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Abstract: A method for detecting significant and regionally specific correlations between sensory input 
and the brain's physiological response, as measured with functional magnetic resonance imaging (MRI), is 
presented in this paper. The method involves testing for correlations between sensory input and the 
hemodynamic response after convolving the sensory input with an estimate of the hernodynamic 
response function. This estimate is obtained without reference to any assumed input. To lend the 
approach statistical validity, it is brought into the framework of statistical parametric mapping by using a 
measure of cross-correlations between sensory input and hemodynamic response that is valid in the 
presence of intrinsic autocorrelations. These autocorrelations are necessarily present, due to the 
hemodynamic response function or temporal point spread function. 
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INTRODUCTION 

This article is about the analysis of functional mag- 
netic resonance imaging (MRI) data obtained during 
activation studies of the human brain. The problem 
addressed is how to identify regionally specific and 
significant correlations between a time-dependent 
sensorimotor or cognitive parameter and measured 
changes in neurophysiology [Bandettini et al., 1993; 
Friston et al., 1993al. This problem has a number of 
well-established solutions in position emission tomog- 
raphy (PET) functional imaging, in which activation 
studies are almost universally analyzed using some 
form of statistical parametric mapping [Friston et al., 
19901. However, some special issues need to be consid- 
ered when dealing with MRI data. 
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Statistical parametric maps (SPMs) are images whose 
voxel values are distributed, under the null hypoth- 
esis, according to some known probability density 
function. The null hypothesis is usually that there are 
no significant activations or correlations between sen- 
sorimotor parameters and central physiology. SPMs 
are treated as smooth multidimensional statistical pro- 
cesses and thresholded such that the probability of 
acquiring an activated region by chance (over the 
entire SPM) is suitably small (e.g., 0.05). The methods 
for determining the appropriate threshold have only 
recently been developed [Friston et al., 1991; Worsley 
et al., 19921. 

Two fundamental aspects of MRI data that bear 
directly on detecting significant correlations are: 

The hemodynamic response to sensory input 
(evoked changes in neuronal activity) is transient, 
delayed, and dispersed in time. 
Because the sampling interval of some MRI tech- 
niques is typically much shorter than the time- 
constants of hemodynamic changes, the resulting 
time-series can show substantial autocorrelation. 
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Transient aspects of the hernodynamic response zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
The transient nature of the hemodynamic response 

is usually attributed to a physiological uncoupling of 
regional cerebral perfusion and oxygen metabolism 
[Fox et al., 19881. The result is a time-dependent (but 
uncharacterized) change in the relative amounts of 
venous oxy- and deoxy-hemoglobin. Due to the differ- 
ential magnetic susceptibility of oxy- and deoxy- 
hemoglobin, a transient change in intravoxel dephas- 
ing is observed. This change subtends the measured 
signal [Kwong et al., 1992; Ogawa et al., 1992; Bandet- 
tini et al., 1992). The physiological mechanisms that 
mediate between neuronal activity and physiology at 
the level of perfusion and cerebral metabolism, are 
known to have time-constants in the millisecond (ms) 
to seconds (s) range. In vivo optical imaging of 
microcirculatory events in the visual cortex of mon- 
keys suggests the following sequence of activity- 
dependent changes: 

eter and hemodynamic response, the sensory param- 
eter must first be subject to the same delay and 
dispersion as that mediating between neuronal activ- 
ity and hemodynamics. More formally, the correlation 
of interest is between the MRI time-series and the 
sensory input convolved with the hemodynamic re- 
sponse function. This is the first observation on which 
the proposed approach is predicated. 

Stationary aspects of the hernodynamic response 

Due to the dispersive nature of the response func- 
tion, the hemodynamics at any voxel will be inher- 
ently smooth or autocorrelated in time. This autocorre- 
lation will be evident even in the absence of evoked 
changes in neuronal activity. One can think of hemo- 
dynamics as the result of convolving a neuronal 
process with an effective hernodynamic response func- 
tion, where the neuronal process comprises zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAevoked 
transients and intrinsic activity. In mathematical terms, 
this can be modeled as: 

200-400 ms after the onset of neuronal activity, 
highly localized oxygen delivery occurs, followed 
300-400 ms later by an increase in blood volume. 
After 1,000 ms, a substantial rise in oxyhemoglo- 
bin is seen [Frostig et al., 19901. 

MRI data concur with this latter observation, suggest- 
ing a rise in relative oxyhemoglobin that is maximal 
after 4-10 s [Bandettini, 19931. The delay and disper- 
sion associated with the hemodynamic response to 
the onset of neuronal activity is, therefore, substantial 
when compared with the sampling interval typical of 
fast [e.g., echo-planar imaging, (EPI)] MRI times-series 
(100 ms-5 s). This is important because the correlations 
between evoked changes in neuronal activity and 
measured hemodynamics will be displaced and dis- 
persed (smeared) in time. Simply correlating a sensory 
parameter (reflecting input at a neuronal level) with 
the hemodynamic response will miss significant cross- 
correlations that are distributed in time according to 
the delay and dispersion of the hernodynamic response 
function. 

For example, if the delay rendered a sinusoidal 
sensory input and the hernodynamic response out of 
phase by ~ / 2 ,  the correlation would be zero. The 
hemodynamic response function can be thought of as 
a temporal point spread function that not only smooths 
sensory input but also applies a shift in time. In other 
words, these functions describe the physiological re- 
sponse to a point (delta function or impulse) input, if 
one were able to present such a stimulus. Clearly, to 
assess the true "correlation" between a sensory param- 

(1) x(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A{E(v) + ~ ( t ) )  

where x(t) is the observed signal at a particular time 
(t), A{.} is a convolution operator modeling the effect 
of the response function, E(V) is the evoked neuronal 
transient as a function of time from stimulus onset (v), 
and z(t) is an uncorrelated neuronal process represent- 
ing fast intrinsic neuronal dynamics. The reason for 
characterizing the intrinsic component in this way 
comes from the observation that autocorrelations in 
neuronal dynamics are most substantial in the 10- 
100-ms range [Aertsen and Preissl, 1991; Nelson et al., 
19921 and are, therefore, very fast compared with 
hemodynamics. Clearly, if neural dynamics showed 
slower autocorrelations, the effective hernodynamic 
response would embody some elements attributable 
to these slow neuronal changes. This model highlights 
the fact that observed autocorrelations have at least 
two components: an evoked component due to the 
convolved neuronal transient that is phase-locked to 
the stimulus or task onset, and intrinsic autocorrela- 
tions that result from intrinsic neuronal activity. 

