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Abstract

We present a comprehensive analysis of how and why

face recognition accuracy differs between men and women.

We show that accuracy is lower for women due to the com-

bination of (1) the impostor distribution for women having

a skew toward higher similarity scores, and (2) the genuine

distribution for women having a skew toward lower similar-

ity scores. We show that this phenomenon of the impostor

and genuine distributions for women shifting closer towards

each other is general across datasets of African-American,

Caucasian, and Asian faces. We show that the distribution

of facial expressions may differ between male/female, but

that the accuracy difference persists for image subsets rated

confidently as neutral expression. The accuracy difference

also persists for image subsets rated as close to zero pitch

angle. Even when removing images with forehead partially

occluded by hair/hat, the same impostor/genuine accuracy

difference persists. We show that the female genuine dis-

tribution improves when only female images without facial

cosmetics are used, but that the female impostor distribu-

tion also degrades at the same time. Lastly, we show that the

accuracy difference persists even if a state-of-the-art deep

learning method is trained from scratch using training data

explicitly balanced between male and female images and

subjects.

1. Introduction

Variation in face recognition accuracy based on gen-

der, race or age has recently become a controversial topic

[1, 2, 3, 21]. Unequal accuracy across demographic groups

can potentially undermine public acceptance of face recog-

nition technology. Also, estimating accuracy based on im-

ages with a different demographic mix than the users of the

technology can lead to unexpected problems in the oper-

ational scenario. Therefore, it is important to understand

what accuracy differences actually exist, and why.

This paper focuses on the issue of unequal face recog-

nition accuracy between men and women. Previous work

has concluded that face recognition is more accurate for

men than for women. In order to better understand why the

Receiver Operator Characteristic (ROC) curve for women

is worse than the ROC for men, we examine differences

in the underlying impostor and genuine distributions. Fa-

cial expression, head pose pitch, makeup use, and forehead

occlusion by hair/hat have been speculated to cause differ-

ences in face recognition accuracy between men and women

[12, 7, 22], and so we report on experiments to determine if

any of these factors can explain the observed differences in

the impostor and genuine distributions.

We know of no previous work that reports on experi-

ments designed to identify the cause of lower face recogni-

tion accuracy for women using deep learning methods. As

deep learning methods rely on training data, and training

datasets typically have fewer images of women than men,

we also report results for deep learning models trained on

two perfectly gender balanced training datasets.

2. Literature Review

To our knowledge, the earliest report that face recog-

nition accuracy is lower for women was in the 2002 Face

Recognition Vendor Test (FRVT) [27]. In a 2009 meta-

analysis of twenty-five prior works, Lui et al. [23] found

that men were slightly easier to recognize than women.

They also noted that gender effects are often mixed with

other covariates.

Beveridge et al. [5] analyzed results for a Face Recogni-

tion Grand Challenge [28] dataset that includes 159 women

and 192 men. They reported that men had higher accuracy

than women for two of the three algorithms, but women had

higher accuracy for the third.

Grother et al. [25] analyzed the Multiple Biometric Eval-

uation (MBE) results and found that women have a higher
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(a) MORPH African American (b) MORPH Caucasian (c) Notre Dame (d) AFD

Figure 1: Male and female samples from the datasets used.

false non-match rate (FNMR) at a fixed false match rate

(FMR) for 6 of the 7 matchers evaluated. However, they

did not investigate the relationship between impostor scores

and gender. In terms of possible causes for unequal FNMR,

one speculation offered is that women are generally shorter

than men, and a camera adjusted for average male height

may have non-optimal viewing angle for women.

In a 2012 paper, Klare et al. [17] report on experiments

with six matchers and a large dataset of mug-shot style im-

ages. They consider issues related to trainable and non-

trainable algorithms, and balanced training data, and con-

clude that women are inherently more difficult to recognize.

They also show results in which both the impostor and the

genuine distributions for women are worse than for men.

Ueda et al. [30] report that face recognition is advan-

taged by the presence of light makeup and disadvantaged by

the presence of heavy makeup. They had face images of 24

Japanese women in their database with three makeup condi-

tions – no makeup, light makeup, and heavy makeup. Their

results show that the effect of makeup and gender on face

recognition is statistically significant, with light makeup be-

ing the easiest to recognize, followed by no makeup and

then heavy makeup.

