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Abstract 

In this paper, a new first-order shear deformation theory is presented for functionally 

graded sandwich plates composed of functionally graded face sheets and an isotropic 

homogeneous core. By making a further assumption to the existing first-order shear 

deformation theory, the number of unknowns and governing equations of the present 

theory is reduced, thereby making it simple to use. In addition, the use of shear 

correction factor is no longer necessary in the present theory since the transverse shear 

stresses are directly computed from the transverse shear forces by using equilibrium 

equations. Equations of motion are derived from Hamilton’s principle. Analytical 

solutions for bending, buckling and free vibration analysis of rectangular plates under 

various boundary conditions are presented. Verification studies show that the present 

first-order shear deformation theory is not only more accurate than the conventional one, 

but also comparable with higher-order shear deformation theories which have a greater 

number of unknowns. 
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vibration 

1. Introduction 

Functionally graded materials (FGMs) are a class of composites that have continuous 

variation of material properties from one surface to another, and thus eliminating the 

stress concentration found in laminated composites. A typical FGM is made from a 

mixture of ceramic and metal. These materials are often isotropic but nonhomogeneous. 

The reason for interest in FGMs is that it may be possible to create certain types of 

FGM structures capable of adapting to operating conditions.  

Sandwich structures composed of a core bonded to two face sheets are commonly 

used in the aerospace vehicles due to their outstanding bending rigidity, low specific 

weight, excellent vibration characteristics and good fatigue properties. However, the 

sudden change in the material properties from one layer to another can result in stress 

concentrations which often lead to delamination. To overcome this problem, the concept 

of functionally graded (FG) sandwich structures is proposed. In such materials, two face 

sheets are made from isotropic FGMs while the core is made from an isotropic 

homogeneous material. Thanks to the smooth and continuous variation in the properties 

of FGMs, the stress concentration which is found in laminated sandwich structures is 

eliminated in FG sandwich structures.  

With the wide application of FG sandwich structures, understanding their responses 

becomes an essential task. Since the shear deformation effect is more pronounced in 

thick plates or plates made of advanced composites like FGM, shear deformation 

theories such as first-order shear deformation theory (FSDT) and higher-order shear 

deformation theories (HSDT) should be used to predict the responses of FG sandwich 

plates. The FSDT gives acceptable results but depends on the shear correction factor 

which is hard to determine since it depends on many parameters. Conversely, the HSDT 
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do not require shear correction factor, but its equations of motion are more complicated 

than those of the FSDT. It is observed from the literature that most studies on FG 

sandwich plates are based on HSDTs. Zenkour [1-2] used a sinusoidal shear 

deformation theory (SSDT) to study the bending, buckling and free vibration of FG 

sandwich plates with FG face sheets and a homogeneous core. The behavior of FG 

sandwich plates under thermal environment was also studied by Zenkour and his 

colleagues [3-5] using FSDT, SSDT and third-order shear deformation theory (TSDT) 

of Reddy [6]. Based on an accurate HSDT, Natarajan and Manickam [7] studied the 

bending and free vibration behavior of two types of FG sandwich plates, i.e. 

homogeneous face sheets with a FG core and FG face sheets with a homogenous core. 

Neves [8-10] developed HSDT to predict the behavior of FG sandwich plates. Recently, 

Xiang et al. [11] analyzed the free vibration of FG sandwich plates using a nth-order 

shear deformation theory and a meshless method, while Sobhy [12] investigated the 

buckling and free vibration of FG sandwich plates using various HSDTs. Thai and Choi 

[13] derived analytical solutions of a zeroth-order shear deformation theory for bending, 

buckling and free vibration analyses of FG sandwich plates under various boundary 

conditions. 

It is should be noted that HSDTs are highly computational cost due to involving in 

many unknowns (e.g., theories Neves et al. [9-10] with nine unknowns and Natarajan 

and Manickam [7] with thirteen unknowns). To reduce computational cost, HSDTs with 

four unknowns were recently developed for FG sandwich plates (see Refs. [14-21]). 

Although the existing FSDT is widely used to develop finite element models due to its 

simplicity, its accuracy is strongly dependent on the proper value of the shear correction 

factor. As a result, it is inconvenient to use. In this paper, a new FSDT which eliminates 

the use of the shear correction factor is developed for FG sandwich plates composed of 

FG face sheets and an isotropic homogeneous core. By making a further assumption, the 
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number of unknowns and governing equations of the present FSDT is reduced, thus 

makes it simple to use. Equations of motion and boundary conditions are derived from 

Hamilton’s principle. Analytical solutions for rectangular plates under various boundary 

conditions are obtained. Numerical examples are presented to verify the accuracy of the 

present theory in predicting the bending, buckling and free vibration responses of FG 

sandwich plates.  

2. Theoretical formulation 

Consider a sandwich plate composed of three layers as shown in Fig. 1. Two FG face 

sheets are made from a mixture of a metal and a ceramic, while a core is made of an 

isotropic homogeneous material. The material properties of FG face sheets are assumed 

to vary continuously through the plate thickness by a power law distribution as 

    m c mP z P P P V    (1) 

where P  represents the effective material property such as Young’s modulus E , 

Poisson’s ratio  , and mass density  ; subscripts c  and m  denote the ceramic and 

metal phases, respectively; and V  is the volume fraction of the ceramic phase defined 

by 
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 (2) 

where p  is the power law index that governs the volume fraction gradation. Fig. 2 

shows the through thickness variation of the volume fraction of the ceramic phase for 

five different schemes considered in this study. 
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2.1. Kinematics 

The displacement field of the conventional FSDT is given by 
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where u , v , w , x  and y  are five unknown displacement functions of the midplane 

of the plate. By assuming /x x     and /y y    , the displacement field of 

the new FSDT can be rewritten in a simpler form as 
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 (4) 

It is clear that the displacement field in Eq. (4) contains only four unknowns  , , ,u v w . 

It is worth noting that the simple FSDT recently proposed by Thai and Choi [22-23] also 

involves only four unknowns like the present theory. However, the displacement field of 

the simple FSDT [22-23] is obtained by splitting the transverse displacement into 

bending and shear parts instead of using a further assumption as in the present work. 

Therefore, the displacement field and subsequent equations of motion derived in this 

study will be completely different with those given by Thai and Choi [22-23]. In 

addition, the present FSDT does not require a shear correction factor as in the case of 

the simple FSDT [22-23]. 