To the extent that the above model is true, the 
autocorrelations and response function are directly 
related. In particular, when no evoked changes in 
neuronal activity occur (or any components phase- 
locked to stimulus onset have been removed), the 
intrinsic autocorrelations can be used to determine the 
response function. The relationship (between intrinsic 
autocorrelations and the effective response function) 
furnishes a way of estimating the response function 
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directly from the physiological data that avoids any 
assumptions about the input or evoked neuronal 
activity. This is the second tenet on which the pro- 
posed approach is based and is important because it 
ensures that no bias exists when testing these assump- 
tions post hoc. 

Finally, temporal smoothness or autocorrelations 
are important from the point of view of detecting sig- 
nificant correlations between the input and observed 
response. Even if no neuronal response is evoked, the 
presence of intrinsic autocorrelations will increase the 
probability of a spurious and high correlation coeffi- 
cient. This follows from the fact that the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAeffective degrees 
of freedom associated with a measured correlation will 
be smaller than the number of time points or scans. In 
simple terms, for two time-series of fixed length, the 
probability of obtaining a high correlation coefficient, 
by chance, increases with smoothness. When assessing 
the significance of cross-correlations between two 
time-series, it is therefore necessary to account explic- 
itly for the autocorrelations expected under the null 
hypothesis (in this case the intrinsic autocorrelations). 
This is the third tenet of our approach. 

The stationariness of the intrinsic autocorrelations 
(and implicitly the response function) referred to 
above are in time. Stationariness in time does not 
imply stationariness in space. In other words, it is 
possible for the response function and the autocorrela- 
tive behavior of hemodynamics to vary from region to 
region, or voxel to voxel. 

The relationship between intrinsic autocorrelations 
(both spatial and temporal) and the effective degrees 
of freedom is a general one and affects the analysis of 
all functional imaging data, using any form of statisti- 
cal parametric mapping. In what follows, this theme 
occurs twice-in deriving a statistical quotient, which 
tests for significant temporal cross-correlations in the 
presence of intrinsic autocorrelations; and threshold- 
ing the resulting statistical parametric maps, which are 
spatially autocorrelated. 

We present below: 
the theoretical aspects of assessing the signifi- 
cance of correlations between sensory (cognitive 
or motor) parameters and hemodynamic re- 
sponses measured with MRI 
an application to real data, and 
an evaluation of the hemodynamic response func- 
tion used in the preceding two subsections. 

THEORY 

The objective of the described approach is to pro- 
duce a statistical parametric map that can be thresh- 

olded to identify significant correlations between a 
given input parameter and regional hemodynamics. 
This requires a statistical parameter that tests the 
significance of the above correlation, and a technique 
for thresholding the SPM that renders the probability 
of identifying a significant region by chance suitably 
small (e.g., 0.05). The latter techniques have already 
been established in the context of functional imaging, 
using the theory of stationary Gaussian processes with 
known or measurable autocorrelation [Friston et al., 
19911. The problem, therefore, reduces to defining a 
statistic that tests for the presence of significant cross- 
correlations in the presence of intrinsic autocorrela- 
tions. 

The following relies on the theory of stationary 
stochastic processes and, in particular, their represen- 
tation in the frequency domain. The interested reader 
will find an excellent review of the important standard 
results (a number of which are used below) in Cox and 
Miller [1980, pp. 309-3371. Covariance refers to the 
average or expectation of the product of two processes 
x and y (E{x(t) . y(t)}), after normalization to zero- 
mean. Correlations refer to the same thing but when 
the processes are normalized to unit variance. Correla- 
tions can be thought of as normalized covariances. 
Cross-correlation pXy(7) and cross-covariancefunctions yxy(~)  
are functions that represent the magnitude of correla- 
tion or covariance as a function of the temporal 
displacement T (lag) between the processes x(t) and 
y(t) (E(x(t) . y(t + T ) } ) .  Autocorrelation and autocovari- 
ance functions, pXx(7) and yxx(~),  are simply the correla- 
tions or covariances of a process with itself at some 
time T later (E{x(t) . x(t + T ) ) ) .  Clearly yxx(0) is the 
variance of x(t). 

Hernodynamic response function 

In what follows, the expressions are in continuous 
time and assume that real fh4RI time-series are reason- 
ably approximated by continuous space-time pro- 
cesses. Let the observed MRI time-series, at any point 
in the brain, be modeled by a function of time x(t) and 
let a time-dependent sensorimotor or cognitive param- 
eter of interest be similarly modeled by c(t). We will 
refer to this parameter as the contrast. In analyses of 
(co-)variance, the contrast is used to test for a specific 
profile of time-dependent changes. Both here and in 
general, the contrast has zero-mean and unit variance. 
The effects of delay and dispersion of the hemody- 
namic response are modeled by a convolution opera- 
tor A( .], e.g.: 

A{c(t)} = c(t - T )  . h(T) dT. 
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The function h(T] is the (impulse) response function 
and has an equivalent representation in frequency 
space zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(o = 2~r f  where f is frequency) called the trans- 
fer function H(w): The transfer function is simply the 
Fourier transform of the response function h(T]. The 
particular form of h{T} reflects our assumptions (or 
knowledge) about the effective hemodynamic re- 
sponse function. It is a function of delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT .  The average 
or expected delay is simply the expectation associated 
with h[T]. Similarly, the dispersion is the variance of 
h [ ~ ] .  In the following, we assume a Poisson form for 
h { ~ ] :  

The Poisson distribution is a parsimonious choice 
because its mean and variance are equal and are 
defined by a single parameter A. Keep in mind that the 
values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT in Equation 3 are real positive integers. In 
what follows, T has units of seconds. (If the repeat time 
is not an integer valued number of seconds, then 
Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 could be replaced by a y-distribution with 
appropriate moments.) It is, of course, possible to use 
forms of h(T] that do not assume a relationship 
between delay and dispersion (see Discussion). We 
will validate the choice of a Poisson form in a subse- 
quent section. 

To account for the effects of delay and dispersion on 
the cross-correlations between x(t) and c(t), we apply 
A{.] to c(t) and examine the correlation between x(t) 
and h(c(t)]. The contrast c(t) convolved with the 
hemodynamic response function h ( T }  represents a 
new contrast, which has been corrected for delay and 
dispersive effects, and will be referred to as y(t). The 
(power) spectral density of y(t) [gy(o)] is simply 
related to the spectral density of c(t) [g,(o)] and the 
transfer function H(o) [Cox and Miller, 19801: 

way product of the spectral densities of c(t), h(7), and 
x(t). The spectral density of x(t), under the null 
hypothesis of no evoked neuronal activity, is specified 
by the intrinsic autocorrelations. Given that these 
spectral densities are either known or can be esti- 
mated, the distribution of yXy(7), under the null hypoth- 
esis, can be determined. These arguments are now 
presented more formally. 