Guo et al. [13] propose a correlation-based face recogni-

tion technique that is robust to changes introduced by facial

makeup. These correlations are built on the extracted fea-

tures from local patches on face images rather than the raw

pixel values since the latter can be affected by facial makeup

to some degree. Their patch selection scheme and discrimi-

native mapping are found to be effective in improving facial

makeup detection accuracy.

Dantcheva et al. [8] investigate how a technique called

non-permanent facial makeup affects face recognition accu-

racy. They present results for the YouTube MakeUp (YMU)

database, which has real makeup images, and the Virtual

MakeUp (VMU) database, which has images modified with

application of synthetic makeup. Results show a reduction

in accuracy with all the matchers for images with makeup.

The works discussed above were performed prior to deep

learning algorithms in face recognition. It is important to

consider whether deep learning methods that achieve higher

absolute accuracy show the same accuracy differences that

were present in earlier algorithms. In a presentation of re-

sults from the FRVT Ongoing effort at NIST, Grother [11]

notes that women are harder to recognize, as they have both

FMR and FNMR higher than men.

Cook et al. [7] report a study in which images are ac-

quired using eleven different automated systems and used

with the same commercial matcher. They find large differ-

ences in genuine scores, and in acquisition times, across the

11 systems. Relative to this paper, they report that genuine

scores were higher for men than women, suggesting that

two images of the same female appear less alike on aver-

age than two images of the same male. They speculate that

possible causes could be hair-style and makeup.

Lu et al. [22] reported a detailed study of the effect of

various covariates, using deep CNN matchers and datasets

from the IARPA Janus program. They report that accuracy

for females is lower, and speculate that greater face occlu-

sion by hairstyle and cosmetics use are possible causes.

In the 2019 Face Recognition Vendor Test [26] focused

in demographic analysis, NIST reported that women have

higher false positive rates than men (worst impostor dis-

tribution), and that the phenomenon is consistent across

matchers and datasets.

Most previous works examining male/female difference

in face recognition accuracy do not explicitly consider the

differences in the impostor and genuine distributions that

underlie the ROC curves. Also, while multiple previous

works speculate that makeup could be the cause of lower ac-

curacy for women [17, 7, 22], after the deep learning wave,

there has been no empirical investigation to test this spec-

ulation, or any of the other speculated causes such as pose

angle, facial expression, and occlusion by hair.

3. Experimental Datasets and Matcher

Male/female difference in face recognition accuracy is

analyzed using four datasets. Two of these datasets are

the African-American and the Caucasian cohorts of the

MORPH dataset [29]. MORPH contains mugshot-style im-

ages of both African-Americans and Caucasians and was

recently used in analysis of race-based differences in face

recognition accuracy [18, 4]. Due to the accuracy differ-

ences based on race, the African-American and Caucasian

cohorts are analyzed separately in this paper. The African-

American dataset contains 36,836 images of 8,864 males

and 5,782 images of 1,500 females. The Caucasian dataset

contains 8,005 images of 2,132 males and 2,606 images of

637 females. Subjects range in age approximately from 16
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Figure 2: Male and female ROC curves. Annotated values correspond to threshold used to achieve the specific FMR.

to 70 years old.

The Notre Dame dataset used in this work is drawn from

image collections previously released by the University of

Notre Dame [28]. It contains 14,345 images of 261 Cau-

casian males and 10,021 images of 169 Caucasian females.

Subjects are primarily younger. All images have good qual-

ity and subjects appear in front of a uniform background.

The Asian Faces Dataset (AFD) [32] was assembled us-

ing “in the wild” images scraped from the web. We curated

a subset of AFD for this study by the following steps. First,

we identified a subset of mostly frontal face images. Then

we used a gender classifier on the frontal images, and man-

ually checked any subject that had less than 75% consistent

gender prediction across their images. Lastly, we removed

mislabeled images, merged subjects that were the same per-

son, and removed duplicate and near-duplicate images. The

curated version of AFD 1 used in our experiments contains

42,134 images of 911 males and 49,320 images of 967 fe-

males.