The strains associated with the displacement field in Eq. (4) are: 
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Eq. (5) can be rewritten in a compact form as 

      0 z     (6a) 

    0   (6b) 
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 (7) 

2.2. Constitutive equations 

The linear elastic constitutive equations of FG sandwich plates can be written as 
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where 
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 (9) 

2.3. Equations of motion 

Hamilton’s principle is used herein to derive equations of motion. The principle can 

be stated in an analytical form as  
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0
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where U , V , and K  are the variations of strain energy, work done, and kinetic 

energy, respectively. The variation of strain energy is calculated by 
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where N , M , and Q  are the stress resultants defined by 
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The variation of work done by transverse load q  and in-plane load  0 0 0, ,x y xyN N N  can 

be expressed as 
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The variation of kinetic energy can be written as 
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where dot-superscript convention indicates the differentiation with respect to the time 
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variable t ,  z  is the mass density, and  0 1 2, ,I I I  are mass inertias defined by 
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Substituting the expressions for U , V , and K  from Eqs. (11), (13), and (14) into 

Eq. (10) and integrating by parts, and collecting the coefficients of u , v ,  , and 

w , the following equations of motion are obtained: 
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The natural boundary conditions are of the form: 
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    2 2

ns y x x y xy x yM M M n n M n n     (18b) 

 
x yn n

n x y

  
 

  
, x yn n

s y x

  
 

  
 (18c) 

with xn  and yn  being the direction cosines of the unit normal to the boundary of the 

middle plane. The above boundary conditions can be rewritten in an explicit form as 

clamped edge 

 0u v w
x

 
    


, at 0,x a  (19a) 

 0u v w
y

 
    


, at 0,y b  (19b) 

simply supported edge 

 0x xN v w M     , at 0,x a  (20a) 

 0y yu N w M     , at 0,y b  (20b) 

and free edge 

0 0

1 22 0
xyx

x xy x x xy x

MM w w
N N I u I Q N N M

x y x x y

   
         

    

&&
&& , at 0,x a  (21a) 

0 0

1 22 0
xy y

xy y y xy y y

M M w w
N N I v I Q N N M

x y y x y

    
         

    

&&
&& , at 0,y b  (21b) 

Substituting Eq. (5a) into Eq. (8a) and the subsequent results into Eqs. (12a)-(12b), the 

axial forces N  and bending moments M  are obtained in terms of strains as 
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where  , ,ij ij ijA B D  are the stiffness coefficients defined by 

            
1

/ 2 3
2 2

1/ 2

, , 1, , 1, ,
n

n

h
h n

ij ij ij ij ij
h

nh

A B D z z C z dz z z C z dz


    (23) 

Eq. (22) can be rewritten in a compact form as  

 
 
 

   
   

 
 

0
N A B

M B D





          
      

  (24) 

It should be noted that the transverse shear stresses  ,xz yz   computed from the 

constitutive equation Eq. (8b) violate the zero transverse shear stress conditions on the 

top and bottom surfaces of the plate. A shear correction factor is therefore required. To 

avoid the use of the shear correction factor, equilibrium equations are used herein. The 

equilibrium equations of a body is given by 

 0
xyx xz

x y z

  
  

  
 (25a) 

 0
xy y yz

x y z

    
  

  
 (25b) 

 0
yzxz z

x y z

  
  

  
 (25c) 

The transverse shear stresses can be derived from Eqs. (25a) and (25b) as 

 
/ 2

z
xyx

xz

h

d
x y

 


 
     

  (26a) 

 
/ 2

z
xy y

yz

h

d
x y

 
 



  
     

  (26b) 

The in-plane stresses  , ,x y xy    are computed from constitutive equations Eq. (8a) 

as 
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            0C C z       (27) 

where the axial strain  0  and the curvature    are related to the axial force  N  

and bending moment  M  by the inversion of Eq. (24) 

 
 
 

   
   

 
 

0
Na b

Mb d





            
     

  (28) 

Substituting Eq. (28) into Eq. (27), the in-plane stresses can be rewritten as  

                 C a z b N b z d M      (29) 

Substituting Eq. (29) into Eq. (26), using equilibrium equations of the plate, assuming 

two cylindrical bending modes, and omitting the weak terms, the following transverse 

shear stresses are obtained [24] 

  11xz xm z Q   (30a) 

  22yz ym z Q   (30b) 

where 

    11 11 11 11 12 21 21

/2

z

h

m C b d C b d d  


        (31a) 

    22 12 12 12 22 22 22

/2

z

h

m C b d C b d d  


        (31b) 

By using the shear stresses defined in Eq. (30a), the shear deformation energy per unit 

middle surface area is then given by the following expression: 

 
 
 

2/2 /2

112

55/2 /2

1 1

2 2

h h

s xz xz x

h h

m z
dz Q dz

C z
 

 

     (32) 

The shear deformation energy per unit middle surface area can be also calculated using 

the average shear deformation, 
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2

0

55

1 1

2 2

x
sa x xz

Q
Q

H
    (33) 

By considering of the balance of the transverse shear strain energy in Eqs. (32) and (33), 

the transverse shear stiffness 55H  is obtained as 

 
 
 

   
   1

1
2

1
2/ 2 3

1111

55

155/ 2 55

n

n

n
h

h

nh
nh

m zm z
H dz dz

C z C z






               
   (34) 

Similarly, the transverse shear stiffness 44H  can be obtained as  

 
 
 

   
   1

1
2

1
2/ 2 3

2222

44

144/ 2 44

n

n

n
h

h

nh
nh

m zm z
H dz dz

C z C z






               
   (35) 

Then, the transverse shear forces based on equilibrium equations are given as follow 

 

0

55

0

44

0

0

x xz

y yz

Q H

Q H



          
     

 (36) 

It should be noted that 44 55H H H   due to the isotropic properties of FGMs. The 

equations of motion of the present FSDT can be expressed in terms of displacements 

 , , ,u v w  by substituting Eq. (7) into Eqs. (22) and (36) and the subsequent results 

into Eq. (16) 

    
2 2 2 3 3

11 66 12 66 11 12 66 0 12 2 3 2
2

u u v
A A A A B B B I u I

x y x y x x y x

       
       

       

&&
&&  (37a) 

    
2 2 2 3 3

22 66 12 66 22 12 66 0 12 2 3 2
2

v v u
A A A A B B B I v I

y x x y y x y y

       
       

       

&&
&&  (37b) 

 

   

   

3 3 3 3 4

11 12 66 12 66 22 113 2 2 3 4

4 4
2 2

12 66 22 1 22 2 4

2 2

2 2

u u v v
B B B B B B D

x x y x y y x

u v
D D D H w I I

x y y x y



   

    
     

      

    
               

&& &&
&&

 (37c) 
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  
2 2 2

2 0 0 0

02 2
2x y xy

w w w
H w q N N N I w

x y x y
   

      
   

&& (37d) 

3. Analytical solutions 

Consider a rectangular plate with length a  and width b  under transverse load q 

and in-plane forces in two directions ( 0 0 0

1 2, , 0x cr y cr xyN N N N N    ). The analytical 

solution of Eq. (37) can be obtained for rectangular plates under various boundary 

conditions by using the following expansions of generalized displacements 

 

     
     
     
     

, ,

, ,

, ,

, ,

i t

mn

i t

mn

i t

mn

i t

mn

u x y t U X x Y y e

v x y t V X x Y y e

x y t X x Y y e

w x y t W X x Y y e









 









 (38) 

where 1i   ,  , , ,mn mn mn mnU V W  are coefficients, and   is the natural frequency. 

The functions  X x  and  Y y  given in Table 1 are suggested by Sobhy [12] to 

satisfy various boundary conditions in Eqs. (19) – (21). 

The transversely load q  is also chosen as 

  , sin sinmnq x y Q x y   (39) 

where the coefficients mnQ  are given below for certain typical loads: 

 
0

0

2

for sinusoidal loads 

16
for uniform loads

mn

q

Q q

mn


 


 (40) 

with /m a  , /n b  .  