The cross-covariance between the MRI time-series 
x(t) and the convolved contrast y(t) will itself be a 
stationary stochastic process with zero-mean. Further- 
more, because yXy(7) is obtained by convolving x(t) 
with y(t), yXy(7) represents a weighted sum of x(t) and, 
by central limit theorem, will tend to a Gaussian 
distribution [this assumption is only strictly true when 
c(t) has non-zero values over an interval that is large 
compared with the width of yXx(7)]. The variance of 
Y x y ( 4  is: 

(5) 

where gxy(o) is the cross-spectral density of processes 
x(t) and y(t) [Cox and Miller, 19801. gxy(w) can be 
interpreted as the second-order probabilistic character- 
istics (variance) of the orthogonal process sxy(o), in the 
frequency domain, that is equivalent to yxy (~ )  in the 
time domain, where (cf. Parseval's theorem): 

and 

where * denotes complex conjugate and sx(w) and 
sy(o) are the spectral representations of processes x(t) 
and y(t). 

Let [u] = u.u*. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANow if s,(w) and s,(w) are independent 
{equivalently ifxft) and y( t )  are independent): 

Testing for significant cross-correlations in the 
presence of intrinsic autocorrelations 

In this subsection, we observe that yx,(0), the covari- 
ance of interest, has approximately a Gaussian distribu- 
tion. The variance of this distribution (over many 
realizations at one voxel or many voxels in one 
realization) is the same as the variance of yXy(7) over 
time T .  The variance of yXy(7) is its spectral density, 
integrated over frequencies. Because yXy(7) is eff ec- 
tively the contrast, convolved with the response func- 
tion, convolved with the MRI time-series, its spectral 
density, under the null hypothesis, is simply the three- 

[cf. Theorem 6F in Grimmett and Welsh, 19861. Equa- 
tion 7 expresses the fact that the cross-spectral density 
is the product of the densities of the two underlying 
processes, given that they are independent (i.e., no 
systematic phase relationship exists). Combining Equa- 
tions 5 and 7: 
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Equation 8 expresses the variance of the cross- 

covariance function as an integral (sum) over all 
frequencies. The variance at each frequency, under 
the null hypothesis, is the product of the variances 
(spectral densities) of the underlying processes. 

The stationariness of yXy(.) implies that the variance 
of yXy(7) is not a function of time and, therefore, 
V(yxy(0)] (over multiple realizations) = V{yx,(~)} (over 
time). So, the quotient: 

will, under the null hypothesis, have (roughly) a 
Gaussian distribution of unit variance and zero-mean. 
This is also called the z-score. A statistical parametric 
map of ((0) is referred to as a SPMjz}. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc(0) can be 
thought of as the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcorrelafion between x(t) and y(t) times 
the square root of the effective degrees of freedom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(v). 

To compute v, one needs to estimate gy(o) and gx(o). 
The estimation of gy(o) is straightforward. However, 
the estimation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgx(w) due to intrinsic autocorrela- 
tions [gx(w) under the null hypothesis] requires a little 
more thought. 

Estimating g,(w), gx(w), and the hemodynamic 
response function h(T) 

Clearly, if c(t) and h(7) were sufficiently well be- 
haved, gy(w) could be determined analytically as in 
Equation 4 [using g,(o) and H(o)]. However, in prac- 
tice it is considerably easier simply to compute the 
spectral density of y(t) [after convolving c(t) with h ( ~ ) ]  
using fast Fourier transforms, and thereby estimate 
g,(w) directly. 

The estimation of gx(o), the spectral density of the 
MRI time-series, under the null hypothesis, is more 
problematic, given that the short and noisy time-series 
that are typically available, and that the null hypoth- 
esis is (hopefully) seldom true and the autocorrela- 
tions (and spectral densities) of x(t) will contain both 
evoked and intrinsic components. To obtain an esti- 
mate of gx(w), under fhe null hypofhesis, it is necessary to 
discount evoked contributions. This is simply achieved 
by removing components that are phase-locked to the 
stimulus onset. In our work, this is done by analyzing 
the time-series from one stimulus-cycle minus the 
time-series from another, namely, the phase-shifted 

differences. A.related device, called the ”shift predictor,” 
is found in the analysis of separable neuronal spike- 
trains recorded with multiunit electrodes. The shift 
predictor is used to remove the confounding effect of 
stimulus-locked firing, when assessing the CYOSS- 

correlations between two units. In the present case, 
we wish to remove confounding stimulus-locked ef- 
fects on estimated autocorrelations. In the following 
xp(t) will refer to the difference in ( p )  phase-shifted 
MRI time-series. From Equations 1 and 2, 

where q is the stimulus or task period (or cycle length), 
and p is an integer greater than 0. Because z(t) is 
modeled as an uncorrelated stochastic process (innova- 
tion), the spectral and auto-correlative properties of 
xp(t) correspond to those of x(t) in the absence of 
evoked transients. Equivalently, under the null hypoth- 
esis, Pxx(.> = P x p x p b )  and gx(w>/varlx(t)l = g x p ( 4 /  

var{xp(t)l. 
Although it is possible to estimate g x p ( o )  by subject- 

ing xp(t) to Fourier transformation, we use the follow- 
ing expedient method. If one assumes that the intrin- 
sic autocorrelations [pxpxp(h)] can be modeled by a 
Gaussian autocorrelation function of the form: 

then: 

[Cox and Miller, 19801. The constants of proportional- 
ity implicit in Equation 11 cancel in Equation 9 and do 
not affect v. The parameter ut reflects the intrinsic 
smoothness of x(t) and is estimated in a computation- 
ally efficient way using the equality: 

ut = var(x,(t)] . [2 var{d~,/dt]j-*/~. (12) 

This relationship follows from Equation 11 and the 
standard result: V[dx/dt} = -Y;~:(O) [Cox and Miller, 
19801. Refer to Friston et al. [1991] for a more thorough 
discussion. Whatever phase-shifting strategy is used, 
xp(t) will always be shorter than x(t). From a practical 
point of view, this means that the low-frequency 
components of gx(w) cannot be estimated directly. 
Modeling gx(o) with a Gaussian (or any other) distribu- 
tion provides for an estimate of these low compo- 
nents. 

+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA157 + 
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A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprocess with autocovariance given by Equation 11 
is obtained by convolving a random uncorrelated 
process with a Gaussian point spread function of 
parameter ut. If one were to assume (see Equation 10) 
that the MRI time-series were a result of convolving an 
unknown but uncorrelated underlying neuronal pro- 
cess with the temporal point spread function h(T), 
then the estimate of ut also specifies A (the delay or 
dispersion). This follows from the fact that the Gauss- 
ian and Poisson functions are very similar for large 
values of A (they are identical in the limit) where: 

The empirically derived value of ut, based on the 
data set described below, was 0.92 scan. This corre- 
sponds to a delay and dispersion (A) of 7.69 s, which 
falls comfortably in the reported ranges [Bandettini, 
19931. There is no direct information about delay (as 
opposed to dispersion) in ut. The reason that our 
hemodynamic response function can be entirely speci- 
fied by ut depends on the Poisson assumption implicit 
in Equation 3. 