We report results for one of the best state-of-the-art open-

source deep learning face matcher, ArcFace [9]. The Arc-

Face model [14] used in this paper was trained with ResNet-

100 using the MS1MV2 dataset, which is a curated version

of the MS1M dataset [15]. We have experimented with

other deep CNN matchers, and the pattern of results is sim-

ilar, but the overall accuracy is usually noticeably lower.

For this reason, and to save space, we present only ArcFace

results. For MORPH and Notre Dame datasets, the faces

are detected and aligned using RetinaFace [10]. For AFD

dataset, as the images were already tightly cropped, we do

not perform alignment and use the images as they are.

4. Experimental Results

For all the experiments in this section, except for the

AFD dataset (that does not have date of acquisition for its

images), we only use non same-day images to generate the

genuine pairs: subjects in MORPH have only one image

captured per day; we explicitly did not match same-day gen-

uine pairs in Notre Dame dataset.

1github.com/vitoralbiero/afd_dataset_cleaned

4.1. ROC Curve Difference Between Genders

Figure 2 shows the ROC curves for the four datasets ana-

lyzed. Starting with the three constrained datasets, as all the

results are near ceiling, the accuracy of males and females

is very close, with the largest gender gap in the MORPH

Caucasian dataset. However, although not usually shown in

ROC curves, the thresholds used to achieve specific FMRs

for males and females are annotated on the ROCs and are

quite different for males and females. Females have much

higher thresholds. Across the three datasets, the threshold

used to achieve a FMR of 1-in-100,000 for males is almost

the same as the threshold for a FMR of 1-in-10,000 used for

females. If used in an operational scenario, where usually a

fixed threshold is used for all persons, females would have

10 times more false matches than males. This result sug-

gests two things: (a) when comparing ROC curves between

subsets of the same dataset, thresholds should be taken into

account; (b) as females have much higher thresholds, their

impostor distribution must be shifted to higher scores.

Moving to the unconstrained dataset (AFD), the differ-

ence in accuracy between males and females is large, but

the thresholds for the same FMR are less different. As the

AFD dataset is collected from the web, the female cohort

could have more facial occlusion, makeup, facial expression

or larger variation in head pose than the male cohort, which

could be responsible for the big difference in accuracy.

4.2. Impostor and Genuine Distributions

To better understand the cause of the male/female ac-

curacy difference, Figure 3 shows the genuine and impos-

tor distribution for the four datasets. Compared to males,

the female impostor distribution is shifted towards higher

values, and also the female genuine distribution is shifted

towards lower values. For the constrained datasets, the fe-

male impostor distribution is shifted by a larger amount than

in the unconstrained dataset. Also, in the unconstrained

dataset, the genuine distribution has a larger shift than in

the constrained ones. The d-prime values, which measure

the separation between genuine and impostor distribution,

are also consistently lower for females.
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Figure 3: Male and female authentic and impostor distributions.

Subset

Dataset Original Neutral Expression Head Pose A Head Pose M Visible Forehead No Makeup

MORPH A-A

Male 10.316 10.613 (2.88%) 10.45 (1.3%) 10.682 (3.55%) 10.465 (1.44%)

Female 8.701 9.083 (4.39%) 8.695 (-0.07%) 8.955 (2.92%) 8.997 (3.4%)

Diff. -1.615 -1.53 -1.755 -1.727 -1.468

MORPH C

Male 9.641 9.908 (2.77%) 9.676 (0.36%) 9.901 (2.7%) 9.939 (3.09%) 9.641 (Original)

Female 8.266 8.874 (7.36%) 8.423 (1.9%) 8.612 (4.19%) 8.6 (4.04%) 8.776 (6.17%)

Diff. -1.375 -1.034 -1.253 -1.289 -1.339 -0.865

Notre Dame

Male 11.577 12.442 (7.47%) 11.561 (-0.14%) 11.621 (0.38%) 11.93 (3.05%) 11.577 (Original)

Female 10.539 11.531 (9.41%) 10.722 (1.74%) 10.558 (0.18%) 10.469 (-0.66%) 10.765 (2.14%)

Diff. -1.038 -0.911 -0.839 -1.063 -1.461 -0.812

AFD

Male 4.529 4.81 (6.2%) 4.501 (-0.62%) 4.765 (5.21%) 4.529 (Original)

Female 3.497 3.866 (10.55%) 3.455 (-1.2%) 3.66 (4.66%) 3.739 (6.92%)

Diff. -1.032 -0.944 -1.046 -1.105 -0.79

Table 1: Male and female d-prime values, difference (female - male) and percentage improvement (inside parenthesis) from

the original dataset. Head poses results are filtered with Amazon (A) and Microsoft (M) face APIs.