Substituting Eqs. (38) and (40) into Eq. (37), the analytical solutions can be obtained 

from 
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11 12 13 11 13

21 22 23 22 232

31 32 33 34 13 23 33

34 44 44

00 0 0

00 0 0

00

0 0 0 0 0

mn

mn

bmn

qsmn

k k k Um m

k k k Vm m

k k k k Wm m m

fk k Wm





       
       

                                   

 (41) 

where 

 
   

 

11 11 66 12 12 66
0 0 0 0

13 11 12 66
0 0

,

2

a b a b

a b

k A X Y A X Y X Ydxdy k A A X Y X Ydxdy

k B X Y B B X Y X Ydxdy

           

       

   
 

 (42a) 

 
   

 

21 12 66 22 22 66
0 0 0 0

23 22 12 66
0 0

,

2

a b a b

a b

k A A X Y XY dxdy k A XY A X Y XY dxdy

k B XY B B X Y XY dxdy

           

       

   
 

 (42b) 

 

 

 

   

 

31 11 12 66
0 0

32 22 12 66
0 0

33 11 12 66 22
0 0

34 44 34
0 0

2

2

2 2

,

a b

a b

a b

a b

k B X Y B B X Y XYdxdy

k B XY B B X Y XYdxdy

k D X Y D D X Y D XY H X Y XY XYdxdy

k H X Y XY XYdxdy k k

       

       

            

    

 
 
 
 

 (42c) 

  1 2
0 0

a b

crN X Y XY XYdxdy        (42d) 

 
0 0

sin sin sin sin
a b

q mnf Q x y x ydxdy       (42e) 

 
11 0

0 0

13 1
0 0

,

,

a b

a b

m I X YX Ydxdy

m I X YX Ydxdy

 

  

 
 

     
2 2 0

0 0

23 1
0 0

a b

a b

m I XY XY dxdy

m I XY XY dxdy

 

  

 
 

 (42f) 

 

 

31 1 32 1
0 0 0 0

33 2 44 0
0 0 0 0

,

,

a b a b

a b a b

m I X YXYdxdy m I XY XYdxdy

m I X Y XY XYdxdy m I XYXYdxdy

  

    

   
   

 (42g) 

4. Numerical examples 

In this section, a number of numerical examples are presented and discussed to verify 

the accuracy of the present theory and investigate the effects of the power law index, 
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thickness ratio of layers, i.e. scheme, and transverse shear deformation on deflection, 

critical buckling load and natural frequency of FG sandwich plates. Unless mentioned 

otherwise, a simply supported Al/Al2O3 sandwich plate composed of aluminum face 

sheets (as metal) and an alumina core (as ceramic) under sinusoidal loads is considered. 

Young’s modulus, Poisson’s ratio and density of aluminum are 70mE  GPa, 0.3m   

and 2702m  kg/m
3
, respectively, and those of alumina are 380cE  GPa, 0.3c   

and 3800c  kg/m
3
. Five different schemes of sandwich plate are considered (see Fig. 

2). For convenience, the ratio of the thickness of each layer from bottom to top is 

denoted by the combination of three numbers, i.e. (1-0-1), (2-1-2) and so on. A four-

letter notation as shown in Table 1 is used to describe the boundary conditions of the 

plate. The following dimensionless forms are used:  

 

   
2

0

2 2

0 0 0

3 2 2
3

0 0 0 04 3

0 0

10 10ˆ , , , , , 0, ,
2 2 2 2 2

10
, , , / , 1GPa, 1kg/m

2 2 100

x x xz xz

c cr

E h a b h a b h b
w w z z z z

q a q a q a

E h a b N a a
w w N E E

q a E h h

   

   

            
     

      
 

 (43) 

4.1. Verification studies 

Example 1. The first example aims to verify the accuracy of the present theory in 

predicting the bending responses of FG sandwich plates. A moderately thick square 

plate with the thickness ratio equal to 10 and the power law index varied from 0 to 10 is 

analyzed. The ceramic core of FG sandwich plate is made of zirconia (ZrO2) with 

Young’s modulus and Poisson’s ratio being 151 GPa and 0.3, respectively. The obtained 

results are compared with those generated by Zenkour [1] based on the SSDT, TSDT 

and FSDT in Tables 2-4 and Figs. 3 and 4. It is clear that the conventional FSDT [1] 

violates the stress-free boundary conditions on the plate surface (Fig. 4), and 

consequently, a shear correction factor is required. In general, a good agreement 
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between the results is found (see Tables 2 and 3 and Fig. 3), except for the case of 

transverse shear stress xz  where a small difference between the results is seen (see 

Table 4 and Fig. 4). This is due to the different approaches used to predict the transverse 

shear stresses. In this study, the transverse shear stresses are obtained using equilibrium 

equations while those given by Zenkour [1] are computed from constitutive equations. 

Finally, it is important to note that the present theory involves only four unknowns as 

against five in the case of SSDT, TSDT and FSDT. Besides, it does not require a shear 

correction factor as in the case of FSDT. Therefore, it can be stated that the present 

theory is not only accurate but also simple in predicting the bending behavior of FG 

sandwich plates. 

Example 2. The aim of this example is to verify the accuracy of the present theory in 

predicting the critical buckling load of FG sandwich plates. A moderately thick square 

plate with the thickness ratio equal to 10 and the power law index varied from 0 to 10 is 

analyzed. Dimensionless critical buckling loads N  of square plates under uniaxial and 

biaxial compressions are presented in Table 5 and Table 6, respectively. The obtained 

results are compared with those generated by El Meiche et al. [16] based on the HSDT 

and Zenkour [2] based on the SSDT, TSDT and FSDT. An excellent agreement between 

the results is obtained for all schemes and values of power law index. It should be 

recalled that the present theory contains only four unknowns and four governing 

equations, while the number of unknowns and governing equations of the HSDT, SSDT, 

TSDT and FSDT is five. Thus, it can be stated that the present model is not only 

accurate but also simple in predicting the critical buckling load of FG sandwich plates. 

Further verification of critical buckling loads is displayed in Fig. 5 for thick plates. In 

this figure, the variations of dimensionless critical buckling loads versus thickness ratio 
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/a h  are compared for (1-2-1) FG sandwich rectangular plates under both uniaxial and 

biaxial compressions. It can be seen that the present solutions agree well with the TSDT 

solutions [2] even for the case of very thick plates where the shear deformation effect is 

more pronounced. Whereas, the FSDT [2] gives acceptable results for moderately thick 

plates only. For thick or very thick plates with the thickness ratio /a h 5, a slightly 

difference between the results predicted by the FSDT and TSDT is observed. It is due to 

the fact that the FSDT is unable to predict accurately the responses of plates with the 

mentioned thickness ratio ( /a h 5). 