To summarize this section: A single parameter ut can 
be estimated from the ratio of the variances of the 
time-series and its derivative. This parameter (tempo- 
ral smoothness) not only provides an efficient and 
complete estimate of the spectral density of the time- 
series (assuming the density is Gaussian), but it can 
also be used to fix the parameter of the response 
function (assuming the function is Poisson). This 
single parameter is all that one needs to estimate, in 
calculating the effective degrees of freedom zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(v) for the 
correlation of interest. 

Thresholding the SPM[z) 

The final stage of analysis involves identifying a 
threshold that protects against experiment-wise false 
positives. The key thing to note is that, due to the 
spatial autocorrelations in the SPM(z], the number of 
voxels expected to be above threshold (u) is far more 
than the number of regions (or maxima) above thresh- 
old. Because we are concerned with activated regions 
(connected subsets of the total excursion set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= t(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 u) 
and not voxels, a Bonferroni correction is not appropri- 
ate (a Bonferroni correction is based on the expected 
number of voxels). Current approaches [Friston et al., 
1991; Worsley et al., 19921 use the fact that the 
relationship between the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprobability of getting at least 
one region above u (P) and the expected number of 
regions (or maxima) (k), tends to equality as u gets 

very large. The expected number of maxima depends 
on the threshold (u), smoothness (us), and size of the 
SPM (S). For an SPM{z] of D dimensions: 

[Hasofer, 1978; Adler and Hasofer, 19811. us is the 
spatial smoothness of the SPM and is estimated accord- 
ing to Equation 12, but using partial derivatives in 
space over rows and columns. The appropriate thresh- 
old is chosen such that P = 0.05. Refer to Friston et al. 
(19911 for a derivation of an equivalent equation 
(directly in terms of regions) in the context of func- 
tional imaging. A related approach based on the Euler 
characteristic has also been devised [Worsley et al., 
19921. It is, of course, acceptable to present SPMs 
thresholded without this correction for multiple non- 
independent comparisons. In this case, the SPM is 
referred to as “descriptive,” and an uncorrected one- 
tailed threshold of P = 0.001 is usually recommended 
(i.e., 3.09 for SPM{z]). Thresholding and interpreting 
SPMs comprise, a branch of spatial statisks that is 
receiving a lot of attention. The thresholding de- 
scribed in this paper represents a simple and estab- 
lished approach, but is not necessarily the most power- 
ful. Refer to Friston et al. [in press] for a more current 
analysis. 

The theories presented above used processes in 
continuous time and relied on a number of approxima- 
tions (usually exact in the limit). To assess the robust- 
ness of the expressions presented here, we applied the 
results to a simulated MRI data set. 

Validation using simulated data 

The parameters of the simulated data were chosen 
to correspond to the real MRI data analyzed in the 
next section. Sixty images of 32 X 32 voxels were 
created by convolving an uncorrelated random num- 
ber field with a three-dimensional Gaussian kernel of 
parameter 1.4 voxels, within the images, and 0.9 over 
time. The data were phase-shifted and subtracted, 
assuming a stimulus-cycle period of 20 scans. In the 
example presented here, and in those below, the 
differences between all possible pairs of stimulus- 
cycles were analyzed and the results averaged over all 
pairs. According to Equation 12, the estimate of tempo- 
ral smoothness was 0.905 scan and compares well with 
the expected value of 0.9. Assuming a repeat time of 3 
s, these simulated data would have a temporal smooth- 
ness (crJ of 2.71 s. This degree of smoothness would be 
produced by a temporal point spread function of 
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Poisson parameter 7.37 s. ((7) was computed, accord- 
ing to Equation 9, for all voxels, using a square-wave 
contrast c(t) period of 20 scans (10 scans ”on” and 10 
scans ”off’) and a Poisson response function with X = 

7.37 s. The resulting distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ ( T )  was deter- 
mined by pooling across voxels and lag (.). This 
simulated distribution was compared with the theoreti- 
cally predicted Gaussian distribution. 

The results of this simulation are shown in Figure 1. 
The response function is shown (top left) with the 
resulting contrast before [c(t)] and after [y(t)] convolu- 
tion with h(.) (top right). The agreement between the 
empirical and theoretical distributions of ((7) is clearly 
evident (lower left). The corresponding SPM{z] of {(O) 
is shown in the lower right. The highest value of ((0) 
obtained in this realization was 3.57. The time-series 
from the corresponding voxel is displayed with the 
contrasts (dotted line, top right). These high values 
(and apparent “following” of the contrast) can easily 
occur by chance and should not be overinterpreted in 
real data. No value exceeded the corrected threshold 
(broken vertical line, bottom left), which was 3.79 
according to Equation 14 and the post hoc estimate of 
spatial smoothness (Equation 12). This estimated spa- 
tial smoothness (averaged over both dimensions) was 
1.45 voxels and compares favorably with the expected 
value of 1.4 voxels. 

ANALYSIS OF MRI TIME-SERIES 

Data acquisition 

The data used to illustrate the method were a 
time-series of 64 gradient-echo EPI single coronal 
slices (5 mm thick, 64 x 64 voxels) through the calca- 
rine sulcus and extrastriate areas. Images were ob- 
tained every 3 s from a single subject using a 4.0-T 
whole body system, fitted with a small (27-cm diam- 
eter) z-gradient coil (TE 25 ms, acquisition time 41 ms). 
Photic stimulation (at 16 Hz) was provided by goggles 
fitted with light-emitting diodes. The stimulation was 
off for the first ten scans (30 s), on for the second ten, 
off for the third, and so on. Images were reconstructed 
without phase correction. The data were interpolated 
from 64 x 64 voxels to 128 x 128 voxels. Each voxel 
thus represented 1.25 x 1.25 x 5 mm of cerebral tissue. 

Data preprocessing 

Image manipulations and data analysis were per- 
formed in Matlab (Mathworks Inc., Sherborn, MD). 
The first four scans were removed to avoid magnetic 
saturation effects. The scans were corrected for (slight) 

subject movement using nonlinear minimization and 
a computationally efficient cubic interpolation algo- 
rithm [Keys, 19811. Images were translated and rotated 
to minimize the sum of squares between each of the 64 
images and their average (both scaled to the same 
mean intensity) using the Levenberg-Marquardt 
method [More, 19771. Only the 36 x 60 voxel subparti- 
tions (of the original images) containing the brain 
were subject to further analysis. All the time-series, for 
each voxel, were normalized to a mean of zero and 
convolved, in the time domain, with a Gaussian filter 
(full width at half maximum = 1.5 voxels) to suppress 
thermal noise. 