4.3. Investigating the Causes

In this section, we test some of the speculated causes

for female face recognition accuracy to be lower than for

males. The d-prime values achieved for males and females

after each speculated cause is controlled for are compared

to the original values in Table 1.

4.3.1 Facial Expression

One of the speculated causes of lower accuracy for females

is that females exhibit a broader range of facial expression

when photographed, which could lead to lower similarity

scores for genuine image pairs. To validate if women in-

deed have more non-neutral images than men, we used two

commercial facial analysis APIs to predict facial expression

for the images.

Starting with the Notre Dame dataset, which has meta-

data for the expression prompted at image acquisition,

Amazon Face API agreed with 91.79% (6911/7529) of the

male neutral expression labels, and 86.32% (4480/5190) of

the female. The Microsoft Face API agreed with 96.67%

(7278/7529) of the male neutral expression labels, and

93.93% (4875/5190) of the female. We analyze the images

for which either API did not agree with the mta-data, and

indeed many were not neutral expression. Thus, to create a

highly-confident neutral expression subset, we selected im-

ages that all three sources (meta-data labels, Amazon Face

API, and Microsoft Face API) classified as neutral expres-

sion, giving us 6,858 male images, and 4,361 females im-

ages, for the same set of subjects.

MORPH and AFD do not have meta-data for expres-

sion, so we use images rated as neutral by both APIs. For

MORPH African-American, the male cohort had 30,395

images rated as neutral by both APIs, and the female cohort

had 2,529. On MORPH Caucasian, 6,362 male images and

1,491 females images were rated as neutral by both APIs.

Finally, on the AFD dataset, 17,469 male and 10,900 fe-

male images were classified as neutral facial expression by

both APIs.

Figure 4 shows the distribution of facial expression using

both face APIs. Males show consistently more neutral facial

expression than females across all four datasets. In the same

way, females have more images with a “happy” expression,

which agrees with the speculation that females smile more

at time of image acquisition.

Figure 5 shows the genuine and impostor distribution for

the datasets using only images classified with neutral facial

expression. As shown in Table 1, the separation between the

impostor and genuine distribution increased for both males

and females, but females had a larger increase than males,

which was expected since females had more non-neutral fa-

cial expression images removed. The highest increase in
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Figure 4: Male and female facial expression prediction using Amazon Face API (top) and Microsoft Face API (bottom).

(a) MORPH African American (b) MORPH Caucasian (c) Notre Dame (d) AFD

Figure 5: Male and female authentic and impostor distributions using only images with neutral facial expression.

d-prime for males is 7.47% in the Notre Dame dataset, and

for females is 10.55% in the AFD dataset. However, ex-

cept for the Notre Dame dataset, where the female genuine

distribution is slightly shifted towards higher (better) values

than the male genuine distribution, the previously-seen pat-

tern holds, and both genuine and impostor distributions are

still shifted towards each other compared to males.

4.3.2 Head Pose

Another speculated cause of lower accuracy for women is

that they might have a greater incidence of off-angle pose

in the images. This could occur if a camera is adjusted to

an average male height, and then used to acquire images of

women and men (as speculated in [7]).

Using the two commercial face APIs, we detected the

head pose pitch of males and females, which is shown in

Figure 6 for one of them, due to space constrains. For all

datasets, the male and female pitch distributions are simi-

lar. However, off-angle pose could potentially affect more

females than males.

We filtered the images to ones that are within -5 to +5

degrees of head pose pitch. As there was low agreement

between the Amazon and Microsoft Face APIs, we did not

combine both into a single subset. The Amazon Face API

classified in the range of -5 and 5 degrees of pitch: 19,080

male images and 3,336 female images on MORPH African-

American, 4,585 male images and 1,519 female images

on MORPH Caucasian, 6,769 male images and 5,426 fe-

male images on Notre Dame, and 7,186 male images and

8,405 female images on AFD. The Microsoft Face API clas-

sified in the range of -5 and 5 degrees of pitch: 16,097

male images and 2,847 female images on MORPH African-

American, 3,847 male images and 1,227 female images on

MORPH Caucasian, 7,487 male images and 6,283 female

images on Notre Dame, and 15,217 male images and 14,229

female images on AFD. From manually examining some

images, the Microsoft Face API seems, for the versions of

the APIs and the datasets used here, to be more accurate on

head pose pitch than the Amazon API.