Example 3. The last example aims to verify the accuracy of the present theory in 

predicting the natural frequency of FG sandwich plates. Table 7 contains dimensionless 

fundamental frequency   of a moderately thick square plate with the thickness ratio 

equal to 10. The obtained results are compared with three-dimensional (3D) solutions 

[25] and those predicted by HSDT [16], SSDT [2], TSDT [2] and FSDT [2]. It can be 

seen that the present solutions are in excellent agreement with the existing results and 

even more accurate than those predicted by the conventional FSDT [2]. For example, 

with p  10, when compared with exact 3D solutions [25], the maximum error of the 

present FSDT is only 0.29 % for the (1-0-1) FG sandwich plate, whereas the maximum 

error of the conventional FSDT [2] is 3.92 % for the (2-2-1) one. 

To verify for higher order modes, Table 8 shows the comparison of the first ten 

natural frequencies of (1-2-1) and (2-2-1) FG sandwich plates. The thickness ratio /a h  

and power law index p  of the plate are taken as 10 and 2, respectively. The obtained 

results are compared with those predicted by HSDT [16], SSDT [2], TSDT [2] and 

FSDT [2]. As expected, a good agreement between the results is obtained for all 

vibration modes which confirm the accuracy of the present theory. 



 18 

To verify for thick plates, Table 9 shows dimensionless fundamental frequency   of 

a thick square plate with the thickness ratio equal to 5. Two cases of FG sandwich plates 

are considered: (1) ceramic core (hardcore) and (2) metal core (softcore). Dimensionless 

fundamental frequencies predicted by the present theory using equilibrium equations 

without using shear correction factor and constitutive equations with a shear correction 

factor k  5/6 are compared with exact 3D solutions reported by Li et al. [25]. In 

general, the present theory using equilibrium equations gives a good prediction of 

frequency of FG sandwich plates with both hardcore and softcore. Whereas, the present 

theory with k  5/6 gives a good prediction of frequency of FG sandwich plates with 

hardcore only, but there are some errors in the case of FG sandwich plates with softcore. 

For example, with 10p  , when compared with exact 3D solutions [25], the errors of 

the present theory with k  5/6 are 1.24 % and 11.94 % for (1-2-1) FG sandwich plates 

with hardcore and softcore, respectively. This indicates that the use of a constant shear 

correction factor is not appropriate for the case of FG sandwich plates with softcore. 

This statement can be clearly seen in Fig. 6 in which the frequency ratio is defined as 

the ratio of the frequency from the present model and that from the FSDT with k  5/6. 

For FG sandwich plates with hardcore, the results predicted by the FSDT match well 

with the present solutions since the frequency ratio approaches unity. However, for FG 

sandwich plates with softcore, the FSDT overpredicts natural frequency (see Fig. 6), 

especially for higher values of power law index p . 

4.2. Parameter studies 

After verifying the accuracy of the present theory, parameter studies are carried out to 

investigate the influences of power law index p , thickness ratio of layers, i.e. scheme, 

and transverse shear deformation on deflection, critical buckling load and natural 
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frequency of FG sandwich plates. Numerical results are tabulated in Tables 10-12 and 

plotted in Figs. 7-16.  

The effects of the power law index p  on deflection, critical buckling load and 

fundamental natural frequency of FG sandwich square plates are illustrated in Figs. 7-9, 

respectively. The thickness ratio of the plate is taken equal to 10. It can be seen that 

increasing the power law index p  results in an increase in deflection (see Fig. 7) and a 

reduction of buckling load (see Fig. 8) and natural frequency (see Fig. 9). This is due to 

the fact that higher power law index p  corresponds to lower volume fraction of the 

ceramic phase V  (see Fig. 2). In other word, increasing the power law index will 

reduce the stiffness of the plate due to high portion of metal in comparison with the 

ceramic part, and consequently, leads to an increase in deflection and a reduction of 

both buckling load and natural frequency. In addition, the effect of the power law index 

p  on the through thickness variation of transverse shear stress xz  is also illustrated 

in Fig. 10 for (1-2-1) and (1-0-1) FG sandwich plates with p  0, 2, 5 and 8. It can be 

seen that, except for the case of homogeneous plates (i.e., p  0), the distributions of 

the transverse shear stress of (1-2-1) and (1-0-1) FG sandwich plates with p  2, 5 and 

8 are almost the same. In other word, the variation of the power law index has negligible 

influence on the through thickness distribution of the transverse shear stress. 

In order to investigate the effect of shear deformation on deflection, buckling load 

and natural frequency of FG sandwich plates, Figs. 11-13 display the variations of 

deflection, critical buckling load and fundamental frequency, respectively, with respect 

to thickness ratio /a h . The power law index is taken equal to 1. The dimensionless 

deflection, buckling load and frequency are obtained using the present theory and CPT. 

Since the CPT neglects the shear deformation, it underestimates deflection (see Fig. 11) 
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and overestimates buckling load (see Fig. 12) and natural frequency (see Fig. 13). The 

difference between the present theory and CPT is significant for thick to moderately 

thick FG sandwich plates, but it is negligible for thin plates with /a h 20. This means 

that the inclusion of shear deformation results in an increase in deflection and a 

reduction of both buckling load and natural frequency, and the effect of shear 

deformation is considerable for thick plates, but negligible for thin plates. 

The effect of boundary conditions on deflection, buckling load and natural frequency 

is shown in Tables 10-12 and Figs. 14-16. It is observed that the hardest and softest 

plates correspond to the FCFC and SSSS ones, respectively. It is also noticeable from 

Table 10 and Fig. 7 that, for a constant power law index and thickness ratio, the lowest 

and highest values of deflection correspond to the (1-2-1) and (1-0-1) FG sandwich 

plates, respectively. Such behavior is due to the fact that the (1-2-1) and (1-0-1) FG 

sandwich plates correspond to the highest and lowest volume fractions of the ceramic 

phase V  (see Fig. 2), and thus makes them become the hardest and softest ones. 

5. Conclusions 

A simple and accurate FSDT which eliminates the use of a shear correction factor 

was presented for FG sandwich plates composed of FG face sheets and an isotropic 

homogeneous core. Governing equations and boundary conditions are derived from 

Hamilton’s principle. Analytical solutions for bending, buckling and free vibration 

analysis of simply supported plates are presented. Verification studies confirm that the 

present FSDT is not only more accurate than the conventional one, but also comparable 

with 3D elasticity theory and existing higher-order shear deformation theories which 

have a greater number of unknowns. In addition, the present FSDT is simpler than the 

conventional one due to having a fewer number of unknowns and governing equations, 
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and more importantly, it does not require a shear correction factor. 
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Figure Captions 

Fig. 1. Geometry and coordinates of FG sandwich plates 

Fig. 2. Variation of volume fraction of the ceramic phase V  through the thickness 

Fig. 3. Variation of dimensionless normal stress x  through the thickness of square 

plates ( 10a h ) 

Fig. 4. Variation of dimensionless transverse shear stress xz  through the thickness of 

square plates ( 10a h , 2p  ) 

Fig. 5. Comparison of dimensionless critical buckling load N  of (1-2-1) FG sandwich 

rectangular plates ( 2b a , p 2) 

Fig. 6. Effect of shear correction factor on frequency of (1-2-1) FG sandwich square 

plates ( 5a h ) 

Fig. 7. Effect of power law index p  on dimensionless deflection w  of square plates 

( 10a h ) 