Computing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA((0) 

The real data were treated in an identical fashion to 
the simulated data. The temporal smoothness zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a7) was 
estimated using Equation 12 to be 0.92, as mentioned 
above. This estimate was the mean over all intracere- 
bra1 voxels and corresponded to a value of 7.69 s for A, 
the parameter of our assumed Poisson response func- 
tion h(7). To demonstrate that modeling intrinsic 
autocorrelations with a Gaussian form is reasonable, 
the empirical intrinsic autocorrelation functions and 
corresponding spectral density [gx(w)] are shown in 
Figure 2. These functions were obtained by averaging 
estimates over the differences between all pairs of 20 
scan stimulation periods (phase-shifted differences). 
The data were windowed with a Hanning function 
before being subject to Fourier transform. The solid 
lines in Figure 2 correspond to the autocorrelations 
(and spectral density) that would be obtained by 
convolving an uncorrelated innovation with a Poisson 
function of parameter 7.69 s. The determination of the 
appropriate Poisson parameter does not require com- 
putation of either the autocorrelation function or 
spectral density, but uses the variance of the first 
derivatives as in Equation 12. These data are pre- 
sented only to validate the Gaussian approximation 

The contrast c(t) used in this example was, again, a 
square-wave that was positive during photic stimula- 
tion and negative otherwise. c(t) had zero-mean and 
unit variance. The measured correlation between y(t) 
and the MRI time-series x(t) was computed for all 
voxels and scaled by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,/u according to Equation 9 to 
produce ((0). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJv was 4.58, corresponding to 21 effective 
degrees of freedom. In other words, one accrues a 
“degree of freedom” every 2.85 scans. The reason v is 
the same for all voxels is that we assumed that the 
response function and intrinsic autocorrelations (and 

for gx(0). 
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Figure I. 
Analysis of a simulated data set. Top left: The assumed hemody- 

namic response function h($, which has a Poisson distribution with 

parameter 7.37 s. Top right: The original square-wave contrast 

[broken line, c(t)], the contrast convolved with assumed response 

function [solid line, y(t)], and the response of the simulated voxel 

data x(t) that best correlated with the convolved contrast (dotted 

line). Bottom left: The distribution (over voxels and time) of [ ( T )  

calculated according to Equation 9 (dotted line). This distribution is 

indistinguishable from that predicted theoretically (solid line). The 

broken vertical line is the threshold that any value would have to 

reach to be considered significant at P = 0.05 according to Equation 

14. Bottom right: The corresponding SPM(z), a statistical paramet- 

ric map of ((0). The gray scale is arbitrary and has been scaled to 

the maximum and minimum of the SPM. 

spectral density) were the same everywhere. Clearly, 
one does not have to assume this (see Discussion). 

The results of this analysis are given in Figure 3. The 
hemodynamic response function, based on the empiri- 
cally determined "smoothness" of the time-series, is 
displayed to the left of the contrast before and after 
convolution. The dotted line in the top right graph is 
the response of the voxel showing the greatest correla- 
tion. The distribution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( (0)  (bottom left) is dramati- 

cally skewed, with almost all voxels showing a marked 
positive correlation with the convolved contrast. The 
highest value of i(0) was 4.44. The corresponding 
SPM{z] is displayed in the bottom right. 

Thresholding the SPM 

The spatial smoothness (a,) was computed accord- 
ing to Equation 12 over all the rows and columns of 
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time {seconds} frequency { c ycl es/sec} 

Figure 2. 
Actual and assumed intrinsic autocorrelation and spectral densities. 

Empirical estimates of the intrinsic autocorrelation function and 

spectral density compared with those based on temporal smooth- 

ness. Left: The autocorrelation function of the difference between 

the MRI time-series from one stimulus cycle and another (phase- 

shifted differences), averaged over all voxels and all pairs of cycles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
the SPM{z]. The means of these estimates was 1.46 
voxels, or 1.81 mm. With a search volume (S) of 2,160 
voxels, and a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP value of 0.05, the threshold according 
to Equation 14 was 3.97. Figure 4 shows the results of 
this thresholding. The picture on the left illustrates 
that the number of voxels above the threshold far 
exceeds the number of regions. The reason for this is, 
of course, spatial smoothness in the underlying pro- 
cess. This discrepancy between the expected number 
of suprathreshold voxels and the expected number of 
regions in the excursion set means that a Bonferroni 
correction based on voxel expectation is not appropri- 
ate. This follows from the fact that one requires the 
expected number of regions to be 0.05. The striate and 
extrastriate regions constituting the excursion set can 
all be considered significant in a strict statistical sense. 
They include V1 bilaterally and (on the right) V2 
dorsal to the calcarine fissure. Extrastriate regions in 
the fusiform, lingual, and dorsolateral cortices are also 
evident. 

A null analysis 

To demonstrate the specificity of the approach, we 
repeated an identical analysis but changed the period 

(broken line). The autocorrelation function obtained by convolving 

an uncorrelated innovation with a Poisson function based on the 

measured temporal smoothness is also shown (solid line). Right: 
The corresponding empirical (dots) and assumed (solid line) 

spectral densities of the phase-shifted differences. 

of the contrast c(t) from 20 scans to 16 scans. This 
simple manipulation eliminated all the significant 
voxels. In fact, the highest value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(O) was only 2.719. 
The results of this analysis are shown in Figure 5 using 
the same format as in Figures 1 and 3. 

VALIDATION OF THE HEMODYNAMIC 
RESPONSE FUNCTION 

Validation in the time domain 

Thus far, it has been assumed that the hemody- 
namic response function h(7) is reasonably “correct,” 
and we have proceeded to assess the ability of the 
contrast c(t) to explain the observed changes. One can 
take the opposite approach and estimate h(7) by 
assuming c(t) is correct. In previous sections, we have 
assumed a Poisson form for h(7) and have used the 
empirically determined temporal smoothness to specify 
an appropriate parameter. In this section, we present a 
post hoc validation of h(7) by computing it directly, 
using the contrast c(t) as the input function and the 
brain’s response as the output function. Although this 
could be done at each voxel, a more robust estimate is 
obtained if some global response is used. This global or 
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Figure 3. 
Analysis of a real data set. As for Figure I, but using real data. In this case, the distribution (lower left) is for ((0) (dotted line) and is 
dramatically skewed with respect to the distribution predicted under the iiull hypothesis (solid line). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
distributed output function was the response of the 
first spatial mode (principal component or eigenim- 
age) based on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAbetween-voxel covariances. 

