi ,θ
′
i
(c)∗

,θ ′
i
(d)

)−L(θ (c)∗,θ (d))
]

. (D4)

While analytically elegant and deterministic, the Laplace ap-
proximation is best suited for applications that primarily in-
volve real (continuous) variables with a single mode in its
probability density or in the limit of large N as the den-
sity converges to a normal one (Bernstein–von Mises theo-
rem). However, its Gaussian estimates can become unreli-
able toward domain boundaries that might be imposed due to
physical constraints, or in the limit of large number of vari-
ables when the high-dimensional space tends to become non-
Gaussian.

We screen solutions by finding the MAP for each com-
bination of discrete parameter values using L-BFGS-B
(limited-memory Broyden–Fletcher–Goldfarb–Shanno algo-
rithm with box constraints) and removing those which are
1020 below than the absolute maximum. θ (c)∗ for each real-
ization of θ (d) is found using L-BFGS-B, a box-constrained,
limited-memory extension of the quasi-Newton method
BFGS. BFGS uses an approximation of the Hessian matrix
to steer its search. The Hessian matrix is not recomputed
at each iteration but updated using the secant equation to
account for the curvature estimated during the most recent
step (Nocedal and Wright, 2006). While L-BFGS-B simulta-
neously provides estimation of the Hessian matrix with the
MAP, as it is based on an approximation for the purposes of
speeding up the optimization, we recompute these matrices
and their determinants from numerical differentiation at the
corresponding MAPs.

D2 MCMC

MCMC (Bishop, 2009; Aster et al., 2013) approximates the
posterior probability π(θ) from an algorithmically generated
Markov sequence {θ [1],θ [2], . . .,θ [t], . . .,θ [n]}. This sequence
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or chain is constructed through a series of trial and accep-
tance moves. The Metropolis–Hastings algorithm (Metropo-
lis et al., 1953; Hastings, 1970) describes conditions under
which the generated sequence fulfills the conditions of de-
tailed balance necessary for convergence toward a stationary
(statistically invariant) distribution. For any θ [t], a candidate
value θ∗ is generated from a proposal distribution q(θ∗|θ [t]).
θ∗ is designated as the next value in the sequence θ [t+1]

with acceptance probability a(θ [t],θ∗), defined to preserve
detailed balance for a move from θ [t] to θ∗:

a(θ [t],θ∗) = min

{

1,
q(θ [t]|θ∗)π̃(θ∗)

q(θ∗|θ [t])π̃(θ [t])

}

. (D5)

The ratio π̃(θ∗)/π̃(θ [t]) has been used in place of
π(θ∗)/π(θ [t]) so that explicit evaluation of the normaliza-
tion constant Z (Eq. D1) is not required. For a symmet-
ric proposal distribution, q(θ [t]|θ∗) = q(θ∗|θ [t]) and further
simplification to Eq. (D5) can be obtained (Metropolis algo-
rithm). Assignment of θ [t+1] is implemented by comparison
of a(θ [t],θ∗) against the realization u of a random variable
uniformly distributed over [0,1]:

θ [t+1] =
{

θ∗ if a(θ [t],θ∗) > u and

θ [t] otherwise.

The initial value θ [0] of the Metropolis–Hastings algorithm
is set at the maximum a posterior (MAP) estimated for the
Laplace method. Proposal distributions for the discrete pa-
rameters kg are truncated normal distributions which bounds
the range of possible values. For continuous variables, the co-
variance matrix 6 of the target distribution is estimated using
the first iterations of sampling, after which efficient proposal
distributions are defined (Gelman et al., 2013):

q(θ [t]|θ∗) ∼ N(θ∗,c26) where c2 ≈ 2.4/
√

D .

Two MCMC chains were run for each model, and conver-
gence was monitored using chain trace plots and Gelman–
Rubin diagnostics (Gelman and Rubin, 1992). The posterior
probability distribution p(θ), marginal distributions p(θi),
population statistics of θ (including covariances), and pos-
terior predictive distributions (Sect. 3.2) are then calculated
from the numerically sampled sequence.

The distribution-free approach of this technique makes it
applicable to discontinuous, non-differentiable functions, so-
lutions at constraint boundaries, and smaller data sets where
the limiting distribution need not be normal. Sampling across
models for model selection can also be handled by a spe-
cial case of Metropolis–Hastings – transdimensional or re-
versible jump MCMC – in which the number of parame-
ters for each model can vary (Green, 1995; Gallagher et al.,
2009). While candidate PLS solutions generated with a dif-
ferent kg (Eq. B1) can also be interpreted as different mod-
els, for this study kg is treated as a discrete tuning parameter
for the PLS model corresponding to a fixed calibration set.
The typical downside of MCMC is the high computational
cost, as a large number of samples is needed for convergence
and to ensure that the parameters sampled non-independently
can provide adequate characterization of the target density.
Where possible, use of MCMC together with simpler meth-
ods to confirm results is recommended (Brooks et al., 2011).
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