Figure 7 shows the male and female genuine and impos-

tor distribution for the images filtered to be within -5 to +5

degrees of head pose pitch. For the images filtered with

Amazon Face API, overall, both males and females had

slightly worse genuine and impostor distributions (see Table

1). As for Microsoft Face API filtered images, the separa-

tion between both male and female distributions had only a

small improvement (see Table 1). It is expected that images

with less variation in head pose will have better matching,

thus this result agrees with our analysis that Microsoft is

85



(a) MORPH African American (b) MORPH Caucasian (c) Notre Dame (d) AFD

Figure 6: Male and female head pose pitch predicted using Microsoft Face API.

(a) MORPH African American (b) MORPH Caucasian (c) Notre Dame (d) AFD

Figure 7: Male and female authentic and impostor distributions using only images with -5 and 5 degrees of head pitch angle,

filtered using Amazon Face API (top) and Microsoft Face API (bottom).

more accurate to predict head pose pitch angles. Finally,

we still see the same pattern of accuracy difference between

males and females after restricting the dataset on pose.

4.3.3 Forehead Occlusion

Another speculated cause for female accuracy being lower

is that females more frequently have hair occluding part of

their face, in particular the forehead and eyes. To detect

if the subjects have their forehead occluded, we used the

BiSeNet [33] image segmentation network, that was trained

using the CelebAMask-HQ [19], to segment the face im-

ages. Then, we cropped a region corresponding to the fore-

head and checked the ratio of hair/hat to other face parts

(skin, eyebrows, eyes, and nose) in this region. All the im-

ages that had less than 10% hair/hat were kept in a forehead-

occlusion-free subset. We filtered both MORPH and Notre

Dame datasets, which resulted in: 6,105 images of 1,899

males and 1,501 images of 476 females on MORPH Cau-

casian; 32,120 images of 8,577 males and 4,574 images of

1,404 females on MORPH African-American; and 9,144

images of 216 males and 6,713 images of 153 females on

Notre Dame. We were not able to repeat the same filtering

Figure 8: Examples of segmented images that passed (left)

and did not passed (right) the forehead occlusion check.

Subjects shown in the left and right are the same persons.

for AFD dataset, as the faces are not as frontal. Figure 8

shows examples of segmented image faces that passed and

did not pass the skin check.

Figure 9 shows the male and female genuine and impos-

tor distribution using only images with no occlusion of the

forehead. As shown in Table 1, except for Notre Dame fe-

males, removing forehead occlusion improves the d-prime

of both genders. The highest improvement of both male and

female d-prime is MOPRH Caucasian, with 3% and 3.88%

improvement, respectively. Although this improved the sep-

aration of genuine and impostor distributions for both gen-

ders, removing forehead occlusion did not make the impos-

tor or genuine distributions more similar across gender.
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(a) MORPH African American (b) MORPH Caucasian (c) Notre Dame

Figure 9: Male and female authentic and impostor distributions using only images with no forehead occlusion.

(a) MORPH Caucasian (b) Notre Dame (c) AFD

Figure 10: Female authentic and impostor distributions with and without makeup.

Figure 11: Examples of images of the same subject

with (top) and without (bottom) makeup on the MORPH

Caucasian (left), Notre Dame (middle), and AFD (right)

datasets

4.3.4 Facial Makeup

Facial cosmetics is assumed to have two effects in face

recognition: (a) different people wearing the same style

of makeup are more likely to have a higher match score

than two people without makeup; (b) images of the same

person pair with and without makeup are likely to have a

lower score than images where their makeup condition is

the same.

To detect facial cosmetics, we used the Microsoft Face

API, which detects eye makeup and lip makeup separately.

In our experiments, we removed any image predicted to

have either eye or lip makeup. As the MORPH African-

American female cohort had only 58 images predicted as

having makeup, we did not experiment with this dataset.