The first spatial mode or eigenimage is defined by 
the first eigenvector of the covariance matrix of the 
MRI time-series. If x corresponds to a matrix with 60 
rows (one for each scan) and 2,160 columns (one for 
each voxel) of the time-series for each voxel, then the 
eigenvector solution e is simply computed using 
singular value decomposition [Golub and Van Loan, 
19911 such that: 

xTx .e  = e . R  (15) 

where denotes transposition and R is a diagonal 
matrix of eigenvalues. The column of e corresponding 
to the largest eigenvalue is the first spatial mode or 
eigenimage el. This mode constitutes a distributed 
brain system with high intracovariance or functional 
connectivity. Refer to Friston et al. [1993b] for a 
complete discussion. The response of el is given by: 

r = x ' e ,  (16) 

where r is a column vector of length 60. Using 
least-squares deconvolution, one can directly estimate 
the response function that best transforms input c(t) to 
output r. The results of this deconvolution are shown 
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signficiant covariances 

Figure 4. 
Thresholding the SPM[z]. Left: The SPM(z) from Figure 3 is presented zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a surface rendering, with 

the corrected threshold (corrected for multiple nonindependent comparisons according to Equation 

14). Right: The resulting “excursion set” is highlighted and includes V I  and several extrastriate 

regions according to the atlas of Talairach and Tournoux [ 19881. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in Figure 6, where the ”memory” of the convolution 
has been restricted to ten scans. The first eigenimage 
or mode (top left) reveals high loadings in the same 
areas identified by the more conventional (hypothesis- 
led) analysis of the previous sections. The correspond- 
ing response is shown with the contrast (top right). 
The results of the least-squares deconvolution (dots) 
agree remarkably with the hemodynamic response 
function based only on the temporal autocorrelations 
(broken line). The predicted and actual responses of 
the first mode are compared in the lower right. The 
predicted time courses are simply the contrast con- 
volved with h(7) (broken line) and the empirically 
determined response function (solid line). It is appar- 
ent that the empirical response function has a slightly 
more protracted tail, with some hint of biphasic structure. 
One might conjecture that this feature may reflect macro- 
vascular effects as remote regions are drained. 

Validation in the frequency domain 

The hemodynamic response function “behaves es- 
sentially as a low-pass filter in the detection of neuro- 
nal firing” [Bandettini, 19931. In other words, higher- 
frequency inputs are more severely attenuated than 
low-frequency inputs. The dependency of output 
variance on input frequency is captured by the 
(squared) transfer function 1H(w) I seen in Figure 7 

(left). This example is for a Poisson parameter of 5 s 
and demonstrates the downwards modulation of out- 
put variance with increasing frequency of a periodic 
input. For example, the variance of a periodic input at 
0.1 cycles/s (a stimulus cycle length of 10 s) is attenu- 
ated to about 20 percent. The hemodynamic response 
function can provide quite a powerful prediction of 
the brain’s capacity to follow a periodic stimulus when 
presented at increasing frequencies. Bandettini et al. 
have examined this phenomenon using fast, self- 
paced, sequential finger-thumb opposition at different 
on-off switching frequencies, ranging from period 
lengths of 50 s (e.g./ 25 s of finger opposition and 25 at 
rest) to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 s. The data reported in Bandettini [1993] are 
in terms of relative activation or amplitude of re- 
sponse. These data are in excellent agreement with 
theoretical predictions based on a Poisson hemody- 
namic response function (Fig. 7, left). The theoretical 
values were derived by simply convolving a square- 
wave contrast of appropriate frequency with a Pois- 
son response function (parameter 5 s) and taking the 
maximum amplitude difference. The Poisson param- 
eter used here (5 s) is smaller than that calculated on 
the basis of our photic stimulation data and may 
reflect a number of differences, including: 

differences in the neuronal response to varying 
task conditions 
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Figure 5. 
Null analysis of real data. Exactly as for Figure 3, but with a change to the contrast (the “on-off’ cycle period has been reduced from 20 

scans to 16). The impact on the distribution of ((0) (lower left) is clearly evident. 

differences due to relative microvascular and mac- 
rovascular contributions to the hemodynamic re- 
sponse (secondary to different acquisition param- 
eters), or 
differences in motor vs. visual cortex, hemody- 
namic response. 

analysis are shown in Figure 8 as a distribution of 
phase differences between the contrast [c(t)J and the 
signal [x(t)] over all intracranial voxels. Distribution is 
broad, but centered on the delay estimated on the 
basis of temporal smoothness alone. Anecdotally it 
appears that the longer delays (greater phase-differ- 
ences) are characteristic of regions that would be more 
subject to macrovascular effects (see next section). Validation in terms of phase shifts 

A simple and powerful way to estimate the delay 
associated with the hemodynamic response is to com- 
pute the phase shifts of the largest Fourier component 
of the input sequence at each voxel. The results of this 

Effects of changing h 

In this final section, we present a brief analysis of the 
effects of changing X. To assess the sensitivity of 

+ 164 + 



+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAnalysis zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Functional MRI Time-Series + 

1 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 -  

-1 

0.2 

’= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.2 

Q) 0.1 

v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
c 
0 

0 
c 
S 

v) 
c 

+ 

% . -* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 .  . e.5 . . . . . . . . . + .  

” 0 0 .  . .p 
-! - 

0 

v) 

2 

1 st eigenimage {mode} 

/ . \  

i ’ t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I ’\. delay = 7.70 se 

.I‘ \ 
\. . I 

I \ .  

/ \ 

‘. . .  
r------ . . . . . . . . . . . . . . . . . . . . .  *..-.. 
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detecting significant correlations to changes in the 
parameter A, we repeated the analysis based on {(O) 
while systematically increasing A from 0 to 16 s in 0.1-s 
steps. We used the “exceedence proportion” as an 
index of the overall or ”omnibus” sensitivity to signifi- 
cant correlations. The exceedence proportion is the 
proportion of voxels in the SPM{z} that are above 
threshold. This exceedence proportion has been used 
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response function based only on the intrinsic temporal smoothness 

(a function of the variance of the first derivative) of the MRI data 

(broken line) and the response function obtained by least-squares 

deconvolution (dots), based on an assumed input c(t) and the first 

mode’s response. Lower right: The actual response (dots) and the 

response predicted using the Poisson response function (dotted 

line) and the least-squares deconvolution estimate (broken line). 

for some years as a rough guide to the omnibus 
significance of SPMs [Friston et a]., 19901 and has 
recently been the subject of some rigorous statistical 
analysis [Worsley and Vandal, submitted]. 

The results of this analysis are presented in Figure 9 
(top). The first thing to note is that the greatest 
exceedence proportion is obtained for values of A in 
the range 6 to 8 s. The value used in the previous 



6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFriston et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 

modulation tranfer function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1.21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0 
input frequency { cycles/sec} on-off cycle period {seconds} 

Figure 7. 