Fig. 8. Effect of power law index p  on dimensionless critical buckling load N  of 

square plates under biaxial compression ( 1 2 1    , 10a h ) 

Fig. 9. Effect of power law index p  on dimensionless fundamental frequency   of 

square plates ( 10a h ) 

Fig. 10. Effect of the power law index p on the variation of transverse shear stress xz  

through the thickness of square plates ( 10a h ) 

Fig. 11. Effect of shear deformation on dimensionless deflection w  of square plates 

( 1p  ) 

Fig. 12. Effect of shear deformation on dimensionless critical buckling load N  of 

square plates under biaxial compression ( 1 2 1    , 1p  ) 
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Fig. 13. Effect of shear deformation on dimensionless fundamental frequency   of 

square plates ( 1p  ) 

Fig. 14. Effect of boundary conditions on dimensionless deflection w  of (1-2-1) FG 

sandwich square plates ( 1p  ) 

Fig. 15. Effect of boundary conditions on dimensionless critical buckling load N  of 

(1-2-1) FG sandwich square plates under biaxial compression ( 1p  ) 

Fig. 16. Effect of boundary conditions on dimensionless fundamental frequency   of 

(1-2-1) FG sandwich square plates ( 1p  ) 
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Table Captions 

Table 1. The admissible functions  X x  and  Y y  

Table 2. Dimensionless deflection ŵ  of square plates ( / 10a h  ) 

Table 3. Dimensionless normal stress  / 2x h  of square plates ( / 10a h  ) 

Table 4. Dimensionless transverse shear stress  0xz  of square plates ( / 10a h  ) 

Table 5. Dimensionless buckling load N  of square plates under uniaxial compression 

( 1 21, 0    , / 10a h  ) 

Table 6. Dimensionless buckling load N  of square plates under biaxial compression 

( 1 2 1    , / 10a h  ) 

Table 7. Dimensionless fundamental frequency   of square plates ( / 10a h  ) 

Table 8. The first ten dimensionless frequencies   of square plates ( / 10a h  , 2p  ) 

Table 9. Dimensionless fundamental frequency   of square thick plates ( / 5a h  ) 

Table 10. Dimensionless deflection w  of square plates ( /a h  10) 

Table 11. Dimensionless buckling load N  of square plates ( 1 2 1    , /a h  10) 

Table 12. Dimensionless fundamental frequency   of square plates ( /a h  10) 
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Fig. 1. Geometry and coordinates of FG sandwich plates 
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Fig. 2. Variation of volume fraction of the ceramic phase V  through the thickness 
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Fig. 3. Variation of dimensionless normal stress x  through the thickness of square 

plates ( 10a h ) 
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Fig. 4. Variation of dimensionless transverse shear stress xz  through the thickness of 

square plates ( 10a h , 2p  ) 
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Fig. 5. Comparison of dimensionless critical buckling load N  of (1-2-1) FG sandwich 

rectangular plates ( 2b a , p 2) 

 

 

0.9

0.95

1

1.05

1.1

1.15

1.2

0 10 20 30 40 50
p

F
re

q
u
e
n
c
y
 r

a
ti
o

Hardcore

Softcore

 

Fig. 6. Effect of shear correction factor on frequency of (1-2-1) FG sandwich square 

plates ( 5a h ) 
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Fig. 7. Effect of power law index p  on dimensionless deflection w  of square plates 

( 10a h ) 
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Fig. 8. Effect of power law index p  on dimensionless critical buckling load N  of 

square plates under biaxial compression ( 1 2 1    , 10a h ) 



 34 

0.9

1

1.1

1.2

1.3

0 10 20 30 40 50
p

1-0-1

2-1-2

1-1-1

2-2-1

1-2-1



 

Fig. 9. Effect of power law index p  on dimensionless fundamental frequency   of 

square plates ( 10a h ) 

 

 

z
/h

xz  

z
/h

xz  
 

(a) 1-2-1 

 

(b) 2-2-1 

 

Fig. 10. Effect of the power law index p on the variation of transverse shear stress xz  

through the thickness of square plates ( 10a h ) 
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Fig. 11. Effect of shear deformation on dimensionless deflection w  of square plates 

( 1p  ) 
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Fig. 12. Effect of shear deformation on dimensionless critical buckling load N  of 

square plates under biaxial compression ( 1 2 1    , 1p  ) 
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Fig. 13. Effect of shear deformation on dimensionless fundamental frequency   of 

square plates ( 1p  ) 

 

 

0.1

0.2

0.3

0.4

0.5

0.6

0 10 20 30 40 50
a/h

w

SSSS

CSCS

FCFC

CCCC

 

Fig. 14. Effect of boundary conditions on dimensionless deflection w  of (1-2-1) FG 

sandwich square plates ( 1p  ) 
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Fig. 15. Effect of boundary conditions on dimensionless critical buckling load N  of 

(1-2-1) FG sandwich square plates under biaxial compression ( 1p  ) 
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Fig. 16. Effect of boundary conditions on dimensionless fundamental frequency   of 

(1-2-1) FG sandwich square plates ( 1p  ) 
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Table 1. The admissible functions  X x  and  Y y  

Boundary conditions The functions  X x  and  Y y  

Notation 0x   0y   x a  y b   X x   Y y  

SSSS S S S S  sin x   sin y  

CSCS C S C S  2sin x   sin y  

CCCC C C C C  2sin x   2sin y  

FCFC F C F C    2 2cos sin 1x x      2sin y  

 

 

Table 2. Dimensionless deflection ŵ  of square plates ( / 10a h  ) 

p Theory 
Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 SSDT [1]  0.1961  0.1961  0.1961  0.1961  0.1961  

 TSDT [1] 0.1961  0.1961  0.1961  0.1961  0.1961  

 FSDT [1] 0.1961  0.1961  0.1961  0.1961  0.1961  

 Present 0.1961  0.1961  0.1961  0.1961  0.1961  

1 SSDT [1]  0.3235  0.3062  0.2919  0.2808  0.2709  

 TSDT [1] 0.3236  0.3063  0.2920  0.2809  0.2709  

 FSDT [1] 0.3248  0.3075  0.2930  0.2817  0.2717  

 Present 0.3237  0.3064  0.2920  0.2809  0.2710  

2 SSDT [1]  0.3732  0.3522  0.3328  0.3161  0.3026  

 TSDT [1] 0.3734  0.3523  0.3329  0.3162  0.3026  

 FSDT [1] 0.3751  0.3541  0.3344  0.3174  0.3037  

 Present 0.3737  0.3526  0.3330  0.3163  0.3027  

5 SSDT [1]  0.4091  0.3916  0.3713  0.3495  0.3347  

 TSDT [1] 0.4093  0.3918  0.3715  0.3496  0.3348  

 FSDT [1] 0.4112  0.3942  0.3736  0.3512  0.3363  

 Present 0.4101  0.3927  0.3720  0.3501  0.3350  

10 SSDT [1]  0.4175  0.4037  0.3849  0.3492  0.3412  

 TSDT [1] 0.4177  0.4041  0.3855  0.3622  0.3482  

 FSDT [1] 0.4192  0.4066  0.3879  0.3640  0.3500  

 Present 0.3988  0.3894  0.3724  0.3492  0.3361  
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Table 3. Dimensionless normal stress  / 2x h  of square plates ( / 10a h  ) 

p Theory 
Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 SSDT [1]  2.0545  2.0545  2.0545  2.0545  2.0545  