After removal of makeup-predicted images, the female

makeup-free data contains: 1,001 images of 394 females

on the MORPH Caucasian dataset; 2,422 images of 130 fe-

males of the MORPH Caucasian dataset; and 1,051 images

of 337 females of the AFD dataset. Examples of subjects

with and without makeup are shown in Figure 11.

Figure 10 shows the genuine and impostor distributions

for all females and only females without makeup. The effect

(b) is supported by the genuine distribution shown, as the

genuine distribution for females without makeup had a shift

towards higher match scores. However, the effect (a) is not

seen here, in fact, the impostor distribution is showing the

opposite: females without makeup have a higher impostor

similarity score on average.

Table 1 shows the comparison of females without

makeup d-prime to males d-prime. For all datasets that fe-

males had makeup removed, the difference in d-prime be-

tween males and females decreased, achieving the lowest

difference in d-prime between males and females.

4.3.5 Balanced Training Dataset

Perhaps the most commonly speculated cause for the lower

accuracy on females is gender imbalance in the train-

ing dataset. The ArcFace matcher was trained using

the MS1MV2 dataset, which is only around 27% female.

To test whether an explicitly balanced training set could

eliminate the accuracy difference, we trained two sepa-
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(a) MORPH African American (b) MORPH Caucasian (c) Notre Dame (d) AFD

Figure 12: Male and female authentic and impostor distributions using a CNN trained with gender balanced VGGFace2

dataset (top) and gender balanced MS1MV2 dataset (bottom).

rate ResNet-50 [16] networks with combined margin loss

(which combines CosFace [31], SphereFace [20] and Arc-

Face [9] margins) using a subsets of the VGGFace2 dataset

[6] and the MS1MV2 dataset, that we balanced to have the

exactly same number of male and female images and sub-

jects.

The male and female genuine and impostor distributions

using the two gender balanced training sets are shown in

Figure 12. The model trained with the gender balanced

MS1MV2 achieved better distributions for all datasets and

both genders compared to the model trained with the gender

balanced VGGFace2. For Notre Dame, on both models, the

d-prime difference between males and females is smaller

than before. However, both of the explicitly-balanced train-

ing datasets still result in the female impostor and genuine

distributions being closer together than the male distribu-

tions.

5. Conclusions and Discussion

Our results show that although ROC curves may appear

similar for women and men in constrained datasets, they

in fact experience very different face recognition accuracy.

Women and men achieve the same FMR at very different

thresholds. The cause for the higher thresholds used for

females is the impostor distribution being shifted towards

higher values. Along with it, the females genuine distribu-

tion is also shifted, but towards lower values. Thus women

are disadvantaged relative to men both on FMR and FNMR.

We showed that although women have many more im-

ages with non-neutral facial expression, restricting the im-

ages to a neutral-expression-only subset does not affect the

pattern of genuine and impostor distributions being closer

together than for men. Moreover, when removing im-

ages with pitch angle higher than 5 degrees, the same phe-

nomenon is still present. Also, when removing any image

with forehead occluded by hair, the pattern persists.

Our results show that when only makeup-free images are

used, the female genuine distribution moves towards higher

values. This presumably results from eliminating matches

across images with and without makeup. However, the im-

postor distribution also moves towards higher values. Thus

going to only no-makeup images for females makes the ini-

tial FNMR better but also makes the initial FMR worse.

Selecting only images that satisfies all the factors ex-

amined together greatly reduces the amount of data. The

dataset with the most female data after removing all the con-

ditions is the MORPH African-American dataset. However,

the female genuine/impostor shift still exists, with d-prime

of 10.96 and 9.48 for male and female, respectively. Further

research into selecting multiple conditions requires a larger

or a different dataset.

As deep learning models are driven by data, gender im-

balance in training data could be the reason for lower female

accuracy. Our results with trained models on two gender-

balanced datasets suggests that training data is not the main

reason for lower female accuracy, as in general, the same

genuine/impostor distribution pattern persists.

This study has found “negative results” for each of the

speculated causes of gender accuracy difference that we

have examined. This motivates looking for a cause that is

more intrinsic to the difference(s) between males and fe-

males. One line of future research is to look at face mor-

phology differences between individual men and women

and between men and women as groups. Anecdotal sup-

porting evidence to look for a cause in this area can be found

in recent work by Muthukumar [24].
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