Transfer functions. Left: The modulation transfer function expressed as the square of the frequency 

representation of a hernodynamic response function. Right: Relative activation expressed as a 

function of “on-off’ cycle length. The data are copied from the graphical data in Bandettini [ 19931, 
and the solid line represents that predicted with a hernodynamic response function of Poisson form 

and parameter 5 s. 

section (7.69) is marginally suboptimal (the best value 
was 6.6 s). One explanation for this was found in a 
closer analysis of these results. 

If the optimal value of A is computed for each voxel, 
one observes a systematic and spatially ordered change 
as one moves from striate cortex to extrastriate cortex, 
with the extrastriate cortices preferring a shorter delay zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
and dispersion. In other words, some regions of occipi- 
tal cortex respond in a more acute and phasic way to 
the same sensory input than do others. Figure 8 (lower 
right) shows these voxel-specific optimal values of A 
for all voxels that showed a reasonable correlation 
with the convolved contrast (noncorrected threshold 
of P = 0.001, lower left). This result is not surprising, 
given the reported evidence for phase shifts in re- 
sponse profiles (of several seconds) in MRI data 
[Bandettini, 19931. What is surprising here is that the 
extrastriate regions appear to respond before primary 
visual cortex does. Obviously many potential neuro- 
nal and hemodynamic explanations exist for this (e.g., 
slice reentrant large draining vessels). However, one 
interesting possibility is that V1 responses are modu- 
lated by reentrant connections [Edelman, 19781 from 
extrastriate regions. This particular aspect of interre- 

gional dynamics will be addressed in a subsequent 
paper. 

In conclusion, based on the exceedence proportion, 
the approach appears robust as long as A is within a 
second or so of the real delay and dispersion. 

DISCUSSION 

We have described what we consider to be a 
reasonable characterization of MRI time-series in terms 
of regionally specific correlations between a sensorimo- 
tor or cognitive input and the hemodynamic response. 
This approach is based on the correlations between 
the MRI signal and the input sequence convolved 
with an estimate of the hemodynamic response func- 
tion. The hemodynamic response function (in this 
paper) was assumed to be Poisson and was deter- 
mined using the observed autocorrelations in the 
physiological data (having removed stimulus-locked 
components). To give this approach statistical validity, 
it was brought into the framework of statistical para- 
metric mapping by using a statistical parameter that 
tests for significant cross-correlations (between sen- 
sory input and physiological response) in the presence 
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Figure 8. 
Phase differences and delay. The distribution of phase differences between the contrast and the response at each voxel. The phase 

difference was computed for the largest Fourier component of the contrast (input). The vertical broken line is the delay estimated on the 

basis of temporal smoothness. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
of intrinsic autocorrelations; and using established 
thresholding techniques to render the probability of 
finding a significant region, by dhance, suitably small 
(0.05). 

In particular, the proposed statistic ((0) has a Gauss- 
ian distribution, under the null hypothesis, and the 
resulting map of <(O) constitutes a SPM{z). c(O) is 
simply the correlation between convolved sensory 
input and hemodynamic response, scaled by a factor 
that can be thought of as the square root of the 
effective degrees of freedom w. w is a function of the 
distribution and overlap of the two processes in 
frequency space. 

One important aspect of this work is that the 
hemodynamic response function, or temporal point 
spread function, is estimated without reference to any 
assumed input (it is estimated using intrinsic autocor- 
relations in the physiological data only). Any estima- 
tion based on the sensory input would clearly result in 
a rather circular exercise, in that the technique would 
be biased towards the input function used. 

A number of alternative approaches to the problem 
of detecting significant cross-correlations exist, some 
of which we have evaluated. One obvious approach is 
to use the maximum cross-correlation between c(t) 
and x(t) over some reasonable interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY J T ) , , , ~ ~ .  This is 
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Figure 9. 
Effects of changing the response function. Top: The exceedence 

proportion (number of voxels above threshold P = 0.001) as a 

function of A. Lower left The SPM(z) thresholded at a descriptive 

(noncorrected) level of P = 0.001 (one-tailed). In this instance, the 

voxel values are the largest ((0) obtained over a range of A. Lower 
right: The optimal value of A for all voxels surviving a P = 0.001 

simply achieved by computing y,,(~) and thresholding 
in space and time according to Equation 14. For slice 
data, the SPM{y,,(7)) represents a three-dimensional 
process. For volume MRI data, the corresponding SPM 
would be four-dimensional. We have tried this ap- 
proach and found it to be less sensitive and robust 
than the one we have presented. Another test for 
significant cross-correlations would be to integrate 
y,,(~) over some reasonable interval, or, more gener- 
ally, take a weighted sum over an interval. In fact, the 
method described in this paper is exactly equivalent to 
taking a weighted sum of ycx(7), where the weighting 
is defined by the hemodynamic response function 

corresponding lambda 

threshold (voxels highlighted in the lower left). The optimal value of 

A is defined as that which provides the greatest ((0). The gray scale 

is arbitrary with small values of A (faster and more acute responses) 

being brighter. Note that VI (centrornedial dark areas) appear to 

be subject to the greatest delay and dispersion. 

h(7). This can be seen by noting that the weighted sum 
of the cros~-covariance function is obtained by the 
three-way convolution [c(t) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO x(t)] 0 h(7). By the 
commutivity of the convolution operator (O), this is 
equal to [c(t) O h ( ~ ) ]  0 x(t). The latter expression rep- 
resents the cross-correlation between the convolved 
contrast and x(t), which is precisely what has been 
used. 

The choice of a Poisson form for the hemodynamic 
response function means that delay and dispersion 
are totally confounded. We have examined the effects 
of varying the assumed delay and dispersion sepa- 
rately, using the exceedence proportion as a measure 
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of omnibus sensitivity. In these analyses, we used the 
y-distribution, which has two parameters and allows 
the independent manipulation of mean and variance. 
We did not report the results of this analysis because 
they did not contribute any significant insight. In 
general, the exceedence proportion showed exactly 
the same dependence on delay as for the Poisson 
form. The dependence on dispersion was much less 
marked. We could have used a Gaussian response 
function and set the delay equal to dispersion (for 
large values of A, this and the Poisson function are the 
same). The aesthetic advantage of the Poisson func- 
tion is that it only exists for positive lag zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(7). 

Obviously, there are many variants on the details 
we have presented here. The central tenets of the 
approach are: 

Regonal specific associations are assessed be- 
tween neuronal activity and a stimulus or task 
parameter in terms of correlations. 
The appropriate correlation is between the ob- 
served hemodynamic response and the hypoth- 
esized input, which has been convolved with a 
response function. 
The response function is specified without refer- 
ence to an assumed input. 
Care is taken to ensure that, in the absence of any 
response, intrinsic temporal and spatial autocorre- 
lations do not subtend spurious correlations (i.e., 
the experiment-wise false-positive rate is main- 
tained at a suitably low level). 