 TSDT [1] 2.0499  2.0499  2.0499  2.0499  2.0499  

 FSDT [1] 1.9758  1.9758  1.9758  1.9758  1.9758  

 Present 1.9758  1.9758  1.9758  1.9758  1.9758  

1 SSDT [1]  1.5820  1.4986  1.4289  1.3234  1.3259  

 TSDT [1] 1.5792  1.4959  1.4262  1.3206  1.3231  

 FSDT [1] 1.5325  1.4517  1.3830  1.2775  1.2810  

 Present 1.5324  1.4517  1.3830  1.2775  1.2810  

2 SSDT [1]  1.8245  1.7241  1.6303  1.4739  1.4828  

 TSDT [1] 1.8217  1.7214  1.6275  1.4710  1.4799  

 FSDT [1] 1.7709  1.6750  1.5824  1.4253  1.4358  

 Present 1.7709  1.6750  1.5824  1.4253  1.4358  

5 SSDT [1]  1.9957  1.9155  1.8184  1.6148  1.6411  

 TSDT [1] 1.9927  1.9130  1.8158  1.6118  1.6381  

 FSDT [1] 1.9358  1.8648  1.7699  1.5640  1.5931  

 Present 1.9358  1.8648  1.7699  1.5640  1.5931  

10 SSDT [1]  2.0336  1.9731  1.8815  1.6198  1.6485  

 TSDT [1] 2.0304  1.9713  1.8838  1.6666  1.7042  

 FSDT [1] 1.9678  1.9217  1.8375  1.6165  1.6584  

 Present 1.9678  1.9216  1.8375  1.6160  1.6587  
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Table 4. Dimensionless transverse shear stress  0xz  of square plates ( / 10a h  ) 

p Theory 
Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 SSDT [1]  0.2462  0.2462  0.2462  0.2462  0.2462  

 TSDT [1] 0.2386  0.2386  0.2386  0.2386  0.2386  

 FSDT [1] 0.1910  0.1910  0.1910  0.1910  0.1910  

 Present 0.2387  0.2387  0.2387  0.2387  0.2387  

1 SSDT [1]  0.2991  0.2777  0.2681  0.2668  0.2600  

 TSDT [1] 0.2920  0.2710  0.2612  0.2595  0.2526  

 FSDT [1] 0.2610  0.2432  0.2326  0.2276  0.2206  

 Present 0.2566  0.2593  0.2602  0.2582  0.2593  

2 SSDT [1]  0.3329  0.2942  0.2781  0.2763  0.2654  

 TSDT [1] 0.3262  0.2884  0.2719  0.2694  0.2583  

 FSDT [1] 0.2973  0.2675  0.2508  0.2432  0.2326  

 Present 0.2552  0.2617  0.2650  0.2624  0.2655  

5 SSDT [1]  0.3937  0.3193  0.2915  0.2890  0.2715  

 TSDT [1] 0.3863  0.3145  0.2864  0.2827  0.2651  

 FSDT [1] 0.3454  0.2973  0.2721  0.2610  0.2460  

 Present 0.2468  0.2576  0.2649  0.2627  0.2694  

10 SSDT [1]  0.4415  0.3364  0.2953  0.2967  0.2768  

 TSDT [1] 0.4321  0.3324  0.2957  0.2908  0.2690  

 FSDT [1] 0.3728  0.3132  0.2830  0.2700  0.2526  

 Present 0.2419  0.2534  0.2627  0.2611  0.2698  
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Table 5. Dimensionless buckling load N  of square plates under uniaxial compression 

( 1 21, 0    , / 10a h  ) 

p Theory 
Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 HSDT [16] 13.0055  13.0055  13.0055  13.0055  13.0055  

 SSDT [2] 13.0061  13.0061  13.0061  13.0061  13.0061  

 TSDT [2] 13.0050  13.0050  13.0050  13.0050  13.0050  

 FSDT [2] 13.0045  13.0045  13.0045  13.0045  13.0045  

 Present 13.0045  13.0045  13.0045  13.0045  13.0045  

0.5 HSDT [16] 7.3638  7.9405  8.4365  8.8103  9.2176  

 SSDT [2] 7.3657  7.9420  8.4371  8.8104  9.2167  

 TSDT [2] 7.3644  7.9408  8.4365  8.8100  9.2168  

 FSDT [2] 7.3373  7.9132  8.4103  8.7867  9.1952  

 Present 7.3634  7.9403  8.4361  8.8095  9.2162  

1 HSDT [16] 5.1663  5.8394  6.4645  6.9495  7.5072  

 SSDT [2] 5.1685  5.8412  6.4654  6.9498  7.5063  

 TSDT [2] 5.1671  5.8401  6.4647  6.9494  7.5066  

 FSDT [2] 5.1424  5.8138  6.4389  6.9257  7.4837  

 Present 5.1648  5.8387  6.4641  6.9485  7.5056  

5 HSDT [16] 2.6568  3.0414  3.5787  4.1116  4.7346  

 SSDT [2] 2.6601  3.0441  3.5806  4.1129  4.7349  

 TSDT [2] 2.6582  3.0426  3.5796  4.1121  4.7347  

 FSDT [2] 2.6384  3.0225  3.5596  4.0929  4.7148  

 Present 2.6415  3.0282  3.5710  4.1024  4.7305  

10 HSDT [16] 2.4857  2.7450  3.1937  3.7069  4.2796  

 SSDT [2] 2.4893  2.7484  3.1946  3.1457  4.3818  

 TSDT [2] 2.4873  2.7463  3.1947  3.7075  4.2799  

 FSDT [2] 2.4690  2.7263  3.1752  3.6889  4.2604  

 Present 2.4666  2.7223  3.1795  3.6901  4.2728  
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Table 6. Dimensionless buckling load N  of square plates under biaxial compression 

( 1 2 1    , / 10a h  ) 

p Theory 
Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 HSDT [16] 6.5028  6.5028  6.5028  6.5028  6.5028  

 SSDT [2] 6.5030  6.5030  6.5030  6.5030  6.5030  

 TSDT [2] 6.5025  6.5025  6.5025  6.5025  6.5025  

 FSDT [2] 6.5022  6.5022  6.5022  6.5022  6.5022  

 Present 6.5022  6.5022  6.5022  6.5022  6.5022  

0.5 HSDT [16] 3.6819  3.9702  4.2182  4.4051  4.6088  

 SSDT [2] 3.6828  3.9710  4.2186  4.4052  4.6084  

 TSDT [2] 3.6822  3.9704  4.2182  4.4050  4.6084  

 FSDT [2] 3.6687  3.9566  4.2052  4.3934  4.5976  

 Present 3.6817  3.9702  4.2181  4.4047  4.6081  

1 HSDT [16] 2.5832  2.9197  3.2323  3.4748  3.7536  

 SSDT [2] 2.5842  2.9206  3.2327  3.4749  3.7531  

 TSDT [2] 2.5836  2.9200  3.2324  3.4747  3.7533  

 FSDT [2] 2.5712  2.9069  3.2195  3.4629  3.7418  

 Present 2.5824  2.9193  3.2320  3.4742  3.7528  

5 HSDT [16] 1.3284  1.5207  1.7894  2.0558  2.3673  

 SSDT [2] 1.3300  1.5220  1.7903  2.0564  2.3674  

 TSDT [2] 1.3291  1.5213  1.7898  2.0561  2.3673  

 FSDT [2] 1.3192  1.5113  1.7798  2.0464  2.3574  

 Present 1.3208  1.5141  1.7855  2.0512  2.3652  

10 HSDT [16] 1.2429  1.3725  1.5969  1.8534  2.1398  

 SSDT [2] 1.2448  1.3742  1.5973  1.5729  2.1909  

 TSDT [2] 1.2436  1.3732  1.5974  1.8538  2.1400  

 FSDT [2] 1.2345  1.3631  1.5876  1.8445  2.1302  

 Present 1.2333  1.3612  1.5897  1.8450  2.1364  
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Table 7. Dimensionless fundamental frequency   of square plates ( / 10a h  ) 

p Theory 
Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 3D [25] 1.8268  1.8268  1.8268  1.8268  1.8268  

 HSDT [16] 1.8245  1.8245  1.8245  1.8245  1.8245  

 SSDT [2] 1.8245  1.8245  1.8245  1.8245  1.8245  

 TSDT [2] 1.8245  1.8245  1.8245  1.8245  1.8245  

 FSDT [2] 1.8244  1.8244  1.8244  1.8244  1.8244  

 Present 1.8244  1.8244  1.8244  1.8244  1.8244  

0.5 3D [25] 1.4461  1.4861  1.5213  1.5493  1.5767  

 HSDT [16] 1.4442  1.4841  1.5192  1.5471  1.5746  

 SSDT [2] 1.4444  1.4842  1.5193  1.5520  1.5745  

 TSDT [2] 1.4442  1.4841  1.5192  1.5520  1.5727  

 FSDT [2] 1.4417  1.4816  1.5170  1.5500  1.5727  

 Present 1.4442  1.4841  1.5192  1.5471  1.5745  

1 3D [25] 1.2447  1.3018  1.3552  1.3976  1.4414  

 HSDT [16] 1.2431  1.3000  1.3533  1.3956  1.4394  

 SSDT [2] 1.2434  1.3002  1.3534  1.4079  1.4393  

 TSDT [2] 1.2432  1.3001  1.3533  1.4079  1.4393  

 FSDT [2] 1.2403  1.2973  1.3507  1.4056  1.4372  

 Present 1.2429  1.3000  1.3533  1.3956  1.4393  

5 3D [25] 0.9448  0.9810  1.0453  1.1098  1.1757  

 HSDT [16] 0.9457  0.9817  1.0446  1.1088  1.1740  

 SSDT [2] 0.9463  0.9821  1.0448  1.1474  1.1740  

 TSDT [2] 0.9460  0.9818  1.0447  1.1473  1.1740  

 FSDT [2] 0.9426  0.9787  1.0418  1.1447  1.1716  

 Present 0.9431  0.9796  1.0435  1.1077  1.1735  

10 3D [25] 0.9273  0.9408  0.9952  1.0610  1.1247  

 HSDT [16] 0.9281  0.9428  0.9954  1.0608  1.1231  

 SSDT [2] 0.9288  0.9433  0.9952  1.0415  1.1346  

 TSDT [2] 0.9284  0.9430  0.9955  1.1053  1.1231  

 FSDT [2] 0.9251  0.9396  0.9926  1.1026  1.1207  

 Present 0.9246  0.9390  0.9932  1.0587  1.1223  
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Table 8. The first ten dimensionless frequencies   of square plates ( / 10a h  , 2p  ) 

Scheme Mode (m,n) 
Theory     

HSDT [16] SSDT [2] TSDT [2] FSDT [2] Present 

1-2-1 1 (1,1) 1.3025  1.3024  1.3025  1.3002  1.3023  

 2 (1,2) 3.1573  3.1569  3.1570  3.1445  3.1563  

 3 (2,2) 4.9098  4.9085  4.9088  4.8802  4.9079  

 4 (1,3) 6.0289  6.0262  6.0267  5.9849  6.0262  

 5 (2,3) 7.6415  7.6360  7.6367  7.5722  7.6384  

 6 (1,4) 9.6847  9.6712  9.6723  9.5728  9.6811  

 7 (3,3) 10.1782  10.1619  10.1631  10.0542  10.1746  

 8 (2,4) 11.1464  11.1232  11.1246  10.9961  11.1430  

 9 (3,4) 13.4665  13.4176  13.4194  13.2380  13.4640  

 10 (4,4) 16.5069  16.3982  16.4004  16.1372  16.5076  

2-2-1 1 (1,1) 1.2438  1.2678  1.2678  1.2652  1.2436  

 2 (1,2) 3.0170  3.0738  3.0735  3.0597  3.0163  

 3 (2,2) 4.6946  4.7807  4.7800  4.7482  4.6932  

 4 (1,3) 5.7666  5.8702  5.8692  5.8226  5.7648  

 5 (2,3) 7.3132  7.4400  7.4385  7.3664  7.3110  

 6 (1,4) 9.2744  9.4255  9.4232  9.3120  9.2719  

 7 (3,3) 9.7485  9.9044  9.9018  9.7801  9.7459  

 8 (2,4) 10.6789  10.8426  10.8395  10.6959  10.6764  

 9 (3,4) 12.9101  13.0826  13.0781  12.8754  12.9084  

 10 (4,4) 15.8376  15.9939  15.9870  15.6935  15.8383  

 



 45 

Table 9. Dimensionless fundamental frequency   of square thick plates ( / 5a h  ) 