Within these constraints, a number of variants 
deserve mention. First, in the analysis above, it was 
assumed that the response function and intrinsic 
autocorrelations were the same for all voxels. An 
identical analysis performed in parallel for each voxel 
would allow for regional variation in the response 
function. Our analyses (see last section) suggest that 
these regional variations can be substantial. This exten- 
sion would certainly increase sensitivity, but would 
require long time-series, to ensure robust estimates of 
the intrinsic spectral density gx(o). A second variant 
would involve estimating the response function on 
the basis of independent data; for example, a second 
study or dividing the same study into two sections 
and using the SVD or PCA approach and least-squares 
deconvolution (Haxby J, personal communication). 

Although we used temporal smoothness to estimate 
both the intrinsic spectral density of the MRI signal 
and the response function, it is important to note that 
the first application is mandatory; the second is not. 
Any response function will, under the null hypothesis, 
render the distribution of {(O) Gaussian. Despite the 
fact that sensitivity to real change will be optimized 

when the dispersion or variance of the response 
function "matches" the intrinsic autocorrelations, no 
statistical requirement exists for this matching to be 
implemented. In other words, the response function is 
a personal choice. Complicated biphasic response 
functions are attractive in the sense that they are 
capable of modeling the "undershoot" effect. How- 
ever, the data did not suggest that this extension was 
justified in the examples above. 

One particular constraint imposed by a Poisson 
form is that delay and dispersion are yoked. This may 
be inappropriate for some data, and this constraint 
should not be considered a cornerstone of the pro- 
posed method. One particular fallacy of linkmg the 
delay and dispersion is revealed when considering the 
effect of temporal smoothing of the data to increase 
signal to noise. Here, the underlying response func- 
tion will be subject to this smoothing; and its effective 
dispersion will increase. This would be correctly de- 
tected and modeled by post hoc estimates of smooth- 
ness. However, the "correct" delay will not have 
changed. In some instances, it may be best to fix the 
response function to some appropriate delay and 
allow its variance to be dictated by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuf (e.g., using the 
y-distribution). 

In the method presented, the impact of thermal 
noise was suppressed by temporal smoothing at a data 
preprocessing stage. With longer time-series, it may be 
possible to adopt a more formal approach by segregat- 
ing the data into an uncorrelated white (or Raleigh) 
noise and a physiological autocorrelated process. Many 
linear devices exist for this sort of analysis (e.g., 
autoregressive and moving average models). How- 
ever, they are usually not considered in the context of 
very short time-series. 

Correlations or categories? 

The principle of correlating sensorial or behavioral 
parameters with cerebral excitation has a long history 
in neuroscience, from the days of Goltz and Ferrier 
[ e g ,  Ferrier, 1875; Goltz, 1881; Phillips et al., 19841 to 
modern-day approaches that use exogenous stimula- 
tion, e.g., magneto-simulation or endogenous activity 
(PET and MRI). Correlations in microelectrode record- 
ing and functional imaging data have received special 
attention recently, as they are a possible index of 
functional and effective connectivity [Gerstein and 
Perkel, 1969; Friston et al., 1993133. 

Although a fundamental equivalence exists be- 
tween testing for specific time-dependent changes 
with contrasts in analysis of (co-)variance of PET data 
and correlating a time-dependent parameter with 
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MRI data (refer to Friston et al. [1993a] for a concrete 
illustration of this point), it is important to acknowl- 
edge the differences: MRI data represent time-series 
that lend themselves directly to signal processing. For 
example, in this paper, using a few standard results 
from the theory of stochastic processes, one can solve 
the problem of detecting cross-correlations in the 
presence of autocorrelations and avoid what could 
have been a discursive and dense statistical analysis. 

This paper has focused exclusively on correlations 
for detecting significant activations. An alternative, 
found in the recent functional MRI literature, is to 
categorize the MRI time-series into activation and 
baseline scans and express the mean difference in 
some form. Researchers have had profound reserva- 
tions about this approach related to the observation 
that the residual MRI signal around the mean for each 
stimulus-cycle is not normally distributed [Baker J, 
personal communication]. The analysis presented in 
this paper concurs with these reservations. Although 
the residual variability about the convolved contrast 
y(t) is normally distributed, the probability that it will 
be similarly distributed about a horizontal line run- 
ning from stimulus onset to offset is low. The MRI 
time-series reflects a true dynamic response to an 
input, characterized by its response function. To pre- 
tend that this response following stimulus onset con- 
stitutes a single category is not really tenable. The 
proper way to categorize these time-series conceptu- 
ally is in terms of offset from stimulus onset. For 
example, the set of first scans after stimulus onset is a 
different category from the set of second scans follow- 
ing stimulus onset. The residuals about the means of 
these categories will be normally distributed. The 
convolved contrast implicitly assumes the latter form 
of categorization because only these scans have the 
same values of y(t). 

Implicit in phase-shifting (as a tool to estimate 
intrinsic autocorrelations) is the requirement that 
stimulus cycles are continuously repeated. A funda- 
mental point to be made here is: If implementation of 
intrasubject signal averaging in its broadest sense is 
the goal, then multiple presentations of the same 
stimulus-cycle are obligatory (the more the better). 
This places significant constraints on experimental 
design. The key theme, again, is that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe object that is 
averaged is a complete stimulus-cycle, not repeated scans 
within a cycle. A failure to recognize this will sacrifice all 
the rich nonlinear information about an evoked neuro- 
nal and hemodynamic transient for the apparent ease 
of simple categorical comparisons. Ironically, this non- 

linearity invalidates a parametric approach to averag- 
ing scans from the same stimulus-cycle (see above). 

In the context of MRI data, correlational approaches 
offer many advantages over alternative approaches. 
One key issue is that the correlation between sensory 
input and hemodynamics will not be sensitive to any 
artifact that is orthogonal (independent) to the input. 
These artifacts include movement artifacts and low- 
frequency aliasing artifacts due to an interaction be- 
tween the repeat time and cardiac, respiratory, and 
heart rate variability cycles. The proposed approach 
has the following interesting feature regarding move- 
ment artifacts. Because the effect of movement on 
signal is not subject to delay or dispersion (whereas 
the effect of evoked neuronal activity is), convolving 
the contrast with a hemodynamic response function 
will render the correlations insensitive to movement 
associated with changing stimuli or tasks. 

In conclusion, we hope to have presented some 
reasonable solutions to a relatively simple problem- 
how to identify regionally specific correlations be- 
tween sensory, cognitive, or behavioral parameters 
and cerebral physiology measured with functional 
MRI. 
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