p Theory 
Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

Hardcore  

0 3D [25] 1.6771  1.6771  1.6771  1.6771  1.6771  

 Present 1.6697  1.6697  1.6697  1.6697  1.6697  

 Present (k=5/6) 1.6697  1.6697  1.6697  1.6697  1.6697  

0.5 3D [25] 1.3536  1.3905  1.4218  1.4454  1.4694  

 Present 1.3473  1.3841  1.4152  1.4386  1.4626  

 Present (k=5/6) 1.3395  1.3764  1.4081  1.4326  1.4571  

1 3D [25] 1.1749  1.2292  1.2777  1.3143  1.3534  

 Present 1.1691  1.2232  1.2714  1.3078  1.3467  

 Present (k=5/6) 1.1607  1.2145  1.2632  1.3007  1.3403  

5 3D [25] 0.8909  0.9336  0.9980  1.0561  1.1190  

 Present 0.8853  0.9286  0.9916  1.0488  1.1118  

 Present (k=5/6) 0.8836  0.9256  0.9862  1.0447  1.1056  

10 3D [25] 0.8683  0.8923  0.9498  1.0095  1.0729  

 Present 0.8599  0.8860  0.9428  1.0012  1.0648  

 Present (k=5/6) 0.8613  0.8881  0.9406  1.0006  1.0596  

Softcore  

0 3D [25] 0.8529  0.8529  0.8529  0.8529  0.8529  

 Present 0.8491  0.8491  0.8491  0.8491  0.8491  

 Present (k=5/6) 0.8491  0.8491  0.8491  0.8491  0.8491  

0.5 3D [25] 1.3789  1.3206  1.2805  1.2453  1.2258  

 Present 1.3686  1.3115  1.2729  1.2380  1.2185  

 Present (k=5/6) 1.4242  1.3816  1.3423  1.2969  1.2766  

1 3D [25] 1.5090  1.4333  1.3824  1.3420  1.3213  

 Present 1.4915  1.4156  1.3702  1.3302  1.3104  

 Present (k=5/6) 1.5626  1.5237  1.4835  1.4278  1.4101  

5 3D [25] 1.6587  1.5801  1.5028  1.4601  1.4267  

 Present 1.6305  1.5125  1.4589  1.4195  1.4026  

 Present (k=5/6) 1.6774  1.6718  1.6491  1.5895  1.5876  

10 3D [25] 1.6728  1.6091  1.5267  1.4831  1.4410  

 Present 1.6495  1.5196  1.4642  1.4266  1.4101  

 Present (k=5/6) 1.6778  1.6827  1.6672  1.6100  1.6130  
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Table 10. Dimensionless deflection w  of square plates ( /a h  10) 

Boundary 

conditions 
p 

Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 0 0.2961  0.2961  0.2961  0.2961  0.2961  

 0.5 0.5229  0.4849  0.4564  0.4371  0.4178  

 1 0.7455  0.6594  0.5956  0.5541  0.5130  

 2 1.0846  0.9256  0.8011  0.7205  0.6433  

 5 1.4576  1.2714  1.0782  0.9385  0.8139  

 10 1.5609  1.4143  1.2109  1.0434  0.9011  

CSCS 0 0.1841  0.1841  0.1841  0.1841  0.1841  

 0.5 0.3208  0.2975  0.2803  0.2688  0.2571  

 1 0.4547  0.4021  0.3636  0.3389  0.3141  

 2 0.6593  0.5617  0.4865  0.4385  0.3920  

 5 0.8900  0.7712  0.6529  0.5697  0.4940  

 10 0.9595  0.8606  0.7339  0.6338  0.5464  

CCCC 0 0.1612  0.1612  0.1612  0.1612  0.1612  

 0.5 0.2780  0.2579  0.2431  0.2333  0.2233  

 1 0.3923  0.3469  0.3140  0.2930  0.2718  

 2 0.5674  0.4828  0.4184  0.3777  0.3380  

 5 0.7685  0.6626  0.5603  0.4897  0.4247  

 10 0.8327  0.7412  0.6302  0.5452  0.4693  

FCFC 0 0.1043  0.1043  0.1043  0.1043  0.1043  

 0.5 0.1786  0.1657  0.1563  0.1501  0.1437  

 1 0.2513  0.2222  0.2012  0.1879  0.1744  

 2 0.3628  0.3084  0.2674  0.2416  0.2164  

 5 0.4925  0.4232  0.3575  0.3129  0.2713  

 10 0.5355  0.4742  0.4023  0.3484  0.2997  
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Table 11. Dimensionless buckling load N  of square plates ( 1 2 1    , /a h  10) 

Boundary 

conditions 

p Scheme     

 1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 0 6.5022  6.5022  6.5022  6.5022  6.5022  

 0.5 3.6817  3.9702  4.2181  4.4047  4.6081  

 1 2.5824  2.9193  3.2320  3.4742  3.7528  

 2 1.7749  2.0798  2.4032  2.6719  2.9926  

 5 1.3208  1.5141  1.7855  2.0512  2.3652  

 10 1.2333  1.3612  1.5897  1.8450  2.1364  

CSCS 0 11.9477  11.9477  11.9477  11.9477  11.9477  

 0.5 6.8587  7.3942  7.8489  8.1861  8.5573  

 1 4.8390  5.4712  6.0504  6.4925  7.0048  

 2 3.3370  3.9170  4.5225  5.0176  5.6129  

 5 2.4721  2.8529  3.3697  3.8622  4.4536  

 10 2.2930  2.5565  2.9978  3.4713  4.0269  

CCCC 0 15.9226  15.9226  15.9226  15.9226  15.9226  

 0.5 9.2338  9.9529  10.5578  11.0011  11.4933  

 1 6.5434  7.3990  8.1753  8.7612  9.4443  

 2 4.5236  5.3169  6.1354  6.7961  7.5952  

 5 3.3400  3.8738  4.5813  5.2417  6.0445  

 10 3.0825  3.4629  4.0732  4.7084  5.4696  

FCFC 0 18.6047  18.6047  18.6047  18.6047  18.6047  

 0.5 10.8640  11.7085  12.4145  12.9276  13.5006  

 1 7.7220  8.7323  9.6429  10.3246  11.1229  

 2 5.3477  6.2913  7.2569  8.0294  8.9676  

 5 3.9393  4.5849  5.4268  6.2015  7.1514  

 10 3.6230  4.0915  4.8230  5.5683  6.4748  
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Table 12. Dimensionless fundamental frequency   of square plates ( /a h  10) 

Boundary 

conditions 
p 

Scheme     

1-0-1 2-1-2 1-1-1 2-2-1 1-2-1 

SSSS 0 1.8244  1.8244  1.8244  1.8244  1.8244  

 0.5 1.4442  1.4841  1.5192  1.5471  1.5745  

 1 1.2429  1.3000  1.3533  1.3956  1.4393  

 2 1.0605  1.1218  1.1882  1.2436  1.3023  

 5 0.9431  0.9796  1.0435  1.1077  1.1735  

 10 0.9246  0.9390  0.9932  1.0587  1.1223  

CSCS 0 2.6701  2.6701  2.6701  2.6701  2.6701  

 0.5 2.1277  2.1862  2.2371  2.2768  2.3162  

 1 1.8365  1.9209  1.9986  2.0593  2.1226  

 2 1.5694  1.6616  1.7592  1.8394  1.9251  

 5 1.3927  1.4512  1.5471  1.6405  1.7380  

 10 1.3610  1.3889  1.4720  1.5672  1.6629  

CCCC 0 3.2936  3.2936  3.2936  3.2936  3.2936  

 0.5 2.6376  2.7099  2.7719  2.8199  2.8679  

 1 2.2814  2.3864  2.4818  2.5556  2.6330  

 2 1.9520  2.0680  2.1889  2.2868  2.3923  

 5 1.7293  1.8064  1.9269  2.0415  2.1629  

 10 1.6858  1.7268  1.8329  1.9497  2.0703  

FCFC 0 3.4688  3.4688  3.4688  3.4688  3.4688  

 0.5 2.7872  2.8634  2.9284  2.9781  3.0282  

 1 2.4144  2.5256  2.6258  2.7027  2.7838  

 2 2.0675  2.1914  2.3190  2.4215  2.5323  

 5 1.8296  1.9145  2.0430  2.1632  2.2918  

 10 1.7806  1.8285  1.9429  2.0656  2.1942  

 


